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Abstract

Logical inferentialists have expected identity to be susceptible of
harmonious introduction and elimination rules in natural deduction.
While Read and Klev have proposed rules they argue are harmonious,
Griffiths and Ahmed have criticized these rules as insufficient for har-
mony. These critics moreover suggest that no harmonious are forth-
coming. We argue that these critics are correct: the logical inferential-
ist should abandon hope for harmonious rules for identity. The paper
analyzes the three major uses of identity in presumed-logical languages:
variable coordination, definitional substitution, and co-reference. We
show that identity qua variable coordination is not logical by providing
a harmonious natural-deduction system that captures this use through
the quantifiers. We then argue that identity qua definitional substitu-
tion or co-reference faces a dilemma: either its rules are harmonious
but they obscure its actual use in inference, or its rules are not har-
monious but they make its actual use in inference plain. We conclude
that the inferentialist may have harmonious rules for identity only by
disrespecting its inferential use.

1 Introduction

For the logical inferentialist, logical expressions must at least have harmo-
nious introduction and elimination rules. Canonically, rules are harmonious
when the elimination rule “follows from” the introduction rule. This no-
tion has met our expectations for first-order logic (FOL), where (at least)
the quantifiers and binary connective rules are harmonious and, thereby,
logical. Nevertheless, identity remains contentious, with competing claims
about the possibility for harmonious rules. While Read [21] (see also [22])
and Klev [11] have argued that their provided rules for identity are har-
monious, Griffiths and Ahmed [5, 7] argue that the rules fail appropriate
harmony tests. While the latter cast doubt on the possibility of harmonious
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rules for identity, the more pressing question is why the inferentialist should
expect such rules.

I argue that the inferentialist has no good reason to expect identity to
be harmonious. I begin by reviewing the literature on the harmony of iden-
tity (§2). In §3 I distinguish three inferential roles played by identity in the
(putatively logical) language of first-order logic with identity (FOL=): vari-
able coordination, definitional substitutibility, and co-reference.1 In §4.1
I introduce a Gentzen-style natural deduction system for Wittgensteinian
predicate logic (NW) based on the sequent calculus given by Wehmeier[28]
(SW). NW is important here because it tracks variable coordination without
using identity. By showing that the rules for NW are harmonious (indeed,
that NW is normalizable) (§4.2), I establish that variable coordination is
harmonious but that identity qua variable coordination is inferentially su-
perfluous. For this reason, we cannot infer from identity’s use in variable
coordination that identity per se is a logical expression. Finally (§5), I argue
that recent attempts to demonstrate the harmony of definitional substitu-
tion and co-reference actually serve as evidence that they are not logical on
the inferentialist account. In sum, then, there is no reason for the infer-
entialist to expect that identity to admit of harmonious rules, let alone be
logical.

2 The Current Status of Identity

The status of identity has long been a thorn in the side of logical inferen-
tialists. In following Wittgenstein’s edict that meaning is use, inferentialists
have hoped to account for the meaning of expressions by the role that they
play in inferential use. A natural place to mete out inferential use is proof
theory, specifically Gentzen-style natural deduction, where expressions are
characterized by rules for their introduction and elimination in derivations.
Insofar as they characterize the inferential use of expressions, these rules
thereby serve to characterize their meaning. Yet some of these expressions
we believe to be special, in the sense that we can make arbitrary, but uni-
form, substitutions for the other particles in a derivation while still pre-
serving its validity; we call these particles logical (specifically, inferentially
logical). Of course, this requires specification of a notion of validity, for
which purpose has developed a notion of harmony: intuitively, introduction

1‘Definitional substitutibility’ and ‘variable coordination’ correspond to Wehmeier’s
‘yielding’ and (a restricted form of) ‘being one object’, respectively [30, pp. 775-6]. I
ignore self-identity for its inferential triviality.
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and elimination rules are harmonious when the elimination rules “draw no
more and no less from an assertion than the introduction rules warrant” [19,
p. 115].2

This notion has born out intuitions about (at least intuitionistic) FOL.
Following Griffiths[7, pp. 1450-1], the harmony of an expression # requires
the following of the introduction (#I) and elimination rules (#E):3

#-reduction The #E license us to draw a #-free conclusion Q from a #-involving
assertion P together with any side-premises, only if we could already
have inferred Q from those side-premises together with any #-free
ground from #I licensed us in inferring P in the first place.

#-expansion The #E license us to draw a #-free conclusion Q from a #-involving
assertion P together with any side premises, if we could already have
inferred Q from those side-premises together with any #-free ground
from which #I licensed us in inferring P in the first place.

The standard rules for conjunction, for example, meet this demand. If we
can derive Q from A∧B, we can derive Q from the grounds for A∧B, i.e.,
from A and B (∧-reduction). Conversely, we can derive Q from A∧B if we
could have derived it from A and B (∧-expansion). At least in this case,
harmony is easy to see just from the presentation of the rules in Gentzen-
style natural deduction:

...

A

...

B ∧I
A ∧B

A ∧B

[A]1, [B]1

...

Q ∧E,1
Q

That is, to generate ∧-reductions we need only excise the sub-derivation
sitting above Q, and to generate ∧-expansions we need only place the orig-
inal derivation in that same slot. Similarly, the standard rules for the uni-
versal and existential quantifiers, disjunction, and the conditional satisfy
#-reduction and #-expansion.

But now consider the standard rules for identity:

2I rely on Read’s [20] formulation of general-elimination harmony throughout. See
[24, 23, 26, 4, 15] for discussion of alternative formulations.

3Griffiths refers to these as (H1) and (H2), but I follow convention in calling these
#-reduction and #-expansion; see, e.g., [13]. See the latter also for a recent argument
that classical FOL is harmonious.
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Reflexivity
a = a

a = b F
Leibniz Law

Fa[b]

where F is a formula in which a is free and Fa[b] is the formula had by
replacing in F all occurrences of a with b. Are these rules for identity
harmonious? It seems not. Suppose (LL) licenses us to draw the conclusion
Fa[b] from a = b (=-involving assertion P ) and F (=-free side premise).
=-reduction and =-reduction require that there is some way to derive a = b
from (Refl)—but this is obviously not possible. This suggested to Read [21,
p. 115] and Klev [11, p. 869] that (Refl) and (LL) fail #-reduction since we
can draw Fa[b] from the latter without its occurrence as a ground for a = b.
Intuitively, (Refl) needed to be replaced with a rule licensing introduction
of heteronymous identity statements like a = b, and the substitutibility
property embodied in (LL) should serve as a ground for their introduction.

Read [21] therefore proposed new I-rules which aimed to derive such
mixed-identity statements from substitutibility. Yet these were problematic.
Read proposed the following new introduction rules, called Congruence and
Congruence′:

[Pa]
...

Pb
Congr

a = b

[Pb]
...

