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Abstract

I flesh out the sense in which the informational approach to interpreting quan-

tum mechanics, as defended by Pitowsky and Bub and lately by a number of other

authors, is (neo-)Bohrian. I argue that on this approach, quantum mechanics repre-

sents what Bohr called a “natural generalisation of the ordinary causal description”

in the sense that the idea (which philosophers of science like Stein have argued

for on the grounds of practical and epistemic necessity) that understanding a the-

ory as a theory of physics requires that one be able to “schematise the observer”

within it is elevated in quantum mechanics to the level of a postulate in the sense

that interpreting the outcome of a measurement interaction, as providing us with

information about the world, requires as a matter of principle, the specification of

a schematic representation of an observer in the form of a ‘Boolean frame’—the

Boolean algebra representing the yes-or-no questions associated with a given ob-

servable representative of a given experimental context. I argue that the approach’s

central concern is with the methodological question of how to assign physical prop-

erties to what one takes to be a system in a given experimental context, rather than

the metaphysical question of what a given state vector represents independently of

any context, and I show how the quantum generalisation of the concept of an open

system may be used to assuage Einstein’s complaint that the orthodox approach

to quantum mechanics runs afoul of the supposedly fundamental methodological

requirement to the effect that one must always be able, according to Einstein, to

treat spatially separated systems as isolated from one another.
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1 Introduction

Niels Bohr’s views on quantum mechanics, and on the methodology of physics more

generally [1, 2], have been the subject of renewed attention in recent years, both in the

foundations and philosophy of physics as well as in the area of general philosophy of

science (see, for instance, [3]). In the former area, this has taken the form of a number

of approaches to interpreting the formalism that in some sense claim to be a modern

expression of Bohr’s approach (see, for instance, [4] (p. 98); [5]; [1] (chp. 4); [6] (p.

16); [7] (p. viii)), as well as approaches that take themselves to be inspired by certain

aspects of Bohr’s approach, but that otherwise depart from it in various ways (see, for

instance, [8] (sct. 1); [9] (pp. 253–254); [10] (pp. 135–142)).

The words ‘informational’ or ‘information-theoretic’ are, or have been, used to de-

scribe many of the approaches in both categories. But my focus in this paper will

specifically be on the informational approach that one can trace to the work of Ita-

mar Pitowsky [11], later further developed in conjunction with Jeffrey Bub [12, 13, 5,

14, 15, 16] and others. The most recent book-length elaboration and defence of the

approach (which is what I will mainly be drawing on here) is by Janas, Cuffaro, &

Janssen [6], which also draws on the closely related ideas of William Demopoulos [1].1

2 Although some of the concepts and arguments have been adapted and clarified over

the years, the core of the view developed in [6] and, independently, in Bub’s later work

remains unchanged from the one defended by Bub & Pitowsky [12].2

Defenders of this informational approach to the interpretation of quantum mechan-

ics think of their view as (neo-)Bohrian in the sense of amounting to a rehabilitation

of Bohr—or at least what they take to be essential to Bohr’s view—and my aim in this

paper will be to flesh this out. The reader should keep in mind, however, that it is

not one of the goals of the research programme, per se, to contribute to the historical

scholarship on Bohr, and it will not be my goal here. The upshot is that one may (if

one is so inclined) call the approach that we will be discussing Bohrian if one agrees

that it has correctly characterised the historical views of Bohr. Otherwise, one may call

it neo-Bohrian. Such labels are ultimately not my concern.3

As for the rest of this paper, it will be framed in terms of the following passage that

one can find in a letter dated 24 March 1928 that Bohr sent to Paul Dirac. Note that,

below, “my article” refers to what later would come to be known as the ‘Como paper’

[20], wherein Bohr had just laid out his considered views on the (then) new quantum

mechanics.4

I quite appreciate your remarks that in dealing with observations we always

witness through some permanent effects a choice of nature between the

1Note that although it was only published in 2022, the same year as [6], Demopoulos’s book, On
Theories, was completed shortly before his death in 2017.

2The book by Janas, Cuffaro & Janssen will be my primary source for the exposition which follows,

but note that I will occasionally refer to earlier works as well to call attention to some of the connections
between them. Note also that although there is no difference of substance between [6] and these other

works, there are of course differences in what is emphasised in each of these works and in the particular
issues each deals with.

3Note that for their views on Bohr, I am drawing on [5, 17, 18, 19, 1], as well as long-running personal

communication with Jeffrey Bub, (the late) William Demopoulos and Michel Janssen.
4The paper was based on a lecture Bohr gave at a conference in Como in northern Italy in 1927,

honouring the centenary of Alessandro Volta’s death. For more on the period leading up to its publication,

see [21].
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different possibilities. However, it appears to me that the permanency of re-

sults of measurements is inherent in the very idea of observation; whether

we have to do with marks on a photographic plate or with direct sensations

the possibility of some kind of remembrance is of course the necessary con-

dition for making any use of observational results. It appears to me that the

permanency of such results is the very essence of the ordinary causal space-

time description. This seems to me so clear that I have not made a special

point of it in my article. What has been in my mind above all [, rather,] was

the endeavour to represent the statistical quantum theoretical description as a

natural generalisation of the ordinary causal description and to analyze the

reasons why such phrases like a choice of nature present themselves in the

description of the actual situation. In this respect it appears to me that the

emphasis on the subjective character of the idea of observation is essential.

Indeed I believe that the contrast between this idea and the classical idea

of isolated objects is decisive for the limitation which characterises the use

of all classical concepts in the quantum theory. Especially in relation with

the transformation theory the situation may, I think, be described by saying

that any such concepts can be used unaltered if only due regard is taken

to the unavoidable feature of complementarity. [22] (pp. 45–46, emphasis

added).

