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Abstract

Haag’s theorem is a no-go theorem for the interaction picture in relativistic quantum field
theory. However, the interaction picture is still widely used in conventional perturbative calcu-
lations. But how exactly is the no-go theorem thereby avoided, and what do these formal results
tell us about the physical systems we study, if anything? I argue that the value of axiomatic
quantum field theory for modelling particle physics systems lies in understanding the structural
relationships between certain features of a quantum field description. For Haag’s theorem, we
learn that unitary inequivalence is related to the infinite spacetime volume idealization. We
can evade Haag’s theorem using more realistic idealizations, or we can ignore it for all practical
purposes when we know the root cause. Various solution strategies from axiomatic quantum
field theory make this conclusion clear, where conventional Lagrangian approaches are too con-
ceptually coarse to pinpoint the infinite spacetime idealization. However, the two approaches
are consistent, indicating the value of axiomatic methods for quantum field theory.

1 Introduction: No-go theorems and foundations of physics

Haag’s theorem is a form of no-go theorem in quantum field theory (QFT): the standard formulation
due to Haag (1955), Hall and Wightman (1957) assumes the Wightman axioms for QFT, and one
major conclusion is that no free QFT can be unitarily equivalent to a theory with interactions
(Earman and Fraser 2006; Freeborn, Gilton, and Mitsch 2022). This historically posed a problem
for theorists using perturbative methods to generate predictions from QFT: the interaction picture
assumes that the free theory is related to the full theory by a small perturbing interaction, and
that the free and interacting theories are related by a unitary transformation. Unitary equivalence
is usually required for different formulations of a quantum theory to ensure that probabilities of
outcomes are preserved; this establishes a clear form of theoretical equivalence between the two
descriptions. Insofar as the conventional, Lagrangian QFTs (LQFTs) are thought to satisfy the
Wightman axioms, the theorem states that perturbative calculational techniques are mathematically
inconsistent. Generalizations of the theorem have been proven for different rigorous formalisms
besides the Wightman axiomatic system, suggesting that the result is robust in many plausible
axiomatic QFT (AQFT) formalisms. Nevertheless, physicists have used—and continue to use—the
interaction picture to perturbatively calculate scattering amplitudes, which provide the basis for
the most precisely confirmed theoretical predictions in particle physics. This tension raises two
sets of interesting questions: first, how is it that an apparently inconsistent formalism is used to
such a high degree of success in science? Second, what good is a no-go theorem, if physicists can
continue to ‘go’ anyway? The answer to the latter is informed by the answers to the former, and these
questions further serve to inform how philosophers should understand and interpret physical theories
and the approximations and idealizations they employ. I argue here that theoretical frameworks
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are analogous to modelling frameworks, and highlight the ways in which inequivalent frameworks
can be used to model systems in physics. This sort of view of putatively fundamental physics as
more analogous to applied sciences may come as a surprise, though the similarities are clear and
illuminating for understanding physics practice, as well as foundational interpretations of physical
systems in particle physics.

Freeborn, Gilton, and Mitsch (2022) (FGM) provide a survey of responses to Haag’s theorem in
the literature, and show that many of the responses depend crucially on background assumptions
about the best framework for particle physics, and perhaps the best way forward to go beyond the
standard model of particle physics. Two of these camps are characterized in terms of a background
adherence to AQFT over LQFT or vice versa for foundational work in this area. Applying the
modelling frameworks view to particle physics, this encourages one to instead see LQFT and AQFT
as two different, complementary modelling frameworks.1 I argue that these two frameworks can
work in tandem at the foundations of particle physics, to provide complementary perspectives on
important physical aspects of the systems we study. To situate this paper within the FGM scheme,
I argue that foundational work is best conceived of as using all resources at one’s disposal to further
our understanding of the relationship between our best models and the world. Some aspects of a
given model are representational, while others are purely formal, and still others are approximations
or idealizations. Using competing modelling frameworks can help one better make these distinctions,
and separate the true physical content from the formal, idealizations, and approximations.