Pa
Congr’

a = b

where P is a predicate variable ranging over monadic predicates. Intuitively,
this solved the problem: (Refl) did not allow for the introduction of mixed-
identity statements, specifically on substitutibility grounds, but (Congr) and
(Congr′) do precisely this. Yet this ‘solution’ is odd because, in fact, it is
impossible to derive in FOL Pb from Pa, a and b distinct. This implies
that (Congr) and (Congr′) are inferentially-equivalent to (Refl) [5, 7].4 The
equivalence of these introduction rules is a problem for harmony because it

4Read [22, §4] suggests that Griffiths[5] erroneously assumes that, since Congruence
and Congruence′ only license conclusions of the same form as (Refl), namely a = a, the
rules give the same meaning, hence have the same harmony status. Read is correct to
observe that the grounds for identity statements are central here and not the conclusion
of the I-rule, but he misses the overall point that because a = b can never be derived, the
substitutibility properties suggested by Congruence and Congruence′ are non-inferential
and hence cannot count toward inferential harmony. (See [7, p. 1455].) In other words,
inferentialism presumably commits one to finding meaning in uses that are at least possible;
compare [7, pp. 1456-61].
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means we still don’t have grounds corresponding to the (non-trivial) substi-
tutibility observed in the elimination rule.5

Likewise, Klev [11] proposed new introduction rules meant to capture
the substitutibility property we observe in the E-rule. The core of Klev’s
new proposal is the observation that identity statements are often justified
by theoretical definitions. For example, in the language of set theory, we
define arithmetical expressions, like ‘1’, using set-theoretically familiar terms
(e.g., ∅, {}) so that identities like ‘1 = {∅} are licensed. Klev claims that
these definitional equivalences suffice to justify (Refl) and (LL), and he
characterizes a collection of introduction rules for definitional equivalence
that suffice for the derivation of mixed-identity statements. Insofar as these
warrant the introduction of mixed-identity statements on the grounds of
definitional substitutibility, Klev’s rules appear to satisfy =-reduction.

Nevertheless, Klev’s new I-rules for definitional equivalence create a new
(see fn. 5) problem for the harmony of identity, as Griffiths and Ahmed [7,
pp. 1466-67] argue. Roughly, the problem is this: with mixed-identity state-
ments deriving canonically (or “deriving”—see [7, fn. 26]) from definitional
identities, we can now ask whether the definitional equivalence of a and b can
be derived from a = b, i.e., whether (LL) now suffices for =-expansion. It
does not, and informally this is because substitution of definitionally equiv-
alent terms in a formula is only allowed when that formula has not been
derived by invocation of definitional equivalence. More bluntly, as Griffiths
and Ahmed [7, p. 1467] point out, if we could derive the definitional equiv-
alence of a and b from a = b, then identity just is definitional equivalence.
At least on the usual understanding of identity as context-free—where the
meaning does not vary with the domain of discourse—this can’t be correct.

With the failure of Read’s and Klev’s rules in the rearview mirror, Grif-
fiths and Ahmed see little prospect for a harmonious account of identity. As
they sum up the situation, it is unclear why we should expect identity to be
harmonious [7, p. 1468]:

There are many grounds on which we assert identities: consider

5Griffiths and Ahmed [7] show that the rules each fail #-expansion, and for this reason
they claim that the elimination rule is too weak. However, noting that the trivial satisfac-
tion of #-reduction for mixed-identity statements owes to the same problem as the failure
of #-expansion—i.e., the lack of substitutibility grounds for inferring a = b corresponding
to the non-trivial E-rule—it is clear that any fix for harmony must come from the I-rule,
as Read and Klev intuit. This is to agree with Griffiths that while #-expansion is the
immediate problem for identity, any solution to #-expansion must also provide a new,
non-trivial solution to #-reduction. In this spirit I retain the convention of blaming the
I-rule for being “too weak” rather than the E-rule as Griffiths and Ahmed do. I return to
this imbalance in the penultimate section.
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the grounds on which we assert e.g. the identity of sets, of num-
bers, of rivers and of persons. Why think these can be captured
in simple rules like those governing conjunction? And why think
that grasp of such rules is necessary for understanding identity?
If anything is necessary for that, we suspect that it is Leib-
niz’s Law; and that the only thing uniting the open-ended set of
grounds for identity statements is not that they all instantiate
some schema but rather that they justify that elimination-rule.
For instance, our grounds for ‘A is the same person as B’ ought
to justify the inference from ‘A wore a hat at t’ to ‘B wore a
hat at t’. But then there may be no tidy introduction rules for
identity, and no prospect of establishing harmony between them
and the elimination rule; so by inferentialist criteria identity is
not a logical constant.

But, as they note, this is “little more than a gesture” for where more inquiry
is needed. This is, of course, not enough to justify calling off the search for
harmonious rules.

3 The Uses of Identity

But the search should nevertheless be called off. We can deliver this ver-
dict by considering what, if anything, unites the various uses of identity
rather than what unites the grounds for identity statements, as Griffiths
and Ahmed suggest. As a frame, let us consider identity in FOL=. If
we assume the language has bound variables (x, y, etc.), terms containing
function symbols (f , g etc.), and constants (c, d etc.), we can see identity is
flanked in six ways, i.e.:

1. x = y

2. x = c

3. x = f

4. c = d

5. c = f

6. f = g.
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Do we have reason to believe each of these uses is logical? Let’s consider
them in turn.

The first two uses of identity are often considered logical because identity
“allows us to capture a large range of valid arguments” that are not otherwise
expressible [5, p. 506]. These valid arguments include expressions like ‘there
are at most...’, ‘there are at least...’, and numerically definite quantification.
To express ‘there are at least two objects’ in FOL=, for example, we may
write ∃x∃yx 6= y; likewise, to express ‘there is something other than c’ we
may write ∃xx 6= c. Thus, insofar as we believe there are valid arguments
involving expressions such as these, identity’s use suggests it is logical. Call
this use of identity variable coordination for the way it coordinates variable
assignment (extensionally speaking).

But while variable coordination may, in fact, be logical, it does not re-
quire identity. Hintikka [8] showed this a half-century ago by translating
FOL= into an equivalent, identity-free notation.6 The characteristic feature
of this alternative notation—call it Wittgensteinian logic, or W-logic for
short—is that variables are no longer interpreted inclusively but rather ex-
clusively. Consider, for example, the sentence ‘Any two points of a straight
line completely determine that line’, which we take to be a truth of geometry
[8, p. 225]. Intuitively, the logical structure of this sentence is something
like ‘∀x∀y((Px ∧ Py)→ Lxy)’. On the inclusive interpretation x and y can
each refer to the point p; but since two distinct points are required to deter-
mine a line, our translation is not true on every interpretation. It is true on
the exclusive interpretation, however, because x and y cannot refer to the
same point. Thus, W-logic handles variable coordination via the quantifier
semantics rather than by the use of identity in the syntax, as in FOL=.

Variable coordination is the only essential use FOL= makes of identity
when the language has only variables and constants that do not co-refer
(see [30]). Since W-logic is co-expressive with FOL= in this setting, identity
is expressively superfluous. Nevertheless, this does not imply that identity
is superfluous for the logical inferentialist. Were W-logic to fail the infer-
entialist’s tests for logicality, but FOL= pass (where = is restricted to its
variable coordination role in FOL=), this would be evidence that identity is
necessary to capture variable coordination’s (presumed) logicality.

Unfortunately for identity, W-logic meets the logical inferentialist’s con-
ditions for logicality, as the next section shows. Thus while variable coordi-

6Hintikka showed this only for languages whose terms are variables. Wehmeier [29]
extends this to languages with constants, provided that distinct constants are never in-
terpreted as the same element of their domain. The latter also shows that this restriction
can be dropped if one adds a predicate expressing the co-reference of distinct constants.
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nation may be logical, this does not count in favor of identity’s logicality.