In the sequel, I will unpack this (in the conceptual, not historical, sense), or at any

rate, what those who advocate for the informational approach we are discussing here,

take Bohr to be conveying to Dirac in this passage. I will begin, in Section 2 (entitled

“the necessary conditions for making any use of observational results”), by discussing

what the mathematical logician, George Boole, described as the ‘conditions of possible

experience’ in relation to the observation of statistical data. I then use Pitowsky’s work

on correlation polytopes to motivate a particular setup involving three correlated ran-

dom variables for which Janas, Cuffaro, & Janssen [6] provide a 3visual representation

of the part of the space of possible correlations between the variables that can be rep-

resented in a local hidden-variable theory and in quantum mechanics, respectively. In

Section 3 (entitled “quantum mechanics as a natural generalisation of ordinary causal

description”), I explain the sense in which one can understand quantum mechanics to

be a generalisation of the kind of description that classical mechanics makes precise. In

particular, I explain (in Section 3.1) that the significant differences between quantum

and classical mechanics are traceable to the constraints each conceptual framework

imposes on our representations of systems independently of the specifics of their dy-

namics. In the classical case, these constraints allow for a globally Boolean description

of what one naturally thinks of as the properties of a system. In the quantum case,

they do not. Howard Stein [23] and Erik Curiel [24] have argued that understanding a

theory, as a theory of physics, requires that one “schematise the observer” within it in a

sense that goes beyond the pure formalism that one uses to characterise a system. The

basic idea is that we do not know how, given our current epistemic state in relation to

our best theories of physics, to understand those theories as theories of physics without

understanding how to schematise the observer in that sense.5

5Note that Curiel (personal communication) does not deny that this circumstance could change in the

future, though he would argue that it is difficult to imagine (at least in our current epistemic state) what

such a change would look like.
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The advocate of the informational, or (neo-)Bohrian, approach agrees, and in Sec-

tion 3.2, I draw on Bohr to help illuminate why. I argue that what Stein and Curiel

have, on the grounds of practical and epistemic necessity, claimed to be required in

classical theory should be understood, for a (neo-)Bohrian, to be elevated within quan-

tum theory to the level of a postulate, in the sense that interpreting the outcome of

a measurement interaction as providing us with information about the world requires,

as a matter of principle, the specification of a schematic representation of an observer

in the form of a ‘Boolean frame’—the Boolean algebra representing the yes-or-no ques-

tions associated with a given observable representative of a given experimental context.

In Section 3.3, I discuss the quantum generalisation of the concept of an open system

that is implied by this, and how it helps to assuage one of Einstein’s complaints, against

the orthodox interpretation of quantum mechanics, that it runs afoul of a fundamental

methodological requirement to the effect that one must always be able, according to

Einstein, to treat spatially separated systems as isolated from one another.

Note that I am not necessarily claiming that defenders of the approach to quan-

tum mechanics under discussion would endorse everything that Stein (or Curiel) has

to say about quantum mechanics (and vice versa) even though I am convinced that

there is a substantial amount that they do agree on. I disagree, in particular, with

Stein’s comment to the effect that: “In [quantum mechanics] we just do not know how

to ‘schematize’ the observer and the observation” [23] (p. 653) while agreeing with

him that, at least on the approach under discussion here, “the difficulties [quantum

mechanics] presents arise from the fact that the mode in which this theory ‘represents’

phenomena is a radically novel one” ([25] (p. 59), emphasis is original; cited in [23]

(p. 653)). (For Stein’s views on quantum mechanics, see [26].)

Regarding the question of what a given Boolean frame represents physically, the

answer, in short, is that it represents anything that can be used to instantiate it using the

available means (see [6] (pp. 202–213); cf. [27]). It must not be forgotten, however,

that on the approach we are discussing there is only ever one experimental context

represented by a Boolean frame that is associated with any given observable, which is

left out of the quantum description as a matter of principle.

2 The Necessary Conditions for Making Any Use of Ob-

servational Results

Many things are meant by ‘phenomena’ and by ‘observation’, but in the context of

physics, the relevant aspect of both that concerns us here is that they can be mathemat-

ically represented [28]. Newton, famously, appealed to the phenomenon that “[t]he

circumjovial4 planets, by radii drawn to the center of Jupiter, describe areas propor-

tional to the times, and their periodic times—the fixed stars being at rest—are as the
3/2 powers of their distances from that center” [29] (p. 797). On the basis of it and

similarly mathematised observations concerning the motions of the circumsaturnian

planets (i.e., the moons of Saturn) and those of the five so-called primary planets: Mer-

cury, Venus, Mars, Jupiter and Saturn—such as the phenomenon that “[t]he periodic

times of the five primary planets and of either the sun about the earth or the earth

about the sun—the fixed stars being at rest—are as the 3/2 powers of their mean dis-

tances from the sun” [29] (p. 801)—Newton argued to the conclusion that there is a

force called gravity through which every material object in the universe is attracted, to
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a certain degree, to every other [30, 31].

In the 19th century, the philosopher and mathematical logician, George Boole, de-

scribed a number of what he called ‘conditions of possible experience’ in relation to the

observation of statistical data that, he argued, are such that “[w]hen satisfied they indi-

cate that the data may have, when not satisfied they indicate that the data cannot have

resulted from an actual observation.” ([32] (p. 229), cited in [33] (p. 100)). Boole

explicates the concept in the following way (the notation is Pitowsky’s): given the ra-

tional numbers p1, . . . , pn representing the relative frequencies of n in general logically

connected events E1, . . . , En (Pitowsky [33] (p. 2) gives the following example: E1:

it will rain in Paris tomorrow; E2: it will rain in Madrid tomorrow; E3: it will rain in

Paris and in Madrid tomorrow), the conditions of possible experience with respect to that

data are the necessary and sufficient conditions under which the pi can be realised as

probabilities corresponding to the Ei in some probability space. They are yielded by the

following algorithm: begin by writing down a ‘truth table’ (see Figure 1) whose rows

are the vectors, (p1, . . . , pn), describing the consistent assignments (given their logical

connections) of extremal probabilities to E1, . . . , En. Now take the convex hull of these

vectors. This yields a polytope, the facets of which are associated with a number of

linear inequalities, special cases of which include the one associated with John S. Bell

and its variants [33] (pp. 103–104).

E1 E2 . . . En

0 0 . . . 1

0 1 . . . 0
...

...
...

...

Figure 1: At the (left): A table describing consistent assignments of extremal probabilities to a

set of logically connected events E1, . . . , En, convex combinations of which can be visualised

as a polytope, the facets of which (like those of the three-dimensional polytope depicted on the

(right)) are associated with linear inequalities of the form a1p1 + a2p2 + · · · + anpn + a ≥ 0,

where the pi are extremal probabilities. One of these is a Bell inequality.