With this understanding of the relationship between AQFT and LQFT in hand, I turn attention
to Haag’s theorem (Sec. 3), and argue that the understanding of its implications from LQFT is
incomplete (Sec. 3.1). By turning attention to AQFT (Sec. 3.2), we can zero in on the interpretive
implications of Haag’s theorem: it represents a mathematical pathology that arises as a result of an
infinite spacetime volume idealization for the quantum field description. The clever workarounds in
AQFT also provide interesting hints at future physics.

2 Modelling frameworks in particle physics

The philosophical attitudes regarding the relative merits of the LQFT and AQFT formalisms have
largely been shaped by the debate between Doreen Fraser and David Wallace from 2009-2011 (Fraser
2009; Wallace 2011).2 The debate, focusing on the proper formalism for philosophical interpretation,
pitted AQFT and LQFT against each other as rival research programs. On the one hand, LQFT
is the basis of the empirically successful practices in particle physics, though its formulation is not
amenable to standard methods of theory interpretation in philosophy of physics. On the other,
AQFT offers the conceptual clarity lacking in LQFT, though there is good reason to expect that
models of interactions needed for particle physics cannot be formulated in current axiomatic or alge-
braic frameworks (see, e.g., Aizenman and Duminil-Copin 2021). If we take an either-or approach,
and our aim is to do philosophy of physical theories that apply to the world, then it seems that
LQFT wins out. One can see this influence in the shift in philosophy of QFT toward engaging with
LQFT and reimagining the interpretive project for philosophy of physics.

However, if we want to make sense of physics practice, we must grapple with the fact that AQFT
methods are used to prove theorems thought to hold for the systems under study in LQFT. Things
like the spin-statistics theorem, the CPT theorem (Streater and Wightman 1964), and the Reeh-
Schleider theorem (Reeh and Schlieder 1961) are all proven using various AQFT methods, and all

1I intentionally paint with a broad brush here: AQFT is a large, heterogeneous collection of different axiomatic
frameworks, some utilizing algebraic formulations of QFT, and LQFT is the stand-in for the collection of theories and
methods used by the majority of physicists to generate predictions far from the foundations of the field.

2In personal communication, the two spokespeople in the debate have both come to share something of a more
reconciliatory attitude towards the two formalisms. However, due to the influence of the papers framing the debate as
that between rival research programs, I will take some time to engage with and argue against this framing. Koberinski
(2016) and Swanson (2017) have previously argued that the two should not be viewed as rivals.
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are thought to be informative of the nature of QFTs. Haag’s theorem is another example that
putatively bears on results for QFT generally. If these are really incompatible competing formalisms
vying to describe the same systems, then how can we make sense of the widespread use of AQFT for
understanding some properties of the systems we think are best described by LQFT? The answer
lies in rejecting the characterization of the contrast as that between rivals, and reframing in terms
of complementary modelling frameworks for complex systems, as in Figure 1.

Figure 1: Schematic for thinking of LQFT and AQFT as complementary modelling frameworks, each
partially describing the quantum field systems in the world. “System state x” depicts the actual
system in the world, modelled variously using AQFT or LQFT. In this simple example, the system
transitions from state 1 to state 2. In each of these modelling frameworks, different idealizations,
approximations, and abstractions are used to represent the systems in different mathematical for-
malisms. While LQFT is fit for calculating dynamical evolution and modelling interactions, AQFT
is only able to capture overall structural features.

It is not common to think of theoretical frameworks as modelling frameworks in the philosophy of
physics. Typically, one thinks of theories as the appropriate ground for metaphysical interpretation,
and that incompatible theories cannot both be true or adequate representations without explicit
limiting relationships between the theories establishing something like reduction or some form of
equivalence. In cases where such relationships can be established, therefore, the analogy is unhelp-
ful. But there are important cases where these relationships cannot be established, or only partial
relationships exist, while we nevertheless want to say that each theory provides partial, complemen-
tary representational capacities. Different idealizations, approximations, and abstractions are used
in each framework, highlighting and preserving certain physical features while neglecting others.
Each of these partial representations contributes something different to our overall understanding
of the target domain. These are common in physics when thinking of complex systems with many
degrees of freedom, where representations at different scales are important (Batterman 2021), or in
other applied sciences where a fundamental, best representation is implausible or impossible, as in
modelling weather and climate patterns.