4 The Harmony of W-logic

The guiding semantic idea behind W-logic is to interpret variables exclu-
sively, i.e., interpret distinct variables as picking out distinct objects. This
contrasts with the (standard) inclusive interpretation of variables, where
distinct variables can pick out the same object. What follows makes this
exclusive interpretation of variables precise by adapting Wehmeier’s formu-
lation of W-logic to the setting of Gentzen-style natural deduction.

We begin with the language L of W-logic, which coincides with the
language of FOL. Let→, ∨, ∧ be the usual binary propositional connectives
and ∀, ∃ be the usual quantifier symbols. (I leave the reader to substitute
their preferred rules for ¬.) Further, let X = {xi|i ∈ N} ∪ {x, y} be the
set of countably-many bound variables, A = {ai|i ∈ N} ∪ {a, b} be the
set of countably-many free variables, and let P = {Pn

i |i ∈ N} be the set
of countably-many predicate symbols for every arity n ≥ 1. (Note that
the language does not contain function or constant symbols or the identity
symbol.) We then inductively define the formulas of W-logic as follows:

• Pn
i (a0, . . . , an−1) are formulas, for Pn

i ∈ P and a0, . . . , an−1 ∈ A;

• whenever F and G are formulas, then ¬F , (F → G), (F ∨ G), and
(F ∧G) are formulas;

• whenever F is a formula, a ∈ A, and x ∈ X doesn’t occur in F, then
∀xFa[x] and ∃xFa[x] are formulas (where for any formula F , Fs[t] is
the result of replacing all occurrences of the term s in F with the term
t).

With a few more definitions we can define the W-logical correlate of
the usual inclusive-variable, model-theoretic semantics for FOL. As usual, a
structure U = 〈U, 〈Pn

U 〉〉, where the domain, U , is a nonempty set, and for
each n-ary predicate symbol Pn of L, Pn

U is an n-ary relation over U . A
U-assignment maps the free variables into U . W-logic departs from FOL
with its definition of satisfaction, where only U-assignments 1-1 on the free
variables of a formula are considered. Let A, F , and G be formulas in L,
FV(A) be the free variables in a formula A. Let σ be a U-assignment, and
[σ{a := u}] be the U-assignment generated from σ by additionally mapping a
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to u ∈ U . Recursively define W-satisfaction of A by σ on U (write U 
 A[σ])
as follows, where σ is 1-1 on FV(A):

• U 
 P i(a0, . . . , an−1)[σ] iff 〈σ(a0), . . . , σ(an−1)〉 ∈ P i
U ;

• U 1 ⊥[σ];

• U 
 F ∨G[σ] iff U 
 F [σ] or U 
 G[σ];

• U 
 F → G[σ] iff U 1 F [σ] or U 
 G[σ];

• U 
 F ∧G[σ] iff U 
 F [σ] and U 
 G[σ];

• U 
 ∀xFa[x][σ] iff U 
 F [σ{a := u}] for all u /∈ σ[FV (∀xFa[x])];

• U 
 ∃xFa[x][σ] iff U 
 F [σ{a := u}] for some u /∈ σ[FV (∃xFa[x])].

We can now use W-satisfaction to define W-logical validity, truth, and logical
consequence in the usual way, where A is an L-formula and Γ a set of L-
formulas:

• A is W-valid in U , U 
 A, if U 
 A[σ] for every U-assignment σ 1-1
on FV(A)

• A is W-true in U if A is a sentence (i.e., FV(A) = ∅);

• A is W-valid, 
 A, if U 
 A for all U ;

• and A is a logical consequence of Γ, Γ 
 A, if for every structure U , if
U 
 Γ[σ] for σ 1-1 on FV(Γ, A), then U 
 A[σ].

It can be shown (see Appendix, Theorem 1), as is usual, that free variables
are schematic in these definitions.

4.1 Natural Deduction Rules of W-logic

It may surprise the reader that the requirement that variable assignments be
1-1 changes very little about the natural-deduction system for W-logic (NW)
compared to that for FOL (NFOL). The only potential barrier to the W-
soundness of the I and E rules is that the newly-generated derivations don’t
preserve 1-1-ness of variable assignments. This could be by (i) insufficient
restrictions on the free variables in the quantifier rules or (ii) losing at least
one free variable in the transformation from the old derivation to the new
derivation by use of the propositional rules (when the set of free variables of
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the new derivation are non-empty and there is more than one free variable
in the old derivation; 1-1-ness is trivial when the old derivation contains no
free variables and the new derivation exactly one free variable). But (i) and
(ii) do not happen, as we will see. 7

The propositional rules for NW are just the same as those for NFOL.
This is because the usual propositional rules turn out to have the property
of variable containment. That is, given derivations of F from Γ and C from
F and ∆, the composite proof of C from Γ and ∆ is such that FV (F ) ⊆
FV (Γ,∆, C).8 This rules out (i). With this established, the W-soundness
of the propositional rules is obvious; indeed, only the elimination rules need
to be considered since the conclusion of an introduction rule contains its
premise(s) as (a) subformula(e). Consider, for instance, ∨-E:

Γ
...

A ∨B

∆ [A] 1

...

C

∆ [B] 2

...

C ∨ E 1,2
C

Assume Γ 
 A ∨ B, ∆, A 
 C, and ∆, B 
 C. Suppose Γ,∆ 1 C, i.e.,
U 
 Γ[σ], U 
 ∆[σ], and U 1 C[σ] for some U-assignment σ that is 1-1
on FV (Γ,∆, C). Then since FV (A,B) ⊆ FV (Γ,∆, C) (by variable con-
tainment), σ is 1-1 on FV (Γ,∆, A,B,C). But then either U 1 Γ[σ] or
U 1 ∆[σ], contradicting our assumptions. So U 1 C[σ], hence Γ,∆ 
 C.

It remains only to show that the NW quantifier rules preserve 1-1-ness
of variable assignments. First, consider the universal quantifier. We define
∀-I as the rule that transforms derivations of F (a) from Γ where a /∈ FV (Γ)
and Fa[b] for each b ∈ FV (Γ) \ FV (∀xFa[x]) into a derivation of ∀xFa[x]
from Γ, i.e.:

Γ
...

Fa

Γ
...

Fa[b] ∀ I∀xFa[x]

7This can be recast in terms of composition of derivations à la Theorem 8.1.4 of [14].
I avoid the tedium of this proof in what follows by using standard extensional semantics.

8For simplicity of exposition we may assume that subderivations are in normal form,
to which we are entitled by §4.2. However, this can be established directly by the usual
composition of derivations lemma (i.e., Theorem 8.1.4 in [14]) combined with a second
lemma establishing the variable containment property for the propositional rules. The
latter is shown by induction on the number of prior uses of elimination rules and relies on
the observation that the subformula property implies the variable containment property.
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This requirement of derivations of Fa[b] from Γ for each b ∈ FV (Γ) \
FV (∀xFa[x]) is peculiar to NW, but it is required to ensure that the rule is
W-sound (see also [28, p. 4-5]). In essence, the additional derivations mirror
the fact that the bound variable x in ∀xF (x) ranges over all elements u of
the domain not already mapped to by one of the free variables in ∀xF (x).
This is unlike FOL, where x ranges over all elements of the domain. Since
W-logic tracks distinct elements by distinct free variables, we must consider
whether u has already been mapped to by some free variable b ∈ Γ, and, in
such a case, we must independently establish F (b) for each b.

