On the reality of the quantum state once again
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The Pusey, Barrett and Rudolph (PBR) theorem claims that quantum states cannot be taken to
represent mere information about the system. This result is based on the ontological model frame-
work proposed by Harrigan and Spekkens (HS). In this paper we show that the HS framework has a
fundamental problem: the epistemic structure it implicitly assumes does not follow the one dictated
by quantum mechanics. Namely, the map between the epistemic states of the model and quantum
density matrices preserves neither the value nor ordering of the information entropy. Consequently
the epistemic content of mixed states is not mapped in a meaningful way. The problem stems from
the assumption that an epistemic state is characterized by a single probability measure, which is
essentially an assumption of non-contextuality. Given this fundamental issue, every result that uses
the HS framework, including the PBR theorem, should be carefully reexamined.

INTRODUCTION

In 2012 Pusey, Barrett and Rudolph published a for-
mal result in Nature Physics, widely known as the PBR
theorem, showing that “if the quantum state merely rep-
resents information about the real physical state of a
system, then experimental predictions are obtained that
contradict those of quantum theory” ([1], p. 475). Al-
ternatively stated, PBR argued that in every model re-
producing the statistics and predictions of Quantum Me-
chanics (QM) the quantum state ¢ must represent real
physical properties of the system under consideration and
not agents’ knowledge—i.e. models must be ¢-ontic. Con-
sequently, quantum theories cannot be -epistemic.

Such a theorem had a remarkable resonance ([2-13]),
and questions about its actual meaning are still discussed
today: on the one hand, it rules out interpretations of QM
where 1 merely represents information. On the other,
scholars recently showed that non-trivial epistemic as
well as statistical approaches to QM are not refuted by
the PBR argument ([14-17]).

In this paper we are not going to rebut the theorem
itself. We instead aim to carefully reexamine one of its
premises, i.e. Harrigan and Spekkens’ (HS) classification
between -ontic and 1-epistemic ontological models [18]
on top of which the PBR result is derived. We believe
that a careful examination of this assumption forces us
to reevaluate the significance of the PBR conclusion.

HS proposed a rigorous classification in order to cate-
gorize the nature of the quantum state, i.e. to establish
whether in a certain model ¥ corresponds to a real prop-
erty of a quantum object, in which case the model is
called 1-ontic, or to some observer information, making
it 1-epistemic. While the original aim of this classifica-
tion was to clarify Einstein’s view of quantum theory,
the HS framework has been widely employed in the liter-
ature not only to categorize different interpretations, but
also to argue what types of interpretations are admissi-
ble ([19-26]; cf. [27-29] for critical discussions). Given the

influence that the HS framework and the PBR theorem
have in quantum foundations, it is worthwhile to look
again at the former with more scrutiny in order to un-
derstand whether it is a sound basis from which to draw
conclusions on the nature of the quantum state.

In this paper we will show two things:

1. the information entropy as calculated on HS epis-
temic states does not match the one provided by
quantum mechanics, therefore the epistemic struc-
tures provided by QM and HS are not isomorphic;

2. if we rephrase the overlapping condition directly
in terms of density matrices, we find that non-
orthogonal pure states “overlap”, which rules out
1-ontic models.

Combining these results with PBR, our conclusion is that
the HS classification itself is fundamentally problematic.
The main issue lies in assuming that the epistemic state
identifies a single probability distribution over the whole
set of ontic states. We show that this, in essence, is an
assumption of non-contextuality, which is also inherited
by the PBR theorem, casting doubts on its validity.

SUMMARY OF THE HARRIGAN & SPEKKENS
MODEL

We briefly review the main features of the classifica-
tion provided by HS starting with the usual operational
setting for QM. We have a preparation protocol P, asso-
ciated with a density operator p on the relevant Hilbert
space, and a measurement protocol M, represented by a
POVM {E}} where each k represents a possible measure-
ment outcome. The probability of obtaining a particular
k given a particular preparation P and measurement M
is given by the generalized Born rule

p(k|M, P) = tr(pEy). (1)



An ontological model, as defined by HS, additionally
assumes that there exists a set of states A, called on-
tic states, that provide the complete specification of
the properties of a given physical object. A preparation
P will prepare a particular ontic state A according to
the probability distribution p(A|P), which is referred to
as epistemic state. The measurement outcome will de-
pend only on the ontic state with probability p(k|\, M)
([18], p. 128). This leads to the following expression:

/A Dp(kIX, M)P(AIP) = tr(pEy). (2)

It is also assumed that a mixture of pure states {1;} with
probabilities {w;} will be represented by

Z wip(A| Py, ). (3)

As the epistemic states for mixed preparations are simply
linear combinations of epistemic states for pure prepara-
tions, the HS model concentrates on the latter.