Familiar from these other areas of science, I claim that we should think about LQFT and AQFT
as distinct modelling frameworks, each using different mathematical formalisms to accurately capture
certain features of the systems under study, and idealizing, approximating, and abstracting other
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features. Distinct modelling frameworks can be used to model the same system, even when there is
apparent incompatibility or inconsistency between them. Different idealizations might capture some
relevant dynamical or structural features, while distorting others, while different approximations
might distort features we take to hold in actual systems. In particular, the LQFT formalism is far
more powerful for modelling interactions, while AQFT can only model abstract structural features of
fields. The flexibility of LQFT is one thing that makes it a powerful formalism for physics, and allows
for a wide range of physical interpretation. This flexibility makes interpretation challenging, since
many complex manipulations are required to calculate or extract predictions. It is not always clear
whether one ought to take these manipulations as indicating some physically significant feature of
the formalism, or whether they are merely formal manipulations needed to calculate or approximate.
AQFT can serve as a powerful complementary guide to physical interpretation in cases where the
flexibility of the LQFT formalism hinders conceptual clarity. For capturing abstract structural
features of systems, AQFT is advantageous; the logical implications of certain features (e.g., Poincaré
covariance) for others (e.g., necessity of unitarily inequivalent representations) are much clearer to
draw in AQFT. We should therefore use AQFT as a secondary modelling framework to aid in physical
interpretation of real physical systems. One advantage of such an approach is that, when physical
interpretation from both frameworks converge, we have stronger evidence that the interpretation is
(approximately) true of the actual systems. In this way AQFT can either correct, or strengthen and
reinforce our foundational understanding from LQFT.

Careful attention to the actual practice of physics motivates a view of the relationship between
LQFT and AQFT as one of complementary modelling frameworks for relativistic quantum field
systems. When engaging in foundational work, including physical interpretation, one should use
both frameworks to provide a convergent understanding of the physics of these systems. The next
section applies this general lesson to the specific case of Haag’s theorem, to help understand its
physical implications for our understanding of relativistic QFTs. This goes some way to answering
the more general question motivating this paper: what good is a no-go theorem for the foundations
of particle physics?

3 Evading Haag’s theorem

Haag’s theorem is an interesting test case for this view of the relationship between LQFT, AQFT
and physical systems in particle physics. First suggested by Haag (1955), and proven by Hall and
Wightman (1957), it employs the Wightman axiomatic system to show that no free QFT can be
unitarily related to an interacting QFT. This is a problem insofar as perturbative methods using the
interaction picture are thought to obey the Wightman axioms or some analogue, and the interaction
picture relies on unitary equivalence between free and interacting Hamiltonians. Even the setup
for the importance of this no-go theorem presupposes some sort of relationship between AQFT and
LQFT; the rival research program approach would dismiss Haag’s theorem as not relevant to the
formalism necessary for successful physics practice.

The Haag-Hall-Wightman theorem takes the form of a reductio ad absurdum. Since the con-
clusion is unacceptable, one must reject one or more of the premises. This could be either one or
more Wightman axioms, or the assumption of unitary equivalence needed to set up the standard
interaction picture. The rejected premises and resulting physical interpretation will vary depending
on the formalism one adopts. I will examine the ways in which the theorem is evaded in LQFT,
as well as candidate modifications to the Wightman axioms which lead to its evasion in AQFT. I
argue that, while the physical significance of the evasion is unclear in LQFT, supplementing this
with options from AQFT leads to a deeper understanding of how different modelling assumptions
remove the pathology, and suggests an interesting convergent physical interpretation. In particular,
we learn that unitary inequivalence is due to an idealization of infinite spacetime volume.

I offer here only a sketch of the Haag-Hall-Wightman theorem, split into two parts. The first es-

4



tablishes the unitary equivalence of the vacuum states, while the second then establishes the equality
of the first four n-point functions of two theories. For the case where one theory is a free theory,
this is sufficient to establish full equivalence. For more engaged discussion with the details of various
forms of the theorem, see Earman and Fraser (2006) and Duncan (2012).