More explicitly: suppose that U 1 ∀xF (x)[σ] for some σ that is 1-1 on
FV (Γ,∀xF (x)). This means there is an element u of U not in the image of
σ on the free variables of ∀xF (x) such that, were we to extend σ by mapping
c /∈ FV (∀xF (x)) to this u, i.e., σ{c := u}, then U 1 F (c)[σ{c := u}]. That
is, one of the semantic prerequisites must be violated. For the introduction
rule to be sound, we thus must lack a prerequisite derivation. If u is not in
the image of σ restricted to FV (Γ), then we will lack a derivation of F (a), the
condition familiar from NFOL. This matches the semantics: σ{a := u} is 1-1
on FV (Γ, F (a)) since a /∈ FV (Γ,∀xF (x)), so we have U 1 F (a)[σ{a := u}].
Otherwise, σ maps some b ∈ FV (Γ)\FV (∀xF (x)) to u, so that U 1 F (b)[σ].
But then we lack a derivation of F (b), i.e., one of the additional prerequisite
derivation in NW.

The definition of ∀-E is nearly the same as for NFOL: given derivations
of ∀xF from Γ and C from Fx[a′],∆, where a′ ∈ FV (Γ,∆) \ FV (∀xF ) or
FV (Γ,∆) = ∅ and ‖FV (C)‖ ≤ 1, the following is a derivation of C from
Γ,∆:

Γ
...

∀xF

∆,
[
Fx[a′]

] 1

...

C ∀ E,1
C

The added condition is the natural one for the exclusive interpretation of
variables, namely that the free variable we substitute does not already occur
in ∀xF . The left disjunct captures this in the case that there are already
free variables available in the deduction, while the right disjunct captures
this in the case where there are none.

It is worth pausing for a moment to reflect on the kind of inferences
ruled out by the new condition on ∀-E in NW. As noted, these restrictions
highlight the difference in meaning of quantified statements. What I want to
explicitly note is that they rule out seemingly-natural inferential transitions,
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such as from ∀xy(Rxy ∧ ¬Rxy) to Rab ∧ ¬Rab by repeated ∀-E (where
∆ = ∅). Semantically speaking, such transitions are not sound because
there is no way to extend the variable assignment in a 1-1 way; see [28, p. 5]
or [29, fn. 8]. Proof-theoretically speaking, we prevent such inferences by
ensuring that the free variable already occurs on the branch in which it is
instantiated, or else that it is the only free variable on that branch. This
also suffices for variable containment, hence the soundness of ∀-E.

Now consider the existential quantifier. ∃-I is the transformation taking
a derivation of Fa from Γ to a derivation of ∃Fa[x] provided either that
a ∈ FV (Γ) or FV (Γ,∃Fa[x]) = ∅, i.e.:

Γ
...

F ∃ I∃xFa[x]

Likewise, ∃-E is the transformation taking a derivation of ∃xF from Γ and
a derivation of C from ∆ and Fx[a] to a derivation of C from Γ and ∆ when
a /∈ FV (∃xF,∆, C) and either (1) FV (∃xF ) ⊆ FV (Γ,∆, C) and a ∈ FV (Γ)
or (2) FV (Γ,∆,∃xF,C) = ∅, i.e.:

Γ
...

∃xF

∆, [Fx[a]] 1

...

C ∃ E
C

As with ∀-E, the additional condition on ∃-E in NW are owed to the ex-
clusive interpretation of variables. The condition also suffices for variable
containment, and hence the soundness of ∃-E. This demonstrates (ii), i.e.,
that the rules for NW are sound.

We are now in a position to determine whether the introduction and
elimination rules for W-logic are harmonious.

4.2 Harmony of W-logic

The rules for W-logic are harmonious. More precisely, we can show that the
elimination rules draw “no more” (#-reduction) and “no less” (#-expansion)
than the introduction rules license. To formally establish #-reduction, we
need to show that we can’t use an elimination rule to draw out more than
was put in by the introduction rule. It suffices, then, to show that any proof
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where a constant is introduced and subsequently eliminated can be converted
into a proof without this detour.9 We call proof systems exhibiting this
property normalizable.

W-logic is normalizable. Normalizability is typically established in three
steps.10 First, we show that derivations with local detours—immediate ap-
plications of #-E following #-I—can be converted into derivations without
them. Since the propositional rules for NW are the same as for NFOL, the
usual detour conversion procedures apply (see, e.g., §8.5a of [14]). We now
verify that the usual detour conversion procedures also apply for the quan-
tifiers. Suppose we are given the following derivation:

...

Fx[a]

...

Fx[b] ∀I∀xF

[Fx[a′]]1

...

C ∀E, 1
C

where, recall, Fx[b] is derived for each b in the open assumptions above Fx[a]
not in ∀xF and, as in NFOL, a′ does not occur in the open assumptions above
C. But then a′ can be substituted for a in the derivation of Fx[a] so that
the resulting derivation of Fx[a′] can be composed with the derivation of C
from Fx[a′].11 Now suppose we are given the following derivation:

...

Fx[a] ∃I∃xF

[Fx[a′]]1

...

C ∃E, 1
C

where, recall, ∃I requires that a is in the open assumptions Γ above Fx[a] or
FV (Γ,∃Fa[x]) = ∅; and ∃E requires that a′ /∈ FV (∃xF,∆, C) and, when ∆
are the open assumptions above C, either (1) FV (∃xF ) ⊆ FV (Γ,∆, C) and
a′ ∈ FV (Γ) or (2) FV (Γ,∆, C,∃F ) = ∅. But then a′ can be substituted for
a in the derivation of Fx[a] so that the resulting derivation of Fx[a′] can be

9While most definitions of harmony require only conversion of local detours, we also
show permutation conversion in order to establish the stronger result. This also follows
from cut-elimination for Wehmeier’s W-logic sequent calculus [28] via the usual translation
algorithms, e.g., [14].

10The first is that deductions must be schematic in their occurrence of free variables.
See Theorem 2 in the Appendix.

11As is obvious, if the last rule used to derive C is ∀I, the derivations of Fx[b] for each
b can also be composed as necessary.
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composed with the derivation of C from Fx[a′]. Thus, the usual local detour
conversion procedures work also for NW.

However, since natural deduction is non-local, some detours may be “hid-
den” by intervening rule applications. This is a problem especially with ∨E
and ∃E, each of which can be used to separate introductions from elimina-
tions. For this reason, normalization requires that such derivations admit of
a permutation conversion, i.e., that we can “permute” the end of the detour
(an elimination rule) up in the derivation, past the intervening use of ∨E
or ∃E. Since ∨E is the same in NFOL and NW, we need only consider ∃E.
Suppose we are given the derivation:

...

∃xF

[Fx[a′]]1

...

C ∃E, 1
C

...

Q
#E

D

It is possible that #E, which has premises C and Q, corresponds to some
#I in the derivation of ∃xF , so we want to convert this into a derivation
with #E permuted above ∃E. The usual permutation conversion delivers

...

∃F

[Fx[a′]]1

...

C Q
#E

D ∃E
D

We only need verify that the free variables in C and Q are in the free
variables in open assumptions above ∃xF or C or those in D (or that D is a
sentence and only one free variable is in the open assumptions) to verify this
is an NW derivation. (I ignore relabeling of closed assumptions, though this
may be required.) But if the tree given was a derivation, this is guaranteed.
Thus, the usual permutation conversions work also for NW.