To classify an ontological model, we look at the rela-
tionship between quantum and ontic states. There are
two broad categories. In a 1-ontic model the wave func-
tion is a physical property of the ontic state, in the sense
that given an ontic state A\ there is only one pure state
preparation Py that could have prepared A. As we can see
in figure 1, this happens if the probability distributions
do not overlap, i.e. if we have

PAIPy)p(AlPs) = 0 (4)

for all pairs of states ¥ and ¢. If a model is not -
ontic, then it is 1¥-epistemic. In this case, A can be de-
scribed by more than one quantum state and the wave
function is taken to represent knowledge about the state
preparation—in such models quantum states generate
overlapping probability distributions over A as shown in
figure 1 (b). A t-ontic model is said ¢-complete if the
quantum states and the ontic states coincide. More pre-
cisely if

P(A[Py) = 6(X = Ay). (5)

All other models are y-incomplete.

To make this classification more concrete, let us give
an example from classical mechanics. Consider the case
where we prepare a particle according to a specific value
of energy. The energy partitions phase space into mutu-
ally exclusive regions, and therefore we can understand
the energy of the preparation as a property of the particle
itself. According to HS, this would be an ontic property.
Consider now the case where we prepare a particle ac-
cording to a specific temperature. When we take the par-
ticle from the oven, we are sampling from a Boltzmann
distribution over different energies. However, unlike en-
ergy, temperature does not partition phase space because

P(AIPy)P(AIP) = 0

p(A|Py) P(AIPy)

v

P(ALPy)P(AIPy) # 0
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FIG. 1. Harrigan and Spekkens’ distinction between w-ontic (a)
and 1)-epistemic (b) ontological models.

the same particle state could have been prepared by ovens
at different temperature. Temperature is a property of
the preparation and therefore an epistemic property.

EPISTEMIC STRUCTURE

Let us consider more closely the space of epistemic
states given by p(A|P) and equation 3. To make the dis-
cussion more concrete, we assume we have a 1-complete
model of a single qubit representing the direction of spin.

Suppose we have a protocol that prepares either 2 or
2z~ with equal chance. This results in an epistemic state
with equal distribution on z* and 2~. Similarly, suppose
we have another protocol that prepares 1 and = with
equal chance generating an epistemic state with equal
distribution on z+ and x~. Note that such epistemic
distributions do not overlap. Therefore, according to HS
categorization, these correspond to two ontologically dis-
tinct states, making the preparation axis an ontologi-
cal property of the system, regardless of the orientation.
However, the respective density matrices would not just
overlap: they would be the same maximally mixed state.
Hence there seems to be a mismatch between the type
of epistemic knowledge one can express in QM through
mixed states and the type of epistemic knowledge de-
scribed in the HS model. This needs to be investigated
further.

Let us first characterize the extent of the discrepancy.
In HS, the space of epistemic states Fpyg is the set of
probability distributions over pure states, which is an
infinite dimensional space. This is a direct consequence
of defining the epistemic states as a distribution p(A|P)
that, for each preparation P, assigns a well defined proba-
bility to each ontological state A [30]. In QM, mixed states
Egu are in one-to-one correspondence with the interior
of the Bloch sphere, a three dimensional manifold. Look-
ing at the difference in dimension, the discrepancy is not
minor.

Note that the space of pure states A is the same in
both cases, one state for each direction of spin. Also note
that all epistemic states in both spaces can be reached by



mixture of pure states. The difference is that, in the quan-
tum case, we have an “aliasing”: different mixtures will
give the same mixed states. Since each classical probabil-
ity distribution corresponds to a unique mixing of pure
states, we have a map ¢ : Fgg — Egp that allows us to
go from HS-epistemic states to density matrices, the QM-
epistemic states. This map is surjective but not injective.
Therefore Egys can be seen as a set of equivalence classes
of Fygs. The key question, then, is the following: is the
map ¢ sufficiently well behaved that we can understand
the epistemic content of Egas based on the epistemic
content of Fgg? Or is it so ill behaved that there is no
connection between the two?