In the spirit of Pitowsky’s further work on correlation polytopes [11, 34, 35], and

building on Bub’s work on correlation arrays [13], Janas, Cuffaro, & Janssen [6] con-

sider a particular setup inspired by David Mermin [36] in which two parties are given

one of two correlated systems each and are each asked to measure their system using

one of three possible settings. In the setup considered in [6], the possible outcomes of

the three types of measurements are represented by the balanced random variables X,

Y and Z such that a possible value x of X can be an element of a discrete set {xi} or

a continuous interval [a, b] of real numbers or an element of the union of such sets and

intervals, and a random variable X is called balanced if and only if: (1) whenever x is a

possible value, −x is a possible value; and (2) x is as likely as −x, i.e., Pr(x) = Pr(−x)
(see [6] (pp. 67–68)). There is a nonlinear 5constraint on the correlations among three

balanced random variables X, Y and Z that is relevant to this general setup [6] (p.
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71):

1− ρ2XY − ρ2XZ − ρ2Y Z + 2 ρXY ρXZ ρY Z ≥ 0, (2.1)

where ρXY := 〈XY 〉
σXσY

is the Pearson correlation coefficient for two balanced random vari-

ables X and Y , 〈XY 〉 is the covariance of X and Y , and σX , σY are the standard

deviations of X and Y . Geometrically, it describes an inflated tetrahedron or elliptope

like the one depicted in Figure 2.

Figure 2: Elliptope of triplets of anti-correlation coefficients (χab, χac, χbc) representing the al-

lowed correlations, according to quantum mechanics, in the Mermin-inspired setup considered

in [6]. Note that the anti-correlation coefficient, χab, which parametrisess the correlations be-

tween the values obtained by the two distinct parties in the Mermin-inspired setup, is just the

negative of its corresponding Pearson correlation coefficient: ρXY [6] (p. 72–73). Image source:

[6] (p. 46).

3 Quantum Mechanics as a Natural Generalisation of

Ordinary Causal Description

3.1 The New Kinematics of Quantum Mechanics

The constraint given by Equation (2.1)—which in [6] is called the elliptope inequality—

was known and discussed, albeit in contexts far removed from physics, as early as the

19th century by figures such as Udny Yule, Ronald A. Fisher and Bruno de Finetti [6]

(chp. 3). As Janas, Cuffaro & Janssen explain, its derivation relies on the following fact

about linear combinations of X, Y and Z:

〈(

v1
X

σX
+ v2

Y

σY
+ v3

Z

σZ

)2〉

≥ 0, (3.1)

where v1 , v2 and v3 are real numbers. Modelling Equation (3.1) in a local hidden-

variable theory requires a joint probability distribution over the possible values of X,

Y and Z. When there are two possible values per variable, the possible probabilistic
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correlations between X, Y and Z are describable geometrically as a tetrahedron (see

Figure 3) lying entirely within the elliptope. When there are three or more values per

variable, the associated polyhedra become further and further faceted and more closely

approximate the elliptope, but become exceedingly difficult to compute. In contrast

to a local hidden-variable theory, quantum theory (as John von Neumann observed in

[37]) allows us to assign a value to a sum of observable quantities—represented, for

instance, by an operator Ŝ ≡ ŜX + ŜY + ŜZ—without, in general, requiring that we

assign values to the individual summands ŜX , ŜY and ŜZ (cf. [26] (p. 376)). Janas,

Cuffaro & Janssen show how, as a consequence, the probabilistic correlations describ-

able in quantum mechanics saturate the entire elliptope—already for 6spin-1
2

systems

(the analogue of a two-valued variable) as well as for all higher values of spin.

That an assignment of values to a sum of observable quantities entails an assignment

of values to the individual observables involved in the sum is always true in classical

theory. By contrast, the kinematical structure of quantum theory—the constraints it

imposes on our physical description of a system independently of the specifics of its dy-

namics ([6] (chp. 1); [38] (pp. 26–52))—is more general. Slogans such as “quantum

mechanics is all about information” or “quantum mechanics is all about probabilities”

are meant (at least for the informational approach under discussion here), not as on-

tological claims, but to emphasise that these constraints (as we will see in more detail

in a moment) are probabilistic in nature—that the conceptual novelty of quantum me-

chanics lies ([6] (sct. 6.3); [1] (sct. 4.3)) in the way that it constrains probability

assignments. The slogan also conveys the idea that quantum mechanics is a framework

that can in principle be applied to any type of physical system, for instance computa-

tional systems, the fictitious “quantum bananas” of [13] and so on ([39]; [6] (chps. 1,

6); [40, 41]).

Figure 3: On the (left): the tetrahedron of triplets of anti-correlation coefficients (χab, χac, χbc)
allowed by local hidden-variable theories in the Mermin-inspired setup (see the end of Section

2 above) for two possible values per balanced random variable. On the (right): the polyhe-

dron corresponding to the case of three possible values. Note that whenever there are more

than two values per variable, the corresponding correlation polytope will have more than three

dimensions [6] (p. 106). The three-dimensional polyhedron at the right is a projection of this

higher-dimensional polytope to three-dimensional space [6] (sct. 4.2.2). Image source: [6] (pp.

40, 140).

Understanding why quantum mechanics, but not classical mechanics, saturates the

elliptope for all values of spin is only one example of a problem that can be fully ex-



The Measurement Problem Is a Feature, Not a Bug

plained by appealing exclusively to quantum mechanics’ kinematical constraints. In

addition, Janas, Cuffaro & Janssen [6] (sct. 6.4) describe three further examples of

physical problems from the history of quantum mechanics that seemed, at first, to call

for dynamical solutions but that were solved as a direct result of considering the change

introduced into physics via quantum mechanics’ novel kinematics. These are: account-

ing for the particle term in Einstein’s 1909 formula for energy fluctuations in black-body

radiation (pp. 188–189), accounting for the formula for the electric susceptibility of di-

atomic gases (pp. 189–191), and accounting for why electron orbits seem to depend on

which coordinates one chooses to impose the quantisation condition (pp. 191–194).