This establishes the normalizability of NW, hence its satisfaction of #-
reduction. It remains only to show that NW satisfies #-expansion. Recall
that #-expansion captures the sense in which an elimination rule draws “no
less” from its major premise than corresponding introduction rule put in.
Again, we need only consider the quantifiers. To show this, we only need to
establish that the following are derivations:
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...

∀xF [Fx[a′]]1 ∀E,1
Fx[a′]

...

∀xF [Fx[a′′]]2 ∀E,2
Fx[a′′] ∀I∀xF

...

∃xF
[Fx[a′]]1 ∃I∃xF ∃E,1∃xF

It is obvious that the left is a derivation, since a′ and a′′ can be chosen to
play the role of a and b in the rule schema above for ∀I, i.e., a′ is not, and a′′

is, among the free variables in the open assumptions of the derivation of ∀xF
and a′′ is not among FV (∀xF ). Similarly, the right is a derivation because
a′ does not occur in ∃xF and no free variables are lost. This establishes the
existence of expansion procedures for the NW quantifiers.

Thus, we have established that the rules of NW are harmonious in the
sense that they satisfy #-reduction and #-expansion.

5 On What Remains of Identity’s Use

While the last section established the logicality of variable coordination, it
also undermined use of this fact in any case for identity’s logicality. Since
NW, whose language is identity-free, suffices for variable coordination, iden-
tity is unnecessary for variable coordination. If we assume that only parts of
canonical languages are apt to be logical (following, e.g., Quine [18]), then
identity is not logical qua variable coordination. But perhaps the remaining
uses of identity are logical. Our remaining candidates are:

3. x = f

4. a = b

5. a = f

6. f = g.

We consider these in what remains.
Recall from §2 that, for the inferentialist, an expression is logical when

the validity of a deduction is preserved through arbitrary but uniform sub-
stitutions for the other particles occurring in it. This puts the emphasis
on deductions featuring these formulas rather than the formulas themselves.
Thus, to determine whether the remaining uses of identity are logical, we
should ask of each: which deductions require the use and remain valid under
arbitrary but uniform substitution for the other particles occurring in it? I
will argue that the remaining uses either do not require the use of identity
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or else do not remain valid under all arbitrary but uniform substitutions
for the other particles occurring in a derivation. This latter case will be
especially emphasized for use 4.

Consider uses 3, 5, and 6, where identity relates a function term to a
variable, an individual constant, and another function term, respectively.
As above, it is easy to show that these uses are expressively superfluous,
if not deductively (see, e.g., [1, pp. 255-56]). This is done by first observ-
ing that any sentence of FOL= is logically equivalent to one in which the
function symbols occur only as above, i.e., all function terms f (i) flank
identity and (ii) are of the form fn(x1, . . . , xn) where fn is an n-place func-
tion symbol. But we can simply add an n+ 1-place predicate, with n terms
corresponding to the n places in these function symbols and an additional
place for the term to which they evaluate. For example, the commuta-
tive law of addition, ∀x∀yx + y = y + x, can be rewritten in this way as
∀x∀y∃z(Sum(x, y, z) ⇐⇒ Sum(y, x, z)).12 We then observe that sentences
in the new language (with predicates instead of function symbols) are sat-
isfiable iff the corresponding sentence in the original language is. We could
call this use of identity function evaluation, since the n+ 1-place predicate
→ (x1, . . . , xn, x) corresponding to x = f reads as ‘arguments x1, . . . , xn
evaluate to x’; however, I instead call this definitional substitution, follow-
ing Klev.

Of course, this will not convince the inferentialist of the non-logicality
of definitional substitution. For one, it feels non-inferentialist insofar as
it seems to appeal to model-theoretic semantics for its justification. For
another, such reasoning does nothing to assuage the worry that transfer-
ring definitional substitution’s inferential use onto predicates will result in
rules that are harmonious. However, it’s worth pausing to ask why function
evaluation should be considered logical. That is, which presumed-valid in-

12One might worry that a quantifier-free expression of the law cannot be captured
this way since the function cannot be evaluated. But evaluating the expression is not
necessary (see also [30])—in particular, all that is needed for the inferentialist is ex-
pressive equivalence. Moreover, the quantifier-free expression is inferentially superfluous:
a deduction will suffice with either particular instances, such as 1 + 2 = 2 + 1 (resp.
Sum(1, 2, 3) ⇐⇒ Sum(2, 1, 3)), or else the quantified statement. One might also worry
(e.g., [6]) that the meaning of the quantified statement cannot be explained by appeal to
arbitrary constants, as the inferentialist is wont to characterize the grounds for universal
statements. However, note that the commutativity of addition is derived by mathematical
induction, not ∀-I per se. Wittgenstein long ago argued that the inductive step in such
derivations is a check of a proposition’s construction rather than, as ∀-I would suggest,
its generality [33, §126]. See [12] for a reconstruction of Wittgenstein’s justification for
mathematical induction. Thanks to an anonymous referee for calling attention to these
issues and suggesting the example.

16



ferences require definitional substitution? The literature on the harmony of
identity does not directly address this question. Nevertheless, type theory is
suggestive on this point. As motivation for his rules, Klev observe that, in
mathematics, we frequently prove theorems of the form ‘t = u’ for syntacti-
cally distinct t and u [11, p. 868]. While Klev himself does not go so far as to
say inferences to theorems of this form are valid, they are nevertheless plau-
sible candidates. Indeed, insofar as such inferences often rely on definitions
specific to the mathematical theory—say, in Peano arithmetic, that 1 is the
successor of 0, 1 = s(0)—it is sensible to claim that given those definitions,
inference to t = u is valid. Let us provisionally accept these inferences as
valid. Does this imply that definitional-substitution uses (write t =T u to
mean ‘t is definitionally substitutible for u in the context of theory T ’) of
identity should count as logical?

Inferences to formulas containing subformulas like t = u do seem valid in
some sense. In particular, inferring such subformulas is unproblematic when
the background theory licenses the necessary substitutions. For example, de-
riving 1 + 1 = 2 from the definitions s(s(0)) = 2 and s(0) = 1, as well as
the recursive definition of addition, is obviously valid in a Peano Arithmetic
that includes these definitions as part of the theory. However, it is unclear
how this demonstrates the inferential logicality of definitional substitution.
The approach faces two related problems. First, it is unclear from the start
why identity per se—that is, a context-free equivalence relation, where the
meaning does not vary with the domain of discourse—should be desirable,
let alone necessary, for theorems of this sort. After all, if we only require def-
initional substitutibility claims specific to the theory as premises for deriving
a conclusion of the form t = u, theorems of the form t = u (with identity
per se) must be derived via an inferentially-equivalent definitional identity
t =T u constituting part of the background theory T .13 If we are committed
to the meaning of identity being captured by its inferential use, the claim
should be that theorems involving expressions of definitional substitutibil-
ity, not identity per se, are valid and hence definitional substitutibility is
inferentially logical. Indeed, it is commonly observed that statements like
1 = {∅} are context-sensitive. That is, we are not motivated to believe the
statement is true because we believe 1 is identical to {∅}; rather, we are
so motivated because we want to mimic the operations of arithmetic in set
theory, and one way of doing so is to define 1 as {∅} (see e.g., [10]). At best,

13Indeed, just this fact is captured by the bridge principle Klev recommends [11, p. 879]
(in combination with the observation that heteronymous identity cannot be otherwise
introduced [5]).
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then, deductions featuring substitution of 1 for {∅} remain valid under ar-
bitrary but uniform substitution of the other expressions—are a logical use
of identity—only when the expressions substituted for have been identified
as the relevant set-theoretic correlate.