Ideally, one would like to say that FEpg represents
all possible epistemic states that include the knowledge
about preparation, while Eqgs represents only those dis-
tinguishable through measurement. For example, one
may want to say that the axis of preparation is, in prin-
ciple, an ontologically distinct property, but this is not
experimentally distinguishable. Therefore, distinct HS-
epistemic states for each direction are projected by ¢ onto
the same QM-epistemic state of maximum uncertainty.
This sounds very plausible and appealing, but it turns
out this is not the case. To show this fact we will con-
centrate on a single aspect of the map: how information
entropy transforms under . While there are other prob-
lems, we do not need to explore them: given the crucial
role of entropy in information theory, its breakdown is
sufficient to show that the epistemic structures of Egg
and Egjs are different.

Guided by figure 2, let us study the map ¢ by go-
ing through a few examples. Since every pure state in
quantum mechanics has zero entropy, we will require the
same for all pure states in Egg. Let us consider the HS-
epistemic states specified by three uniform distributions
over the Bloch sphere with support given by:

A: the poles, z* and z7;
B: the equator, all states on the x/y planes;
C: the whole sphere, all points.

Since we want the entropy for a single pure state to be
zero, the entropy for case A will be 1 (uniform distribu-
tion between two discrete cases). Since ¢(A) will be the
maximally mixed state, this also corresponds to entropy
1. So far so good: ¢ maps entropy 1 to entropy 1. How-
ever, note that A is a measure zero set of B, which is
a measure zero set of C. The entropy of C is therefore
infinite with respect to B which is infinite with respect to
A. On the other hand, A, B and C will all correspond to
the same maximally mixed state, therefore ¢ collapses to-
gether epistemic states at different levels of infinity. Note
that, in this case, ¢ picks the minimum entropy between
the equivalent epistemic states. This is inconsistent with
the idea that Fgas represents states where knowledge is
lost: that would pick the maximum possible entropy.
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FIG. 2. The function ¢ maps the epistemic states Ef;g of a v-ontic
model of a single qubit to the respective density matrices Egps.
Note that neither the value nor the ordering of the information
entropy is preserved.

Now consider another uniform distribution over the
support:

D: the north pole and a point on the equator, z* and
+

xT.
This is yet another uniform distribution between two dis-
crete cases, therefore in Exg the entropy is 1. However,
(D) is not the maximally mixed state and therefore the
entropy is less than 1. This means that epistemic states
that are isoentropic in Eyg are not isoentropic in Egay.
If we think of Exgs and Eqas as partially ordered by in-
formation entropy, then ¢ is not an order preserving map.
Therefore, the epistemic structures represented by Epg
and Egps are not isomorphic.

The seemingly innocuous assumption that p(A|P) is
well defined for all preparations P and for all states A im-
poses a classical probability space which follows the rules
of classical information theory, and prevents the state
space A from supporting an epistemic structure compat-
ible with quantum theory.

This suggests an obvious follow up: what if we start by
assuming that the set of pure states A supports the cor-
rect epistemic structure, the one associated with density
matrices, and use the same definitions of 1-ontic and -
epistemic? We can rephrase condition 4 directly in terms
of density matrices as p;p2 = 0 which, for pure states,
becomes:

|th1) (¥1]th2) (2] = 0. (6)

That is, two pure states are non-overlapping if and only if
(11|12) = 0, i.e. if they are orthogonal. Alternatively, we
could ask that the probability of being in the support of
the second given the first be zero. For pure states, we get
(2|t1) (P1]1p2) = 0, which leads to the same condition.
Or we could define the overlap in terms of the entropy of
the mixture and still find the same result.
However we look at it, we reach the following result:

Non-orthogonal pure quantum states overlap
and are therefore HS-epistemic.

(7)



This should not be surprising: even in classical proba-
bility two distributions are non-overlapping if and only
if they are orthogonal with respect to the inner product
fppodA

Therefore, we have the following result: if we want a
set of pure states that is able to support the epistemic
structure of QM, they must be “overlapping” and thus
we must have a t-epistemic model. This may seem in
contradiction with the PBR theorem. Nonetheless, we
believe that there is no contradiction, since there is no
model in the HS classification that is compatible with
quantum theory. In other words, the categorization itself
is flawed.