The ‘measurement problem’, as it is usually framed (see, e.g., [42], p. 63), also

seems to call for a dynamical solution, i.e., on the one hand, quantum mechanics de-

scribes the dynamics of systems as unitary in the absence of a measurement; yet, on the

other hand, given a measurement the apparent ‘collapse’ of the vector representing a

system’s state is non-unitary. But positing special measurement dynamics is ad hoc, or

so the argument goes, since it should be possible to describe a measurement interaction

as a physical interaction like any other. In fact, quantum mechanics agrees with this in

the following sense: a quantum description of a measurement interaction can be pro-

vided, in unitary terms, to7 any desired level of detail given an appropriate placement of

the ‘Heisenberg cut’, on one side of which lies our quantum description of the interac-

tion, and on the other, our classical description of the observation of its results. Stated

in these terms, the ‘problem’ can be seen as one of closing this gap, either by proposing

a new theory to explain the connection between the two sides of the Heisenberg cut,

or by arguing that quantum mechanics, in some sense, is all that one needs to make

theoretical sense of it.

The Everett interpretation, as is well known, chooses the second option [43]. The

same is true of the approach under discussion in this paper, though for very different

reasons as we will soon see. The appearance of one rather than another of the possible

outcomes of a measurement interaction is not thought of, in fact, in terms of a dynami-

cal process at all—i.e., it is simply not taken to be described, in this sense, by quantum

mechanics—let alone as a non-unitary dynamical collapse of the state vector. As Bub

explains:

A unitary dynamical analysis of a measurement process goes as far as you

would like it to go, to whatever level of precision is convenient. The collapse,

as a conditionalization of the quantum state, is something you put in by

hand after observing the actual outcome. The physics doesn’t give it to you

[13] (p. 228).

There is, of course, more to be said. In particular, by considering how the kine-

matical structure of quantum mechanics departs from that of classical mechanics, one

can discern two conceptually separate aspects of the so-called problem. In classical

mechanics [6] (sct. 6.3), an observable A is represented by a function, fA(ω), defined

on the phase space of a system. With fA(ω), one can associate a Boolean algebra A, in

which the possible yes-or-no questions concerning A that can be asked regarding the

system, questions of the form “Is the value of the observable A within the range ∆?”

may be expressed. In classical mechanics, merely specifying a system’s dynamical state,

ω, is enough to yield a determinate answer to every such question for every observable

quantity associated with the system. In logical terms, this means that in classical me-

chanics, the Boolean algebras corresponding to each of the system’s observables can be



M. E. Cuffaro

embedded within a globally Boolean algebra, such that a particular state assignment

(which may or may not be probabilistic as, for instance, in classical statistical mechan-

ics) suffices to fix the answers (or the probabilities over possible answers in the case

of a probabilistic state assignment) to all of the possible questions that one can ask

concerning any observable associated with the system. This is the sense in which the

classical state is what Bub & Pitowsky [12] (p. 433) call a ‘truthmaker’ in relation to a

system’s observables.6

In quantum mechanics [6] (sct. 6.3), an observable, A, is represented by a Hermi-

tian operator, Â, acting on the Hilbert space associated with a system, whose possible

values are given by the eigenvalues of Â. As with fA in the classical case, with Â one

can associate a Boolean algebra A representing the possible yes-or-no questions that

one can ask about A. But the quantum state, unlike the classical state, fails to be a

‘truthmaker’ in relation to a system’s observables in two ways, corresponding to what

I will be calling the ‘big’ and the ‘small’ measurement problems. The ‘big problem’ is

that unlike in classical mechanics, where one can always in principle eliminate the in-

determinacy associated with any given probabilistic phenomenon by including further

parameters in one’s dynamical model of the system of interest, in quantum mechan-

ics, fully specifying the normalised vector |ψ〉 representing the state of the system of

interest can only ever yield the probability, which is in general neither 0 nor 1, that the

answer to a given experimental question will take on a particular value. Given that it

will nevertheless be possible, conditional on the selection of an observable to measure,

to describe the observed relative frequencies of the various possible outcomes of the (by

assumption, projective) measurement in terms of a classical probability distribution as

given by the Born rule, this departure from classicality is arguably only minor, at least in

comparison with the ‘small measurement problem’, the more significant way in which

the kinematics of quantum mechanics diverges from classical mechanics. This refers

to the fact that the classical probability distributions that can be 8associated with the

system’s observables, in the way just described, cannot be embedded into a global clas-

sical probability distribution over all of the system’s observables, or alternately that the

Boolean algebras corresponding to each of the system’s observables cannot be embed-

ded within a globally Boolean algebra. Moreover, quantum mechanics’ unitary descrip-

tion of a measurement interaction does not, by itself, prefer any one of these classical

(i.e., Boolean) ways of effectively characterising the system [6] (p. 224). In the next

section, we will consider what to say about the significance of this on the informational,

or (neo-)Bohrian, approach under discussion in this paper.7

6Note that the term ‘truthmaker’ is intended here only in the logical sense described above, rather
than in any metaphysical sense. For more on the use of the term ‘truthmaker’ in philosophical contexts,

see [44].
7Note that the distinction between a ‘big’ and a ‘small’ measurement problem was first introduced

by Pitowsky [45], and is further developed in [12], [13] (in the first edition) and in [6]. Brukner [4]

also distinguishes between the same two aspects of the measurement problem but inverts the labels and

does not use inverted commas. Here, I am following [6]. Note that although the ‘big’ and especially the
‘small’ problems are formulated somewhat differently in [6] than in [12], I take there to be no difference

of substance. Although Bub and Pitowsky’s idea that the ‘small’ problem is resolved by “considering the

dynamics of the measurement process and the role of decoherence in the emergence of an effectively
classical probability space of macroevents to which the Born probabilities refer” [12] (p. 438) is not

incorrect, it is (in my view) misleading insofar as the formulation seems to suggest that this, by itself,
is enough to yield an observer-independent description of the dynamics of a measurement interaction.