But this leads us directly to the second problem: if definitional sub-
stitutibility is inferentially logical, it is not so in the same manner as the
propositional connectives or quantifiers. For the latter, their (inferential)
meaning is given by rules for introduction which are written in that lan-
guage. In particular, the grounds for their assertion are part of the broader
inferential system. Suppose that the rule(s) for introducing t =T u with
t and u distinct are part of the formal system governing the propositional
connectives and quantifiers. Either the premises for t =T u-I are written
in the language, hence statable in the system, or they are not. If they
are, then every derivation using t =T u-E to derive Ft from Fu contains
premises using =T non-trivially, i.e., =T -I and and =T -E fail #-reduction.
(=T -E must be structurally equivalent to LL; see Klev’s bridge principle [11,
p. 878].) So the premises are not part of the language of the system. But
this implies that the rule for distinct terms is not in the formal system itself,
hence its meaning is not captured by its introduction rule. In particular, any
attempted justification of =T -E on the basis of the I rules will be circular.14

This means that there are no harmonious rules for =T because there
are no genuine introductions. Coincidentally, this may explain why Klev
discusses theorems of the form t = u and not t =T u. If the theorems
were of the latter form, t =T u meets disharmony in the same way Read’s
updated rules for identity per se did. However, by using a bridge law to
effectively separate the two languages, and thereby derivations in the two
corresponding formal systems, identity appears to be harmonious. Never-
theless, its meaning is not given in the system of concern, and this prevents
satisfaction of #-expansion.15 Given that we were motivated to justify =E
by some =I precisely because we expect =I to exhaust its meaning, this

14It appears to this author that a related problem is faced by Indrzejczak [9]. While
the rules for identity are harmonious in a sense, this is bought by expanding the notion of
a sequent to let “terms stand on a par with formulae as elements of multisets Γ,∆,Σ,Π
in schemata of rules,” a move which Indrzejczak notes is difficult to justify semantically
[9, pp. 4759-60]. But this understates the problem, since we can’t “read off” the meaning
of identity without knowing what such sequents assert. While this could be avoided by
making the terms occur in a formula, the only predicate available that would ensure
context-freeness is =; thus, the rules would not be harmonious for the same reason Read’s
and Klev’s rules, as suggested here, are not.

15I take it that this is the crux of fn. 26, where Griffiths and Ahmed accuse Klev of
“trying to have your cake and eat it” [7, p. 1467].
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bridge strategy seems inadmissible. For this to be acceptable, the infer-
entialist must admit as inferentially meaningful operators that cannot be
captured by introduction rules in a single formal system and that logicality
does not require harmony (in the sense discussed here). It is unclear how
many inferentialists would be comfortable with this move.

The only use remaining of identity is a = b, i.e., co-reference for syn-
tactically distinct constants a and b (write ‘a ≡ b’ for ‘a and b co-refer’).
Presumably, we expect co-reference to be inferentially logical because it is
necessary to capture the validity of certain inferences. While there is no
discussion of this use in isolation, one can be generated from [19]. Read
suggests that inferences from the property-wise indiscernibility of two con-
stants to their identicalness are valid. There is an obvious candidate for such
a rule: if there is a derivation of Fb from Fa for arbitrary F , then a = b.
Yet this rule is not viable because it requires rules governing predicate vari-
ables [11, p. 874] [5]. But if we are helping ourselves to these resources
from second-order logic, then we may as well explicitly define identity. This
actually constitutes evidence internal to the inferentialist program that the
inferences Read wants to capture as valid are not so within an unified first-
order system of inference. In this way, Read faces the same problem as
Klev.

But the evidence against the inferential logicality of co-reference doesn’t
stop with the home-grown variety. While logical inferentialists have worked
to find harmonious rules for co-reference to justify its meaning as inferen-
tially logical, other philosophers have called attention to the strangeness of
its meaning. As Fiengo and May note, co-reference statements seem to be of
inferential use only when they are informative (see §3.1 [2]). In extensional
terms, co-reference tells us something about how our language hooks up to
the domain, namely, that distinct constants pick out the same element of the
domain. This is transparently about the connection between our expressions
and the world. The meta-linguistic flavor of co-reference has been noted as
far back as Frege (but see also [17, 3]), and it has featured prominently in
recent discussions of identity’s logicality (see, e.g., §5 of [29] and [30, 16, 27]).

The meta-linguistic flavor of co-reference should make inferentialists ques-
tion whether identity deserves to be called logical. First, the meaning of co-
reference statements is comparatively plain when we help ourselves to non-
inferential (extensional) resources: a ≡ b means that ‘a’ and ‘b’ each refer
to an object u in the domain. Further, we know what is required to enforce
the context-free interpretation (a metatheoretical uniqueness assumption),
and the semantic need for this distinguishes identity from other operators
and predicates (see, e.g., [27, pp. 162-4]. Second, the meta-linguistic fla-
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vor lingers under an obvious translation into the inferential framework—
say, a ≡ b means that ‘a’ and ‘b’ occur indistinguishably in derivations—
because we have to refer to the “slots” in derivations to make sense of
this.16 We should therefore expect that ensuring co-reference’s interpreta-
tion is context-free amounts to a restriction on collections of derivations, not
derivations themselves, i.e., it involves an importantly different definition of
canonical derivation.

Finally, the home-grown evidence against the logicality of identity is,
in a sense, telling us just what the extensional semantics does: the mean-
ing of co-reference is not like the meaning of the logical operators or the
other predicates. If we try to capture the inferential indistinguishability
directly, as Read’s rules do, rules governing the behavior of predicates are
required. If, on the other hand, we try to capture inferential indistinguisha-
bility indirectly via definitional substitutibility, (canonical) derivations must
be defined as equivalence classes of (canonical) derivations with respect to
definitional substitution. In either case, the resources required to fix the
meaning of co-reference are not available in the (standard) proof theory of
first-order logic. And, in either case, the elimination rule remains the infer-
entially operative rule: in the former case as the only non-trivial instances of
a rule, and in the latter as axioms for sub-derivations of definitional equiv-
alence (in typographical disguise as =T , of course).

The evidence to date therefore suggests calling off the search for har-
monious rules for the definitional substitutibility and co-reference uses of
identity. Even if a notion of harmony were constructed to capture these
uses as such, the meanings they implicate are distinct enough from, e.g.,
the propositional connectives, quantifiers, and variable coordination that
the sufficiency of such a notion of harmony for inferential logicality is dubi-
ous. Along the same lines, it appears to be the elimination rule that confers
meaning on these uses of identity (within a closed system of inference). Yet
since the entire purpose of harmonious rules is to bring symmetry, harmony
would obscure the inferential asymmetry of definitional substitutibility and
co-reference.