DISCUSSION

Let us now ask a crucial question: Why does assuming
that p(A|P) is well defined lead to an epistemic structure
incompatible with QM?

It is widely understood that one feature of quan-
tum theory is contextuality: a measurement cannot be
conceived as revealing pre-existing values. We may be
tempted to think that we have one context before and
one after the measurement. This does not work because
we have a related dual effect on preparations. In the same
way that we cannot understand quantum measurements
as selecting from a single joint probability distribution
for all properties, we cannot understand quantum prepa-
rations as constructing a single joint probability distri-
bution over all properties. To fully understand how this
works, let us review how probability spaces are defined
in both classical and quantum mechanics.

A “classical” probability space is made of three objects:
a sample space {2 representing all possible cases (e.g. all
points in phase-space for a classical system); a o-algebra
Yo over ) representing all statements of interest (e.g.
“the position is between 2 and 3 meters”); a measure p :
Yo — R associating each statement with a probability.
Note how we have a single probability distribution over
the whole space.

In QM we start with a similar structure: a set of states
‘H representing all possible cases (i.e. the Hilbert space)
and a o-algebra ¥4 representing all statements of inter-
est. This is where the similarity ends. To specify a mixed
state—a “quantum distribution”—we use a density ma-
trix p : H — H. To get a probability distribution, we
need to specify an observable O. The observable O iden-
tifies an orthogonal basis and we take the sub-algebra
Yo C Yy defined on those states. We can then associate
Yo with a measure pp : Xo — R, which is therefore not
on the whole space Y.

Mathematically, what we call context is a o-algebra:
a set of propositions upon which we assign probabilities.
This fact explains why we cannot simply use classical
rules in QM. Classical mechanics has only one context,

so we can always mix and match statements however
we please. In QM, propositions about different observ-
ables live in different o-algebras—in different probability
spaces—and therefore cannot be combined.

One may think that we can get away by assuming that,
at each time, there is a “true” context. And this seems
to work in some cases. Given any density matrix p, there
exists a (non-unique) privileged context: this is the one
in which we can express p = Y p;|Y;)(¥;| as the mix
of orthogonal pure states. If p is itself a pure state, any
basis that includes it will be a privileged context. This
privileged context provides us the probability distribu-
tion over which the information entropy is calculated.
After a measurement, the privileged context changes to
one that includes the eigenstates of the chosen observ-
able. However, this does not work in general.

Consider two density matrices p; and p2 with different
eigenstates and their mixture p = p1p; + p2p2. The con-
text of the mixture will not be the same as the original
contexts. It will, in fact, even depend on pq, ps. That is,
when mixing preparations we are not simply combining
two probability distributions over the same context, like
in classical mechanics, but we are combining the contexts
themselves to create a new one. Contextuality not only
affects measurements, but, dually, preparations as well.
And this affects how information entropy is calculated
and the overall epistemic structure.

To sum up, assuming p(\|P) exists means assuming
there is a single probability space, a single o-algebra, a
single set of propositions to which all probabilities are as-
signed. This is exactly assuming non-contextuality. While
this can be made to work for pure state-to-pure state
transitions during measurements, mixing preparations
leads to an epistemic structure that is fundamentally
non-contextual, leading to inconsistencies with quantum
information. To allow for contextuality we should as-
sume that for each observable O we have a probability
po(Ao|P) of having prepared one of the eigenstates, such
that >,  po(Ao|P) = 1. Although we have a single state
space A, we do not have a single probability space over
the whole space. The entropy of the preparation would
be the lowest entropy across all contexts.

CONCLUSION

We showed not only that the HS framework does not
correctly describe the epistemic structure of QM, but also
that it implicitly assumes non-contextuality. Hence, it
cannot be employed to draw conclusions on the nature
of quantum states. Consequently, any other result relying
on the HS categorization inherits the same issues. In par-
ticular, it follows that the PBR theorem is derived from
a technically ill-defined basis; thus, it is demonstrated
neither that quantum states must necessarily be HS-1)-
ontic, nor that epistemic interpretations are contradicted



by quantum theory. Concluding, we believe that while
work in quantum foundations typically focuses on mea-
surements and their effect on pure states, equal impor-
tance must be given to preparations and their effect on
mixed states. The different behavior of entropy in clas-
sical and quantum mechanics has profound implications
not just for information theory, but also for statistical
mechanics and its measurable predictions.
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