Whether a dynamical analysis to this end can be made to work is an interesting question (for further

discussion, see [46, 47]). But that this question is not Bub and Pitowsky’s is evident, in any case, later in
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3.2 The Subjective Character of the Idea of Observation–Schematising

the Observer as a Postulate

On what I will call the traditional metaphysical picture—the one lying behind Bell’s

insistence that in any physical theory worth its salt, “[o]bservables are made out of

beables” [51] (p. 41, emphasis in original)—the possible values of dynamical variables

like position, momentum, the direction of a particle’s spin and so on, are understood

to be the manifestations of an underlying reality whose properties are revealed in our

experiments with physical systems.8 The trouble with quantum mechanics, given this

picture, is that because of the big and especially the small ‘measurement problems’,

the possible values of dynamical quantities—represented, in quantum mechanics, as

the eigenvalues of a given Hermitian operator (cf. [52, 53, 54])—cannot be taken

to represent determinate properties of a single classically describable physical system

in the following logical sense: there is no globally Boolean algebra in which one can

embed all of the individual Boolean algebras corresponding to the various observables

associated with the system, that can be used to derive, given a state assignment, an

unconditional probability distribution over the possible values of a given observable,

let alone a determinate value. Given the traditional metaphysical picture, there are,

broadly speaking, two attitudes that one can take towards quantum mechanics. First,

one can take it to be incomplete and pursue a9 research programme to complete it by

positing further, perhaps unobservable, physical parameters not described by quantum

mechanics that can be used to provide us with an absolute representation of a system

in some sense (see, e.g., [55, 56]). Alternately, one can insist that quantum mechanics

already provides us with a globally Boolean picture of the world—but that that world

is a multiverse rather than the single classically describable universe we at one time

imagined it to be [43].

As for the approach under discussion here (cf. Stein’s [26] (pp. 369, 409–410)

distinction between what he calls the epistemological and metaphysical senses of inter-

pretation), it is not opposed to the traditional metaphysical picture per se. That picture

would be apt if classical mechanics (or some other theoretical framework with a glob-

ally Boolean algebra of observables) were our fundamental framework. But it is also

open to the possibility that that picture is not apt; for how one carves nature at the

joints, so to speak, is something that, for the informational interpreter, should be moti-

vated by physical theory rather than a priori. The informational interpreter is certainly

committed to something a priori, but it is not a particular metaphysical thesis about

the way the world must be. What the informational, or (neo-)Bohrian, interpreter is

committed to, rather, is the empiricist methodology through which one reasons, from

the same article where they explain that the goal of such a dynamical analysis is to provide “a consistency

proof that the familiar objects of our macroworld behave dynamically in accordance with the kinematic
probabilistic constraints on correlations between events.” [12] (p. 452, emphasis mine). In other words,

it is taken for granted, in any such analysis, that specific observables have been selected for measurement

that have particular phenomena associated with them, or as Bub has put it in his more recent publications,
it is required that one posits some “ultimate measuring instrument” that is not included in one’s quantum-

mechanical description of a measurement interaction [14] (pp. 8–9). In my terms this amounts to a
Boolean frame. Note that the ‘small measurement problem’ is what Everettians call the ‘preferred basis

problem’. It is also what is highlighted by the (in)famous thought experiment of Frauchiger & Renner

[48]. For some recent commentaries on this and similar thought experiments that are directly relevant
to the approach to quantum mechanics under discussion in this paper, see [16, 49, 50].

8Note that, in the sequel, I will for the most part be using the term property rather than beable, in part

to convey that the traditional metaphysical picture I am referring to here transcends quantum mechanics.
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the values revealed in experiments with what we take to be physical systems, carried

out under precisely specified—to the relevant scale and for the relevant purposes (cf.

[24] (sct. 5, sct. 11, point 5))—experimental conditions, to a picture of the world that

is anchored in the dynamical model one builds of the phenomena in a given context.9

The approach under discussion is not a ‘realist’ one in the sense that ultimately it

is taken to be the goal of a physical theory—even a so-called fundamental physical

theory—to represent phenomena rather than the so-called reality that one might imag-

ine to be in some sense responsible for the phenomena, in a systematic way ([13] (p.

227); [1] (pp. 135–139); [6] (pp. 219–222); [33] (pp. 111, 118); cf. [25] (p. 50); [23]

(pp. 639, 645)).10 Insofar as one does this for the purposes of using physical theory as

a tool, the approach can be called instrumentalist (cf. [57] (p. 2)). But instrumen-

talism in this sense is compatible with realism on a more reasonable (methodological)

construal of what the latter means. To put it succinctly, the important question on this

approach to quantum mechanics is not whether but how to use physical theory to as-

sign physical properties to what one takes to be the system of interest responsible for a

given phenomenon ([6] (pp. 8–10 and chp. 6); [2] (p. 118); cf. [26] (p. 371)).

One could perhaps conceive of a more radical form of empiricism that is not even

realist in this methodological sense. Although this is, presumably, a logically possible

attitude to take to science, I confess that I struggle to imagine what a science that fol-

lowed such a methodology would be like. For the methodological realism advocated

on the approach we are discussing here amounts to the demand [58] (p. 310) that we

be able to meaningfully account to one another how we have set up a particular experi-

ment (“what we have done”), and what information it yields (“what we have learned”)

about an object that we model as able to interact with our experimental apparatus in

a particular way [2] (pp. 44–45). This is the methodology characteristic of what Bohr

called the “ordinary causal description” of phenomena that a framework like classical

mechanics makes precise and for which quantum mechanics provides a generalisation.

And it is in this methodological sense that the ordinary causal description functions as

a fundamental constraint on the approach to quantum mechanics under discussion.

10Stein famously suggested that the principal difficulty in making sense of the connec-

tion between the ‘observational’ and ‘theoretical’ parts of a physical theory is that of

how to account, theoretically, for observation, or as he puts it, “how to get the labora-

tory inside the theory.” [23] (p. 638). This issue, for Stein, is of the highest importance,

for “[i]t would . . . be impossible to understand a theory, as anything but a purely mathe-

matical structure—impossible, that is, to understand a theory as a theory of physics—if

we had no systematic way to put the theory into connection with observation (or expe-

rience).” [23] (p. 639).

Stein observes that Carnap’s approach to the question, which assumes that the con-

nection between the theoretical and observational parts of language (at least in physics)

is deductive, faces a fundamental barrier insofar as (according to Stein) that assump-

9Note that the local hidden-variable models (in the form of raffles), for spin correlations described
in [6] (chps. 2–3), are (toy) examples of such models. To say that an overarching theoretical picture

must be anchored in a toy model like this is to say that that toy model must remain valid when one
restricts the phenomena under consideration to those associated with the experimental context that the

toy model was designed to characterise (cf. [2] (pt. 2)).
10Note that, in this context, the word ‘fundamental’, of course, cannot be construed as pertaining to

‘fundamental stuff’; rather, a (candidate) fundamental theory should be understood, for one defending

the approach that we are discussing here, as one that we take to be capable of representing all known

phenomena.
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tion is de facto false: “there is no department of fundamental physics in which it is

possible, in the strict sense, to deduce observations, or observable facts, from data and

theory.” [23] (p. 638). Instead, Stein suggests that the way that theory and experiment

are connected is by “schematizing the observer within the theory” ([23] (p. 649); cf.