16Indeed, indistinguishable constants such as a and b are mentioned, not used, when-
ever Klev glosses his account, e.g.: “[The new definition of a canonical derivation] is a
natural generalization[. . . ] once the relation of definitional identity is present, since the
substitution of an expression a for a definitionally identical b in an expression c is just
a rewriting of c” [11, p. 874] (my emphasis). This last implies that expressions c are a
different category than are a and b, and in particular it seems that something like reference
has snuck back in. My point here amounts, in Klev, to his exclusion of sub-derivations of
a =T b from the derivation of Aa[b].
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Given that inferentialism aims to capture meaning by use, to bring har-
mony where none is apparent would run counter to the intuitive appeal of
inferentialist semantics. At present, a healthier attitude toward (what re-
mains of) the concept of identity would seem to be the one Wilson espouses
more generally [32, p. 134-5] (original emphasis):

the wisest policy, in my opinion, is to resist the impulse to con-
sider “concepts” as well-defined entities at all, and instead con-
fine our attention to the shifting manners in which our every-
day standards of conceptual evaluation operate over the lifetime
of an evolving predicate (I believe that “concept” represents a
term like “Napoleon’s personality”—it manifests a certain conti-
nuity over time but doesn’t stay precisely fixed). We must guard
against our ur -philosophical predilections to espy a hazy invari-
ance within these evolving opinions, rather than appreciating
the natural alteration of standards that actually emerge.

Indeed, if we can easily describe a situation in which ‘being a water molecule’
and ‘being a molecule of H2O’ come apart, suggesting identity assertions
such as ‘water = H2O’ are not context-free, why should we think there is
a concept of identity precisely fixed across all uses? In effect, what I am
suggesting is that Leibniz’s Law, too, is not generally valid—that is, even
with our most trustworthy identity statements we do not expect every sub-
stitution for the other expressions in a derivation to preserve the derivation’s
validity.17

6 Conclusion

The central question of the literature to date has been whether a harmonious
account of identity is possible. This has been viewed as the primary barrier
to an account of identity as logical. This paper analyzed identity’s prospects
by addressing its various uses separately. The paper began with identity’s
most plausible claim to logicality—its use in variable coordination. Yet while
it was established that variable coordination is, indeed, harmonious, identity
was unnecessary for demonstrating this fact. This eliminated the strongest
case for identity’s logicality. We then assessed the plausibility of identity’s
logicality for its remaining uses, namely, definitional substitutibility and co-
reference. This assessment led us to an interesting dichotomy concerning

17See [31] for a discussion of this example and an allied account of identity’s use in
science where ‘=’ is understood as a kind of equivalence relation.
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what remained of identity: either it is not logical (by dint of not being
harmonious) but its natural inferential use is transparent, or it is harmonious
(hence, putatively logical) but its natural inferential use is obscured. In light
of this dichotomy, whether identity can be given a harmonious account is
the wrong question. Rather, the question for the inferentialist is why should
identity be logical?
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Appendix

Theorem 1 Let F be a formula and a, a′ be free variables. Then for all
structures U :

U 
 F [σ{a := u}] iff U 
 Fa[a′][σ], where σ(a′) = u.

Proof Let F be a formula and a, a′ be free variables, U a W-logical struc-
ture, and σ a U-assignment. By induction on the complexity of F .

Base Case Let F be an atomic formula of the form P (a, a1, . . . , an) for a1, . . . , an ∈
A and P a predicate of arity n+1. (We thus assume, without loss of
generality, that a occurs in the first position.) By definition U 

P (a, a1, . . . , an)[σ{a := u}] iff 〈σ(a), σ(a1), . . . , σ(an)〉 ∈ PU . Since
σ{a := u}(a) = u, this is just 〈u, σ(a1), . . . , σ(an)〉 ∈ PU . But by as-
sumption σ(a′) = u, so this is equivalent to 〈σ(a′), σ(a1), . . . , σ(an)〉 ∈
PU . Again by Definition 2, this is the case iff U 
 P (a′, a1, . . . , an)[σ].
Hence U 
 P (a, a1, . . . , an)[σ{a := u}] iff U 
 P (a′, a1, . . . , an)[σ], as
required to prove.

Ind. Hyp. Assume this holds for formulas A, B.

Ind. Step → By the → clause of Definition 2 U 
 A → B[σ{a := u}] iff
U 1 A[σ{a := u}] or U 
 B[σ{a := u}]. By application of
the inductive hypothesis, this is equivalent to U 1 Aa[a′][σ] or
U 
 Ba[a′][σ]. But by the → clause of Definition 2, this is the
case iff U 
 (A → B)a[a′][σ]. Hence U 
 A → B[σ{a := u}] iff
U 
 (A→ B)a[a′][σ], as required to prove.

∨ By the ∨ clause of Definition 2 U 
 A ∨ B[σ{a := u}] iff U 

A[σ{a := u}] or U 
 B[σ{a := u}]. By application of the in-
ductive hypothesis, this is equivalent to U 
 Aa[a′][σ] or U 

Ba[a′][σ]. But by the ∨ clause of Definition 2, this is the case
iff U 
 (A ∨ B)a[a′][σ]. Hence U 
 A ∨ B[σ{a := u}] iff U 

(A ∨B)a[a′][σ], as required to prove.

∧ By the ∧ clause of Definition 2 U 
 A ∧ B[σ{a := u}] iff U 

A[σ{a := u}] and U 
 B[σ{a := u}]. By application of the
inductive hypothesis, this is equivalent to U 
 Aa[a′][σ] and U 

Ba[a′][σ]. But by the ∧ clause of Definition 2, this is the case
iff U 
 (A ∧ B)a[a′][σ]. Hence U 
 A ∧ B[σ{a := u}] iff U 

(A ∧B)a[a′][σ], as required to prove.
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∀ We split into two cases, depending on whether a = b.

∗ Assume a = b. Then U 
 ∀xAb[x][σ{a := u}] iff U 

∀xAa[x][σ{a := u}]. But a /∈ FV (∀xAa[x]), so this hap-
pens iff U 
 ∀xAa[x][σ]. Observe that (∀xAa[x])a[a′] is just
∀xAa[x], hence U 
 ∀xAb[x][σ{a := u}] iff U 
 (∀xAa[x])a[a′][σ].

∗ Assume a 6= b. Then by the ∀ clause of Definition 2, U 

∀xAb[x][σ{a := u}] iff U 
 A[σ{a := u}{b := u′}], for all
u′ /∈ σ[FV (∀xAb[x])]. Since a 6= b, this is the same as U 

A[σ{a := u}{b := u′}]. By application of the inductive hy-
pothesis, this is the case iff U 
 Aa[a′][σ{b := u′}]. Hence by
the ∀ clause of Definition 2, this is the case iff U 
 ∀xAa[x][σ],
which as observed above is the same U 
 (∀xAa[x])a[a′][σ].
So U 
 (∀xAa[x])a[a′][σ].

Hence U 
 ∀xAb[x][σ{a := u}] iff U 
 (∀xAa[x])a[a′][σ], as re-
quired to prove.

∃ Again we split into two cases, depending on whether a = b.

∗ Assume a = b. Then U 
 ∃xAb[x][σ{a := u}] iff U 

∃xAa[x][σ{a := u}]. But a /∈ FV (∀xAa[x]), so U 
 ∃xAa[x][σ].
Observe that (∃xAa[x])a[a′] is just ∃xAa[x], hence U 
 (∃xAa[x])a[a′][σ].