Haag-Hall-Wightman theorem part I
Start with two chargeless scalar fields ϕi, ϕ2 satisfying the equal time canonical commutation rela-
tions,

[ϕi(x, t), πj(y, t)] = iδ(x− y)δij (1)

[ϕi(x, t), ϕj(y, t)] = [πi(x, t), πj(y, t)] = 0, (2)

where πi is the conjugate to ϕi. Each field carries a unitary representation of the Euclidean group
of spatial translations a and rotations R, Uj(a,R). Suppose the two fields are related by a unitary
transformation at some time t0, V (t0). This implies that the representations of the Euclidean group
for each field are related by this same unitary V (t0). If each field representation has a unique
“vacuum” state |0j⟩ invariant under the Euclidean transformations,

Uj(a,R) |0j⟩ = |0j⟩ , (3)

then the two vacua are unitarily equivalent.

Haag-Hall-Wightman theorem part II
Consider the fields from part I. Suppose they also each bear unitary representations of the Poincaré
group of transformations, under which the states |0j⟩ are also invariant, and that there are no
negative energy states of the field. Then the first four n-point functions of each field are equivalent:

⟨01|ϕ1(x1)ϕ1(x2)ϕ1(x3)ϕ1(x4) |01⟩ = ⟨02|ϕ2(x1)ϕ2(x2)ϕ2(x3)ϕ2(x4) |02⟩ . (4)

In the case where one of ϕj is a free field, there is a theorem from Jost (1961) that shows that any
field whose two-point function coincides with the two-point function of a free field is itself a free
field. This implies that the other field cannot be interacting. The conclusion is that a free and
interacting fields satisfying the conditions stated (all falling under the Wightman axioms) cannot
be related by a unitary transformation; if one field is free then they both are. Generalizations of
Haag’s theorem exist using different axiomatizations or algebraic methods, suggesting that this is
not simply a problem with the Wightman axioms.

3.1 . . . in LQFT

Haag’s theorem seems to pose a puzzle for using the interaction picture. Given that LQFT describes
quantum fields, and that various AQFT realizations encode formal properties of those fields, how
can the interaction picture, as used by physicists, be mathematically consistent in light of Haag’s
theorem? Duncan (2012) provides a clear, detailed account of how calculations in the interaction
picture are actually carried out in LQFT, and pinpoints the evasion in the necessity of regularizing
the path-integral to obtain finite results using the interaction picture. Regularization is usually
carried out by imposing a high-energy (UV) and low-energy (IR) cutoff on the path integral, effec-
tively placing the LQFT on a lattice and making it a theory with finitely many degrees of freedom.
In doing so, one breaks the Poincaré covariance of the theory, which was a necessary step in the
schematic proof above, and renders the number of degrees of freedom finite, which also violates
the assumptions of the theorem. Haag’s theorem no longer applies, and the interaction picture is
well-defined. After calculating, we remove the regulators in a way that preserves the predictions and
restores Poincaré covariance; when we can do so successfully, the theory is said to be renormaliz-
able. Other regularization schemes retain the continuum, but serve to tame UV and IR divergences
simultaneously.
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Miller (2018) argues that regularization rescues the empirical adequacy of LQFT from the threat
of mathematical inconsistency. Indeed, the solution offered by Duncan and Miller adequately ad-
dresses the question posed at the start of this section. But what are we to make of the procedures
of regularization and renormalization themselves? Do they tell us something of physical salience
about QFT systems? According to Miller, “[t]he best available explanation of this fact is that the
observables that get compared to experiment are insensitive to the removal of the [IR] cut-off” (p.
815). So, in LQFT, we construct a continuum theory that we think is a good representation of the
systems under study, render it finite to calculate, then take a continuum limit again to compare
the predictions to experiment. LQFT is famous for its operationalist origins, and the difficulty of
distinguishing physically salient bits of the formalism from mere calculational devices. Where do
the regulators fall on this scale? Is there a relevant physical difference between the UV and IR
regulators, as suggested in the quote from Miller?