[26] (sct. XVII)). Curiel elaborates on the idea:

We need a way to understand the substantive, physically significant contact—

the epistemic continuity, as it were—between a precisely characterizable sit-

uation in the world of experience and the mathematical structures of what

we usually think of as our theories. Such understanding should at a mini-

mum consist of an articulation of the junctions where meaningful connec-

tions can be made between the two, and would thus ground the possibility

of the epistemic warrant we think we construct for our theories from such

contact and connection. [24] (p. 6).

“By ‘schematize the observer’,” Curiel writes, “I mean something like: in a model

of an experiment, to provide a representation of something like a measuring appara-

tus, even if only of the simplest and most abstract form, that allows us to interpret the

model as a model of an experiment or observation.” [24] (p. 9). As one of a num-

ber of physical examples he uses to motivate the idea, Curiel considers the case of the

International Practical Temperature Scale, originally specified in [59] and revised in

subsequent decades, the goal of which is to represent the ideal thermodynamic tem-

perature scale as closely as possible throughout its range. As Curiel explains, between

the primary fixed point 0.01C and the secondary fixed point 630.5C, the scale may be

defined in terms of the Callendar equation which relates temperature to the resistance

of platinum as measured when immersed in various media and taking into account the

particular features of the kind of platinum being used. Importantly, the variables re-

lated by the Callendar equation are defined, in part, by interpolation on the basis of

our knowledge of measurements carried out at a particular scale [24] (p. 13). In par-

ticular, below and above these two fixed points, the Callendar equation diverges from

the thermodynamic scale, requiring other measurable quantities to be taken into ac-

count. Curiel takes this to show that “one cannot even define physical quantities—e.g.,

temperature—without explicit schematic representation of the observer, much less have

understanding of how to employ their representations in scientific reasoning in ways

that respect the regime of applicability.” [24] (p. 14).11

Curiel’s general point was one that was well understood by Bohr. In his aforemen-

tioned ‘Como paper’, commenting on the use of the superposition principle to explain

11 particle-like quantum phenomena in terms of the concept of a ‘wave packet’, Bohr

pointed out that:

Rigorously speaking, a limited wave-field can only be obtained by the super-

position of a manifold of elementary waves corresponding to all the values

11Note that it does not follow from the fact that one requires of a physical concept that it have op-
erational significance that one is committed to operationalism in the strong sense sometimes attributed

to Percy Williams Bridgeman [60]. Requiring that a concept have operational significance to qualify as

a physical concept is not the same thing as taking a given set of operations to exhaust its meaning, or
requiring that a given concept be uniquely specified by a given set of operations (see also [61], (sct. 9.3);

[27]; [62], (pp. 141–145)). The density operator, for instance, clearly does not satisfy the latter criterion
insofar as there are infinitely many given state preparations that correspond to a given density operator

whenever the latter is not pure. I will have more to say about the physical significance of the density

operator in the next section.
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of ν and σx, σy, σz. But the order of magnitude of the mean difference be-

tween these values for two elementary waves in the group is given in the

most favourable case by the condition

∆t∆ν = ∆x∆σx = ∆y∆σy = ∆z∆σz = 1 (3.2)

where ∆t,∆x,∆y,∆z denote the extension of the wave-field in time and in

the direction of space corresponding to the co-ordinate axes [20] (p. 581).

Here, ν refers to the frequency, and σx, σy, σz refer to the wavenumbers for the

elementary waves in the directions of the coordinate axes. All else equal, the broader

the spread of wavenumbers/frequency in the wave group, the more determinate the

spatiotemporal extent of the resultant packet, and vice versa. Now, according to the de

Broglie relations, E = ~ν, I = ~σ, where ~ = h/2π is the reduced Planck’s constant. If

we multiply Equation (3.2) by ~, this gives us Heisenberg’s uncertainty relations:

∆t∆E = ∆x∆Ix = ∆y∆Iy = ∆z∆Iz = ~ (3.3)

which give the upper bound on the accuracy of momentum/position determinations

with respect to the wave-field.

As the wave-field associated with the object gets smaller—thus allowing us to ‘zoom

in’, so to speak, on its position and time coordinates—the possibility of precisely defin-

ing changes in the energy and momentum associated with the object decreases in pro-

portion. And the opposite is also true: given a larger wave-field, it will be possible to

‘zoom out’ for the purposes of a determination of the object’s momentum (or energy),

but in this case, one foregoes a precise definition in relation to the object’s spatiotempo-

ral coordinates. Note that ‘zooming in’ and ‘zooming out’ are associated with different

experimental arrangements. For the case of a γ-ray microscope, they are associated

with the finite size of the microscope’s aperture. The indeterminacy in our assignments

of position and momentum to the system is not due to the interaction between the

object and the measuring apparatus per se, but to the fact that certain experimental ar-

rangements, well-suited for precisely determining momentum, make it such that in the

limit, it becomes impossible to define changes in the object’s spatiotemporal coordinates,

and vice versa. Bohr sums this up as follows:

Indeed, a discontinuous change of energy and momentum during observa-

tion could not prevent us from ascribing accurate values to the space-time

co-ordinates, as well as to the momentum-energy components before and af-

ter the process. The reciprocal uncertainty which always affects the values

of these quantities is, as will be clear from the preceding analysis, essen-

tially an outcome of the limited accuracy with which changes in energy and

momentum can be defined, when the wave-fields used for the determination

of the space-time co-ordinates of the particle are sufficiently small [20] (p.

583. emphasis mine).

Quantum mechanics, on the approach we are discussing, is to be understood as

elevating the insight, which Stein and Curiel (as we discussed above) have referred

to as the practical and epistemic necessity—for understanding a theory as a theory of

physics—of “schematising the observer,” to the level of a postulate (cf. [63]). Bohr was

explicit about this:
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In the treatment of atomic problems, actual calculations are most conve-

niently carried out with the help of a Schrödinger state function, from which

the statistical laws governing observations obtainable under specified condi-

tions can be deduced by definite mathematical operations. It must be recog-

nized, however, that we are here dealing with a purely symbolic procedure,

the unambiguous physical12 interpretation of which in the last resort requires

a reference to a complete experimental arrangement. Disregard of this point

has sometimes led to confusion, and in particular the use of phrases like ‘dis-

turbance of phenomena by observation’ or ‘creation of physical attributes of

objects by measurements’ is hardly compatible with common language and

practical definition. [58] (pp. 392–393, my emphasis).