∗ Assume a 6= b. Then by the ∃ clause of Definition 2, U 

∃xAb[x][σ{a := u}] iff U 
 A[σ{a := u}{b := u′}], for some
u′ /∈ σ[FV (∃xAb[x])]. Since a 6= b, this is the same as U 

A[σ{a := u}{b := u′}]. By application of the inductive hy-
pothesis, this is the case iff U 
 Aa[a′][σ{b := u′}]. Hence by
the ∃ clause of Definition 2, this happens iff U 
 ∃xAa[x][σ],
which as observed above is the same U 
 (∃xAa[x])a[a′][σ].
So U 
 (∃xAa[x])a[a′][σ].

Hence U 
 ∃xAb[x][σ{a := u}] iff U 
 (∃xAa[x])a[a′][σ], as re-
quired to prove.

Theorem 2 Let a, b ∈ A and Σa[b] be the result of replacing each occur-
rence of a in a formula of the derivation with b. Then given any derivation
Σ of F , Σa[b] is a derivation of Fa[b] from Γa[b].18

Proof By induction on the length n of a derivation Σ of F from open
assumptions Γ.

18The strategy of this proof is based on that provided by Tennant[25].
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Base Let n = 1. Then trivially Σa[b] constitutes a derivation.

Ind. Hyp. Assume this holds of proofs of length ≤ m− 1.

Ind. Step Let Σ be a proof of length m of F from open assumptions Γ. I will
prove this by cases, according to the rule applied to generate the last
line of the proof. Note that the propositional connectives are trivial.
I will provide proofs of the cases for → to demonstrate this.

→ I Suppose Σ is:
Γ0 [A]

Σ0

B

A→ B

Then Σa[b] is:
Γ0a[b] [Aa[b]]

Σ0a[b]

Ba[b]

(A→ B)a[b]

But clearly (A→ B)a[b] is Aa[b]→ Ba[b]. So Σa[b] is:

Γ0a[b] [Aa[b]]

Σ0ba[b]

Ba[b]

Aa[b]→ Ba[b]

By application of the inductive hypothesis to Σ0a[b] it is a deriva-
tion. But the final application of →I is correct, so that Σa[b] is a
derivation.

→ E Suppose Σ is:

Γ0

Σ0

A→ B

Γ1

Σ1

A

B

Then Σa[b] is:
Γ0a[b]

Σ0a[b]

A→ Ba[b]

Γ1a[b]

Σ1a[b]

Aa[b]

Ba[b]
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But clearly A→ Ba[b] is Aa[b]→ Ba[b], so Σa[b] is:

Γ0a[b]

Σ0a[b]

Aa[b]→ Ba[b]

Γ1a[b]

Σ1a[b]

Aa[b]

Ba[b]

By the inductive hypothesis applied to Σ0a[b] and Σ1a[b] each is
a derivation. The final application of →E is correct, so Σa[b] is
obviously a derivation.

∀ I Suppose Σ is
Γ0

Σ0

A

Γ1

Σ1

Ad[d1]

...

...

...

Γn

Σn

Ad[dn]

∀xAd[x]

Note that the final application of ∀I closes d in Σ0. Thus Σ0d[e]
is:

Γ0

Σ0d[e]

Ad[e]

Γ1

Σ1

Ad[d1]

...

...

...

Γn

Σn

Ad[dn]

∀xAd[e]e[x]

where e 6= b. (We make this extra substitution for d to ensure
that b is not unintentionally closed in Σa[b] by b = e.) Hence
Σa[b] is:

Γ0a[b]

Σ0ba[b]

Ad[e]a[b]

Γ1

Σ1

Ad[d1]

...

...

...

Γn

Σn

Ad[dn]

∀xAd[e]e[x]a[b]

But then by the inductive hypothesis applied to Σ0d[e]a[b], and
since e /∈ FV (Γ0a[b]) and e /∈ FV (∀xAd[e]e[x]a[b]) by e 6= b, the
final application of ∀I is correct and Σ is a proof.

∀ E Suppose Σ is (the general-elimination form follows from this):

Γ0

Σ0

∀xA
Ax[d]
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then Σa[b] is:
Γ0a[b]

Σa[b]

∀xAa[b]

Ax[d]a[b]

Now (∀xA)a[b] is ∀x(Aa[b]), and Ax[d]a[b] is Aa[b]x[d]a[b]. So Σa[b]
is just:

Γ0a[b]

Σa[b]

∀x(Aa[b])

(Aa[b])x[d]a[b]

Hence by the inductive hypothesis applied to Σ0, Σ0 is a deriva-
tion. But clearly d /∈ FV (∀x(Aa[b])) since b would have to be
d, which isn’t the case because b occurs free in Σa[b]. Hence the
final application of ∀E is correct, so that Σa[b] is a derivation.

∃ I Suppose Σ is:
Γ0

Σ0

Ax[d]

∃xA

Then Σba[b] is:
Γ0a[b]

Σ0a[b]

Ax[d]a[b]

∃xAa[b]

Now ∃xAa[b] is ∃x(Aa[b]) and Ax[d]a[b] is Aa[b]x[d]a[b]19. Thus
Σa[b] is

Γ0a[b]

Σ0a[b]

Aa[b]x[d]a[b]

∃x(Aa[b])

By the inductive hypothesis applied to Σ0a[b], Σ0a[b] is a deriva-
tion. But since d /∈ FV (∃xAa[b]) and either d ∈ FV (Γ0a[b]) or
FV (Γ0a[b],∃x(Aa[b]) = ∅ (according as d ∈ FV (Γ0) or FV (Γ0, ∃xA) =
∅), the final application of ∃I is correct, so that Σa[b] is a deriva-
tion.

19We need this second substitution of b for a in case a = d.
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∃ E Suppose Σ is
Γ0

Σ0

∃xA

Γ1 [Ax[d]]

Σ1

C

C

Note that the final application of ∃E closes d in Σ1. Thus Σ is
equivalently:

Γ0

Σ0b

∃xA

Γ1 [Ax[e]]

Σ1b

C

C

where e 6= b and e doesn’t occur in Σ. Hence Σa[b] is:

Γ0a[b]

Σ0a[b]

∃xAa[b]

Γ1a[b] [Ax[e]a[b]]

Σ1a[b]

Ca[b]

Ca[b]

But clearly ∃xAa[b] is ∃x(Aa[b]), and since e 6= b and e doesn’t
occur in Σ, Ax[e]a[b] is Aa[b]x[e]. Thus Σa[b] is:

Γ0a[b]

Σ0a[b]

∃x(Aa[b])

Γ1a[b] [Aa[b]x[e]]

Σ1a[b]

Ca[b]

Ca[b]

By the inductive hypothesis applied to Σ0a[b] and Σ1a[b], each are
derivations. But since e /∈ FV (∃x(Aa[b]), Ca[b],Γ1a[b]) and ei-
ther FV (∃x(Aa[b]) ⊆ FV (Γ0a[b],Γ1a[b], C) and e ∈ FV (Γ0a[b]),
or FV (Γ0a[b],Γ1a[b], C) = ∅ and |FV (∃x(Aa[b]))| ≤ 1 (accord-
ing as either FV (∃xA ⊆ FV (Γ0,Γ1, C) and d ∈ FV (Γ0), or
FV (Γ0,Γ1, C) = ∅ and |FV (∃xA))| ≤ 1), Σa[b] is a derivation.
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