There is further debate about the exact way that LQFT evades Haag’s theorem, that involves
closer attention to the way that continuum limits are taken in this process. Fraser (2006) argues
that the continuum limits amount to the introduction of an inconsistent mathematical represen-
tation, while Klaczynski (2016) argues that the limits introduce non-unitarity, and that it is the
non-unitarity doing the work of evading Haag’s theorem. One major drawback to the LQFT for-
malism is that these questions do not have unambiguous answers, meaning that interpretive work is
open-ended. Essentially, regularization and renormalization provide a shotgun approach to solving
technical and conceptual issues for LQFT; many changes are introduced all at once, and so the
logical dependence of any resulting formalism on any one specific change is obscured. I present some
suggestions for interpreting the role of regulators in evading Haag’s theorem here, then supplement
these suggestions with compatible interpretations from AQFT in the next section. This serves to
underscore the point that the two modelling frameworks can work in complementary ways.

One option is to read the necessity of some form of regulators—both UV and IR—as directly
indicative of something about the ontology of systems described by LQFT. Such a view is motivated
by the idea that we should endow necessary aspects of the formalism of a successful physical theory
with direct physical significance. One could then infer directly that systems described by LQFT are
systems with a finite number of degrees of freedom—and therefore not really quantum field systems
at all! But this move is too quick for a few reasons. First, though the presence of some sort of
regulator is necessary for carrying out calculations, that regulator need not be a sharp cutoff. Even
softer cutoffs, like those that exponentially dampen UV or IR modes, make this sort of interpretation
much harder. With soft cutoffs, all of the continuum degrees of freedom are there, though many
are suppressed. Other regulators introduce fictitious particles or change the dimension of spacetime,
and these become even harder to make sense of in terms of strictly finite degrees of freedom. Second,
regardless of the choice of regulator, the empirically relevant predictions extracted from LQFT are
at least highly insensitive to the value of the regulator, and usually the regulator is removed before
comparison with experiment. So this more direct ontological significance seems too hasty.

But a more sophisticated version of the above is to endow the regulators with physical significance
in a looser, epistemic way. The necessity of regulators in LQFT blocks us from taking them to be
even candidate descriptions of the world valid to all scales, while considerations external to the theory
lead us to expect that even as candidate descriptions, they would fail of the actual world anyway.
Thus we should take the necessity of some form of regulator to be a signal of the breakdown of our
LQFT description in terms of the chosen particle and fields at some energy scale. A particular choice
of regulator—such as a cutoff or dimensional regulator—is then a simple way of parameterizing our
ignorance that makes the model tractable. Cutoff regulators are types of idealizations, ones that
break the approximate field description and the exact symmetries of the theory; we restore the field
description and the symmetries after calculating, but we should also be aware that these only hold
approximately and relative to a scale (Wallace 2021). Dimensional regulators are more clearly formal
idealizations used to make integrals converge, but have the advantage of preserving the symmetry
structure of the theory. We can justify the use of the field description in terms of renormalization

6



group analysis, which indicates the robustness of low-energy field descriptions in LQFT (Koberinski
and Fraser 2023). This is a much more sophisticated and apt interpretation of the LQFT formalism,
but it is still somewhat unhelpful for pinpointing the problem the Haag’s theorem raises. What does
our ignorance of high-energy physics imply about interpreting QFT or the interaction picture? If
these are approximations or idealizations, how can they imply anything about physical possibility?

Take the solution as stated by Duncan (2012), for example. He claims that,

the proper response to Haag’s theorem is simply a frank admission that the same regu-
larizations needed to make proper mathematical sense of the dynamics of an interacting
field theory at each stage of a perturbation calculation will do double duty in restoring
the applicability of the interaction picture at intermediate stages of the calculation. (p.
370)