On the (neo-)Bohrian approach under discussion here, an observer is represented

by a ‘Boolean frame’ [6] (p. 213)—the Boolean algebra within which one represents the

possible yes-or-no questions concerning a given observable, A, that can be asked about

the system of interest: questions of the form “Is the value of A within the range ∆?”.

Given the schematic representation, to the relevant scale and for the relevant purposes,

of an observer in this sense, one may then use the language of quantum mechanics to

give a physical analysis, in terms of the states of two interacting dynamical systems, S
and M (representing the measuring device), of how the observed relative frequencies

of outcomes of assessments of M will be (assuming the measurement is ideal) describ-

able using a particular classical probability distribution over possible values of A that

can be thought of as determined in conformity with the dynamics of S and M [6]

(pp. 202–212). In classical mechanics, because the state is a truthmaker in the sense

we discussed in Section 3.1, as a matter of logic one can always argue that any given

schematisation of the observer in the above sense is superfluous, at least in principle.12

This is not the case in quantum mechanics, where the imposition of a Boolean frame is

required in order to interpret the outcome of a measurement interaction as providing

us with information about the world.

3.3 The Classical Idea of Isolated Objects and the Quantum-

Mechanical Concept of an Open System

If it is only ever possible to describe one’s experience as the experience of a system in the

context of an interaction between what one takes to be that system and something else,

then the system that one takes oneself to be describing is in every case an open system.13

In an article published in Dialectica, in which he argued that quantum mechanics should

be judged to be incomplete, Albert Einstein wrote:

Without . . . an assumption of the mutually independent existence (the ’being-

thus’) of spatially distant things, an assumption which originates in everyday

thought, physical thought in the sense familiar to us would not be possible.

([66], as translated by Howard [67] (p. 187)).

12Note that what I mean by superfluous is that the question: “Is the value of A within the range ∆?”
is equivalent, in classical mechanics, to the question of whether fA(ω) ∈ ∆ [64] (p. 61), where fA(ω) is

the function defined on the system’s phase representing the observable A (see Section 3.1).
13For more on the physics and philosophy of open quantum systems, see [65].
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This passage, and the wider argument of which it is a part, has been much com-

mented on (see, for instance, [1] (chp. 4); [67, 68]). Here, I only want to point out

that it amounts to the demand that we be able to treat spatially separated subsystems

of the universe as isolated (cf. [69]), and that arguably, we should construe this as a

methodological demand—a claim about what we must be able to assume if we are to

be able to practice physics in the sense familiar to us at all—rather than an a priori

claim about how the world is.14 As with Bohr, my goal here is not Einstein exegesis. Ir-

respective of what he actually understood himself to be saying in this passage, the idea

of understanding the “assumption of mutually independent existence” of spatially dis-

tant things as a methodological requirement on physical inquiry is prima facie plausible.

And understanding how the principle, construed in this way, is (pace Einstein) satisfied

by quantum mechanics, illuminates important aspects of the informational approach

under discussion in this paper.

13Besides allowing us to express that a given system has been prepared in one of a

number of states, {|ψi〉}, with probabilities {pi}, a density operator like

ρ =
∑

i

pi|ψi〉〈ψi|, (3.4)

where |ψi〉〈ψi| is the projection operator associated with the state vector |ψi〉, is also

used in quantum mechanics to represent the state of an open system, by which I mean

one dynamically evolving under the influence of an external ‘environment’: for instance,

a measurement device M that has interacted with the system. When it refers to an open

system, a density operator like the one given in Equation (3.4) is said to represent an

‘improper’ mixture [72, 73] of the ‘pure states’, {|ψi〉}—improper because, owing to the

fact that S and M are entangled, it is actually impossible to interpret Equation (3.4) as

literally describing a system that is in a given pure state |ψi〉 with a given probability pi
(because a subsystem of an entangled system can never be in a pure state).

Of course, if S and M were not entangled, we could interpret Equation (3.4) as

representing our ignorance regarding the actual state, |ψi〉, that the system is in. In this

case, we would say that the density operator represents a ‘proper’ mixture of the pure

states {|ψi〉} (although even in this case such statements should be taken with a grain

of salt, because for a given ensemble whose state is represented by some density opera-

tor ρ, there are in general infinitely many preparation procedures that will give rise to

it, i.e., ρ =
∑

j pj |ψj〉〈ψj | =
∑

k p
′
k |φk〉〈φk|, whenever

∑

j pj |ψj〉〈ψj| and
∑

k p
′
k |φk〉〈φk|

are related by a unitary transformation [40] (p. 103)). These two physical situations

(i.e., those represented by an improper and a proper mixture, respectively) are not the

same. Nevertheless, a sequence of measurements on the members of an improperly

mixed ensemble will be effectively indistinguishable from—in the sense that they will

be described by the same probability distribution as—a sequence of those same mea-

surements on a properly mixed ensemble whose state is also described by ρ. In the con-

text of a consideration of spatially separated systems, this amounts to the ‘no-signalling’

condition (a misnomer as it is not a relativistic constraint per se), which asserts that the

marginal probabilities associated with outcomes of local experiments on a subsystem

of any quantum-mechanically described system are independent of whatever particular

14In any case it can be plausibly read in this way given Einstein’s career-long concern with method-

ological issues (see [70]). For a discussion of Einstein’s mutually independent existence condition, in

particular, that interprets it in this way, see [1] (chp. 4) and also [71].
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experiments are performed (or whether any are performed at all) on the other subsys-

tems. This effectively means that we can treat physical systems in different regions of

space as if they had mutually independent existences for the purposes of experiments

local to those regions ([71]; [1] (chp. 4); cf. [74]). It is important to emphasise that

the existence of nonlocal correlations is not being denied. Instead, what is being af-

firmed is the fact that according to quantum mechanics, we can learn about them using

local means.

On the informational approach we are discussing, a quantum state description is

not taken to represent a property or a collection of properties that one can think of as

possessed by a system independently of a given experimental context, for it is precisely

the experimental context, represented as a Boolean frame, that allows one to give an

account, consistently with a given state assignment, of how the experimental appara-

tus involved dynamically interacts with a system, thus allowing us to conceive of some

phenomenon as representing a value of a given property of the system in the first place.

