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Abstract: Heterogeneous treatment effects represent a major issue for medicine as they undermine reliable 
inference and clinical decision-making. To overcome the issue, the current vision of precision and 
personalized medicine acknowledges the need to control individual variability in response to treatment. In 
this paper, we argue that gene-treatment-environment interactions (G×T×E) undermine inferences about 
individual treatment effects from the results of both genomics-based methodologies - such as genome-wide 
association studies (GWAS) and genome-wide interaction studies (GWIS) - and randomized controlled 
trials (RCTs). Then, we argue that N-of-1 trials can be a solution to overcome difficulties in handling 
individual variability in treatment response. Although this type of trial has been suggested as a promising 
strategy to assess individual treatment effects, it nonetheless has limitations that limit its use in everyday 
clinical practice. We analyze the existing variability within the designs of N-of-1 trials in terms of a 
continuum where each design prioritizes epistemic and pragmatic considerations. We then support wider 
use of the designs located at the pragmatic end of the explanatory-pragmatic continuum.  
 
 
Keywords: Gene-environment interactions; Conflicting results; Randomized controlled trials (RCTs); P-
medicine; Genome-wide association studies (GWAS); N-of-1 trials. 
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Introduction 
 
Heterogeneous treatment effects are widely considered a major issue for medicine as they 
undermine reliable inference and clinical decision-making. Under the strain of empirical 
literature reporting conflicting results across clinical studies, researchers have pointed to 
the need for a more precise or personalized approach in medicine (generally named P-
Medicine) to account for the variation among patients and thus improve diagnosis and 
treatment. However, the question of whether P-medicine has the conceptual and 
methodological resources to deliver on its promises remains open (Gamma 2016; 
Lemoine 2017; Plutynski 2020). 

In this paper, we approach the problem of individual treatment effect heterogeneity 
and argue that gene-treatment-environment interactions (G×T×E) undermine the results 
of both randomized controlled trials (RCTs) and the repertoire of genomics-based P-
medicine — genome-wide association studies (GWAS) and genome-wide interaction 
studies (GWIS). We then support the use of N-of-1 trials as a source of evidence for 
predicting individual treatment responses and informing therapeutic decisions. Below is 
a detailed structure of the article. 

In Section 1, we explain that the evidence-based medicine (EBM) movement 
focuses on average causal effects in developing its evidence appraisal tools and argue that 
such averages are not representative of individual treatment effects, which may differ 
significantly from the average. The heterogeneity of individual treatment effects makes 
clinical decisions based on average treatment effects (ATEs) likely ineffective in cases 
where individual outcomes differ from the population-wide average.  

In Section 2, we argue that part of the heterogeneity in individual treatment effects 
depends on the genetic variability of populations and variability in environmental 
exposures that interact with treatments. In other words, individual response to treatment 
is generated not just by interactions between the absence/presence of specific genetic 
variants and drugs (G×T), as it is often assumed in pharmacogenomics studies, but also 
by further interactions with environmental exposures that are difficult to operationalize 
and control for (G×T×E). We will review pharmacogenetics studies on asthma to 
highlight major limitations in the systematic and reliable identification of G×T×E. 
Findings on asthma represent an interesting case study because asthma, compared with 
more complex phenotypes (e.g., major depression), is a relatively simple trait related to 
well-known physiological mechanisms. Thus, shortcomings in the study of asthma 
unlikely depend on the operationalization of the trait but rather on more general issues 
relating to the control of population stratification in genetic and environmental variability. 
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In Section 3, we argue that N-of-1 trials can be a solution to overcome difficulties 
in handling individual variability in treatment response. This type of trial has been 
suggested as a promising strategy to assess individual treatment effects, but major 
limitations affect this approach, too, including their low feasibility in everyday clinical 
practice. By drawing an analogy with the explanatory/pragmatic RTCs distinction, we 
thus discuss the plurality of existing single-patient designs in terms of a continuum 
ranging from explanatory and pragmatic aims: on this view, different N-of-1 designs put 
different emphasis on methodological rigor (at the expense of lower feasibility) or 
pragmatic considerations (at the expanse of lower internal validity). Finally, we outline 
the main features of N-of-1 designs that are closer to the pragmatic end of the continuum 
as potential ways in which this type of trial can be simplified to make it more feasible 
without negatively impacting the results’ integrity. 
 