This tells us that the presence of regulators violates the assumption of Poincaré covariance of the
theory, thereby evading Haag’s theorem. Additionally, the imposition of UV and IR regulators re-
duce the number of degrees of freedom in the theory, down to a large but finite number. In this case,
the Stone-von Neumann theorem applies, assuring us that different Hilbert space representations
of the theory are unitarily equivalent. So the introduction of regulators serves as a blunt instru-
ment, making many changes to the theory and solving numerous mathematical pathologies. But
this answer doesn’t fully pinpoint what specific features of our modelling framework are to blame for
Haag’s theorem, and the exact role that regulators play in violating these assumptions. First, the
presence of either a UV or IR regulator on its own would be sufficient to break Poincaré covariance,
but generically will not guarantee that perturbative calculations are well-defined or make the theory
finite. So we don’t learn from this whether Haag’s theorem is related to UV divergences, IR diver-
gences, or some combination of both. We don’t even learn whether breaking Poincaré covariance
alone is sufficient, or whether it is also necessary to make the theory finite. Second, alternative
regularization schemes exist that retain the symmetries of the theory, including some appropriate
generalization of Poincaré covariance. In particular, dimensional regularization is widely used as a
regularization scheme for precisely this reason. Dimensional regularization also ensures that per-
turbative calculations are well-defined, but does so in a way that respects the symmetry structure
of the theory. Since physically meaningful quantities are supposed to be insensitive to the choice
of regularization scheme, we have no ground for privileging cutoffs over dimensional regularization.
Therefore, the evasion of Haag’s theorem can’t be only explicable for LQFT with cutoffs.

Despite all of these confusions, the evasion via cutoff regulators rendering the theory finite is
suggestive of interpretive moves that one could make for understanding particle physics systems
via LQFT. The best candidate answer we get is that imposing UV and IR cutoffs is sufficient for
evading Haag’s theorem. But the formalism blends together many ingredients in ways that make
a clear separation of dependencies rather challenging. We don’t get a clear understanding of what
changes are simply mathematically necessary approximations without direct physical content, and
what changes are physically significant. Luckily, Haag’s theorem was originally formulated in the
AQFT framework, where dependencies are much clearer.

3.2 . . . in AQFT

The Haag-Hall-Wightman proof of Haag’s theorem employs the Wightman axioms, showing the
impossibility of modelling a free field and interacting field within the same Hilbert space. But like
any no-go theorem, one can respond by rejecting at least one of the premises needed to prove it.
We saw for LQFT that standard regularization schemes break Poincaré covariance, and techniques
required to calculate generally lead to changes to the mathematics of the theory in other ways that
would violate the Wightman axioms. But the evasions in LQFT don’t tell us much about how to
interpret the physical significance of the theorem, or what LQFT calculational techniques imply for
our understanding of particle physics systems in the world. AQFT methods provide some insight
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into the structural features of quantum fields; insofar as the systems we describe are successfully
represented as quantum fields, we expect many of these structural features to hold. Despite Haag’s
theorem seemingly forbidding a certain representation of dynamical interactions, it actually implies
something structural : a Hilbert space with unique vacuum state with respect to one Hamiltonian
cannot also contain a different unique vacuum state with respect to a different Hamiltonian. Since
this does not directly relate to parts of AQFT we know to be inappropriate for describing real
world systems, we can use the conceptual clarity of AQFT to understand how generalizations of the
Wightman axioms can avoid Haag’s theorem. Different solutions will clearly violate one or more
of the assumptions that go into the Haag-Hall-Wightman proof. By analzying a set of different
solutions, the common ground they share provides evidence for what assumptions are individually
necessary and jointly sufficient to prove or evade Haag’s theorem. In agreement with the conclusion of
Miller (2018), we see that AQFT suggests that unitary inequivalence is related to the IR behaviour
of a QFT. Specifically, we can evade Haag’s theorem by giving up the infinite spacetime volume
idealization commonly employed in both AQFT and LQFT.

Earman and Fraser (2006) provide several options for relaxing or modifying the Wightman axioms
that serve to evade Haag’s theorem. I will discuss a few of these options, with the aim of combining
the insights here from those suggested by LQFT. The more recent criticisms of their account are
correct, but have been overblown; while, e.g., Miller (2018) is correct to point out that they leave
open the question of understanding LQFT approaches to evading Haag’s theorem, their conclusions
and framing are compatible with a conciliatory understanding of the relationship between AQFT
and LQFT. Using the conclusions from Sec. 2, we can make this more precise. When we use both
modelling frameworks in a complementary way, we can get deeper physical insight into particle
physics systems and their properties.