What the quantum state does represent is the structure of and interdependencies among

the possible ways in which one can give a probabilistic characterisation of a system in

the context of a physical interaction ([6] (p. 186); [65] (pp. 19–20)). A classical state

is no different in this sense.15 But because the probability distributions over the values

of every classical observable are determined by the state independently of whether a

physical interaction through which one can assess those values is actually made, there is

an invitation to think of them as originating in the properties of an underlying physical

system that exists in a particular way irrespective of anything external.1614 Although it is

not denied that one can make such a picture work (along the lines we discussed at the

beginning of Section 3.2) if one really wants to [6] (pp. 229–230), the more complex

structure of observables related by quantum mechanics does not similarly invite the

inference from the values of observable quantities to the properties of an underlying

system in the sense that there is no globally Boolean frame that one can use to charac-

terise all of a given system’s observables. And since the informational interpreter is not

committed to seeking a globally Boolean picture, she is not committed to the project of

making such a picture work in spite of quantum mechanics.

The elliptope and polyhedra depicted in Figures 2 and 3 are a way to visualise, in

the general setup I introduced in Section 2, the sense in which local hidden-variable

theories are able to represent only a special case of the phenomena that more general

frameworks like quantum mechanics can represent. But just as in classical mechan-

ics, in a given measurement context that we can—by assumption—effectively describe

in Boolean terms, one can, consistently with quantum mechanics, provide a dynami-

cal model of the measurement interaction also in such terms (e.g., some mixture of

the classical raffles discussed in [6] (chps. 2–3)). Such a model will not ‘suffer from

the small measurement problem’ (since the observables associated with that measure-

ment context commute). As for the ‘big measurement problem’, the short answer is

that for the informational interpreter, one simply accepts it as a brute fact that nature

is indeterministic [6] (p. 11). But if one insists on a deterministic model, then the

15Consider, for instance, Curiel’s construal [75] (sct. 3) of the configuration space of an abstract classi-
cal system as encoding a description of its kinematically possible interactions with other abstract classical

systems.
16At least this is true when one considers the situation abstractly, and in particular, when one disregards

arguments along the lines of Curiel’s and Stein’s that should make one skeptical about whether it actually

makes sense, even in classical physics, to speak in such absolute terms.
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informational interpreter will point out that in any given measurement context (and

associated Boolean frame), it will always be possible to interpret the indeterminacy of

individual measurement results, in a given experimental run, as if they stem from our

inability to completely specify some relevant physical parameter in the model.

But can nothing really be said, on this informational view, about what the world

is like independently of observation? On the contrary, our assignments of values to

non-dynamical quantities like mass, spin and charge are valid irrespective of the exper-

imental context they are relevant to ([1] (p. 184); [6] (p. 217)). Regarding dynamical

quantities, one may say that the world is such that all of the effectively classical (i.e.,

Boolean) pictures that one can draw of it, under the precisely specified experimental

conditions corresponding to each of them, are precisely relatable to one another, prob-

abilistically, in a way that is necessarily constrained by the kinematical structure of

quantum mechanics. Neither of these statements is trivial. But one may nevertheless

wonder (assuming one finds this to be objectionable), whether the second truth some-

how depends upon the actual existence of conscious observers. The (neo-)Bohrian will

answer no.17 Rather, in describing the structure of our world in this way, a schematic

representation of what relevantly constitutes an observer—a Boolean frame—is used as

a formal tool with which to describe how the various dynamical possibilities, or ‘propen-

sities’ [6] (p. 218), that are implicit in the world necessarily relate to one another. A

particular Boolean frame acquires physical significance through the specification, which

can be given using the language of quantum mechanics, of a dynamical model of how

the associated measuring apparatus interacts with a given system, but the specification

of a given context in this sense in no way implies that it must actually be instantiated

or actually be interpreted by anyone; it only specifies (schematically) how to do so.18 15

4 The View in a Nutshell

On the informational, or (neo-)Bohrian, approach that concerns us here, quantum me-

chanics is about probabilities. These are understood to be (to use von Neumann’s

phrase) “given from the start” (quoted in [77] (p. x)), i.e., as objectively associated

with a given precisely specified, to the relevant scale and for the relevant purposes,

experimental context representable as a Boolean frame. Quantum mechanics describes

the relations between these in an in general non-Boolean way, which amounts to saying

that the various probability distributions that one can use to effectively characterise the

phenomena associated with commuting sets of observables cannot be embedded into a

global probability distribution over the simultaneous values of all observables. Despite

17Note that this is, I think, one way to distinguish (in the sense of where their main focus lies) the view

under discussion in this paper from some of the other approaches to interpretation that we mentioned
at the beginning of Section 1 like QBism [8].

18Note that the term ‘propensities’ should not necessarily be taken in the sense of the interpretation

of probability first formulated and defended by Karl Popper [76], but only to signify that (as is also
the case in Popper’s interpretation) the probabilities for outcomes of experiments can be thought of

as determined given a specification of the experimental setup. Since (as I explained in Section 3.2) a

subjective component is necessarily involved in one’s characterisation of a given setup, however, and
since, given an experimental setup, one may (as I mentioned in the previous paragraph) interpret the

indeterminacy of individual measurement results in a given run as if they were due to our incomplete
knowledge of some relevant physical parameter, it would arguably be more appropriate to think of the

probabilities of outcomes of measurements in a given context as if they were more akin to what Wayne

Myrvold [62] (pp. 106–121, 209–210) has called ‘epistemic chances’ rather than to Popper’s propensities.
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this, quantum mechanics provides a recipe through which one can acquire information

concerning a system through interactions with objects whose relevant parameters can—

effectively—be described using classical, i.e., Boolean, means, as being either “on” or

“off” with a certain probability determined by the dynamical properties of the system

according to the dynamical model that one constructs of it in that experimental context.

In other words (pace Einstein), quantum mechanics allows us to do physics in much the

same way as we always have (Bub, personal communication). But it does not follow

from any of this—the ‘measurement problem’ is a feature, not a bug—that nature itself

must be such as to allow (in a natural way, at any rate) for a globally Boolean descrip-

tion of all aspects of all dynamical phenomena that physics is concerned to describe

(cf. [33] (p. 118)).
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