The first option bites the bullet and accepts that the interaction picture is untenable for QFT.
Instead, Haag (1958) and Ruelle (1962) developed a new scattering theory, where one is always within
the Hilbert space for the interacting theory only. Instead of a unitary transformation from free fields
“at infinity” to interacting fields in the scattering region, one defines a weaker notion of a surrogate
state, and identifies regions of the interacting Hilbert space with the span of surrogate free states.
Haag’s theorem is not an issue, because the notion of equivalence here is not unitary equivalence.
We know that the interaction picture is itself an idealization: the modelling assumption that we can
turn the interaction off at infinity is blatantly unphysical. We use free states to have a well-defined
notion of particle within the theory, but these are also approximate. Haag-Ruelle scattering theory is
a construction that proves that a more careful modelling framework—including a different notion of
approximately free states—makes a revised scattering picture mathematically well-behaved. Though
unitary equivalence seems like a good option for treating these approximations, a weaker notion of
equivalence is also justifiable. One major drawback here is that Haag-Ruelle scattering theory is
rather complicated, and still only deals with asymptotic states. Thus we can retain an infinite
volume idealization if we weaken the notion of equivalence required. But we gain insight into the
places where modelling idealizations start to cause problems for the well-definedness of the theory.

A second option, used explicitly for constructive models within the AQFT framework, is similar in
spirit to Haag-Ruelle scattering theory. Instead of requiring a global notion of unitary equivalence
between free and interacting theories, one can establish a local unitary equivalence within some
bounded region of spacetime (Reed and Simon 1975). This ensures that some set of local algebras
for each theory are unitarily equivalent, while the full nets remain unitarily inequivalent. For toy
theories without UV divergences, this local notion of unitary equivalence suffices to construct an
interaction picture and evade Haag’s theorem. Since we only ever model systems of finite extent,
demanding global unitary equivalence while idealizing to infinite spacetime volume might been seen
as layering too many unphysical idealizations on top of one another. As we saw from Haag-Ruelle
scattering, we can retain the infinite spacetime volume idealization if we reject unitary equivalence.
Here we see that we can retain unitary equivalence if we reject infinite volume. We have an example
of a solution that continues to treat QFT systems as continuous, but limits the extent of systems
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to local regions. The lesson here is compatible with the tentative conclusions drawn from LQFT:
Haag’s theorem is directly related to IR and/or UV behaviour of the idealized theory. What we
learn to sharpen that suggestion from LQFT is that Haag’s theorem can be evaded by only placing
IR restrictions; the UV behaviour of the theory is immaterial to the presence or absence of unitary
inequivalence. Insofar as the conclusions are compatible, we should expect that introducing an IR
regulator, effectively removing the infinite volume idealization in LQFT would also suffice to evade
Haag’s theorem. So the lessons from AQFT here reinforce and sharpen the hints from LQFT.

One final option from generalizations of AQFT to curved spacetime settings is worth mention-
ing here. For spacetimes lacking some of the characteristic symmetries of Minkowski spacetime,
constructing well-defined local AQFTs poses new challenges. Hollands and Wald (2010) provide an
axiomatic formulation of QFT on curved spacetime, and argue that one major change is a restriction
to local regions of spacetime. Since generically curved spacetimes have little global symmetry struc-
ture, this restriction to local regions is physically motivated by consistency with general relativity.
They formulate the axioms based on toy models using the operator product expansion as a starting
point, and write the local fields in a position representation, since Fourier transforming to momentum
space requires a well-behaved global structure of the space. A generalization of the Epstein-Glaser
point-splitting procedure is used as the renormalization scheme. A consequence of this work is that
there is in general no unique global vacuum state for the theory. The Wightman axiom requiring a
unique invariant vacuum state is therefore completely rejected, while other axioms are generalized.3

Since the reason for rejecting the vacuum axiom has to do with restriction to local regions, this
lesson is compatible with local unitary equivalence and IR regularization: our idealization of infinite
spacetime volume is again leading us astray. The hint here is that we will need to address this ide-
alization in order to describe particle physics systems with spacetime curvature, and the suggestion
by Hollands and Wald is that the formalism must be heavily modified to excise the vacuum concept
altogether. As Belot (1998) has influentially argued, theory interpretation should be guided by the
way that a given theory can be made compatible with other physical theories. Since the idealization
of globally flat spacetime is believed to be false of our world, insights from attempts to fit QFT onto
curved spacetime backgrounds are particularly illuminating. There are other reasons for thinking
that the vacuum sector of LQFT is poorly understood—notably the cosmological constant problem
(Koberinski 2021; Koberinski and Smeenk 2023)—so this solution strategy is interesting for reasons
beyond just Haag’s theorem. For Haag’s theorem, the lesson is that we must restrict to local regions.

In all cases summarized here, we can understand the impossibility of the interaction picture
as arising from overextending idealizations that are innocent for finite systems, but break down
when one introduces continuum fields. The mathematics of infinite quantum systems requires more
subtlety than finite systems. Despite other issues with AQFT, we see that Haag’s theorem can be
avoided by modelling systems as having only finite extent, while retaining a continuum field descrip-
tion. Alternatively, one can weaken the notion of equivalence between interacting and free fields.
Given that unitary equivalence is a more useful notion of equivalence elsewhere in quantum physics,
while infinite spacetime extent is clearly an unphysical modelling idealization, the best conclusion is
that Haag’s theorem is a pathology that emerges from requiring global equivalences between theories
that are only meant to describe local regions. We should cautiously note, however, that the con-
clusion that infinite idealizations are uniquely responsible for Haag’s theorem in all possible models
is too strong; it might turn out to be the case that counterexamples can be constructed, where a
version of Haag’s theorem holds in finite spacetim regions. What is important, however, is that in
the cases of physical interest Haag’s theorem is tied to these issues.

3See Koberinski (2021, Sec. 3) or Hollands and Wald (2010) for a more detailed summary of the Hollands and
Wald approach.
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4 Conclusions

What good is a no-go theorem for progress in the foundations of physics? For the project of inter-
preting our best theories and their implications for real-world systems, a no-go theorem provides a
clear demonstration that some set of prima facie reasonable assumptions jointly lead to an unrea-
sonable conclusion. Figuring out the various possibilities for modifying or rejecting assumptions, or
living with the conclusion can provide deep insight into the physical implications of our best theories,
and the idealizations and approximations necessary to link them to experiment. No-go theorems
are often best formulated and analyzed in frameworks amenable to clear logical or mathematical
presentations, where the necessity of each assumption is explicit. What we often learn from no-go
theorems are better modelling techniques, or theoretical creativity for dealing with a supposedly
unreasonable conclusion. This theoretical creativity can also lead to progress in constructing new
theories.

For Haag’s theorem in particular, it seems to imply that a central pillar of perturbative calcula-
tion in LQFT—the interaction picture—is mathematically inconsistent. Careful attention to actual
physics practice shows that this conclusion is too quick; regularization techniques otherwise required
to obtain finite results in LQFT seem to do double duty in restoring the validity of the interaction
picture. But the quantities of interest for particle physics are obtained after removing the regula-
tors, so the physical significance of such a move is opaque. By moving to the AQFT formalism, we
gain important insight into the nature of modelling idealizations for particle physics. In particular,
we see that Haag’s theorem is a result of an infinite spacetime volume idealization, and disappears
when one uses different formal tools to avoid this idealization. This sharpens the suggestion from
LQFT, where it was unclear whether the UV or IR regulators were to blame, or if it was essential
to move to a finite number of degrees of freedom. Additional insight into formulating AQFT on
curved spacetimes suggests that the formalism will have to be fully local, and built from different
quantities than vacuum expectation values. To answer the first question posed in the introduction,
the interaction picture works because the apparent inconsistency is not actual, but due instead to
taking an idealization too seriously.

Haag’s theorem typifies a good no-go theorem in physics. Once one makes the additional move to
see AQFT and LQFT as complementary modelling frameworks, Haag’s theorem provides interesting
physical insight into particle physics systems, and the space of theoretical possibilities that extend
beyond this domain. When AQFT and LQFT provide convergent physical insight, we have better
reason to believe that we have learned something about the actual physical systems under study.
The axiomatic framework supplements insight gained from foundational analysis of LQFT to tell us
that Haag’s theorem is not, strictly speaking, an artifact of a continuum field description, but is an
artifact of an infinite volume idealization for relativistic systems. At a given scale, and to a given
degree of approximation, a field description must compatible with the existence of the interaction
picture. We gain insight into how by combining interpretations from LQFT and AQFT.
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