 
1. The Omission of the Individual Patient by the Evidence-based Medicine Approach 
 
The standard approach to assess evidence in medicine and inform clinical decisions has 
been developed by the evidence-based medicine (EBM) movement. This approach to the 
appraisal of evidence for treatment effectiveness and safety (or, more broadly, causal 
generalizations, i.e., type-level causality) is based on assessing the risk of bias or 
confounding of each study type (Borgerson 2009; La Caze 2009). Accordingly, factors 
unaccounted for in a study (e.g., genetic differences, environmental exposures, or the 
researchers’ expectations) make a difference between treatment and control groups and 
undermine an accurate assessment of treatment effectiveness. 

According to the EBM approach, randomized-controlled trials (RCTs) are 
prioritized over non-randomized interventional studies and other observational designs 
(e.g., cohort and case-control studies) (OCEBM Levels of Evidence Working Group 
2009; National Institute for Health and Care Excellence 2014). RCTs allow for estimating 
the average treatment effect and measuring the dispersion of individual treatment 
responses. However, as we will argue, they provide little information regarding what 
confounders mediate treatment effectiveness and about individual treatment effects 
𝑇𝐸(𝑛). This problem is further aggravated when the evidence produced by RCTs is 
aggregated with meta-analyses: sample sizes, in such analyses, are much larger than in 
individual studies and hence deliver more precise estimates for the average treatment 
effects (ATE). However, obtaining ATE estimates with narrower confidence intervals 
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does not change the distribution of individual treatment effects; hence, the empirical rule 
cannot be applied to estimate the dispersion of outcomes (Maziarz 2022).1 

 RCTs deliver the most trustworthy evidence for average treatment effects but are 
unable to inform regarding individual treatment effects. As Borgerson put it,  

 
RCTs produce data that is averaged over the patients in the trial. Physicians and practitioners 
encounter individual patients. The gap between the average patient (after inclusion and 
exclusion criteria) and the individual patient [despite equaling zero in expectancy] is a 
significant one, and is the first thing critics of RCTs mention when listing the problems with 
the RCT (2008, p. 190). 

 
This feature of RCTs inspired the view that the EBM movement oversimplifies the 
complexity of clinical decision-making because it ignores heterogeneity in treatment 
responses. For instance, Aron (2020) observes that treatment response is a function of not 
only intervention but also of the context in which it is delivered (constituted by an 
organism and its peculiar characteristics). Additionally, individual treatment responses 
are further shaped by environmental exposures and disease severity. As Feinstein 
observed, 
 

[p]harmaceutical companies, regulatory agencies, and public policymakers may be satisfied 
to receive those average results, but practicing clinicians and patients are not. The clinicians 
and patients want to know the results in subgroups having a pertinent ‘clinical resemblance’ 
to the current patient (1995, p. 73) 

 
The Potential Outcomes Approach (POA) seems to be the predominant position 
underlying inferences from RCTs despite often being considered too restrictive about the 
notion of cause (Vandenbroucke et al. 2016). The POA defines treatment effect in terms 
of the difference between the outcome observed by the patient receiving the intervention 
under investigation and the outcome observed when the 𝑛-th patient is treated with the 
comparator drug: 

𝑇𝐸(𝑛) = 𝑌!(𝑛) − 𝑌"(𝑛) 
 
Where: 
𝑇𝐸(𝑛) — 𝑛-th patient treatment effect 
𝑌!(𝑛) — the outcome of 𝑛-th patient receiving treatment 
𝑌"(𝑛) — the outcome of 𝑛-th patient receiving control 

 
1 The empirical rule states that 99.7% of observations of a normally distributed variable fall within three 
standard deviations from the average. 
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The impossibility of observing, at the same time, both the outcome of the treatment with 
intervention and control of the same patient constitutes the fundamental problem of causal 
inference (Rubin 1974; Rubin 2005). The solution to this problem endorsed by the 
proponents of the EBM movement is to focus on the population-wide average treatment 
effects that can be estimated by comparing (calculating the difference in means between) 
the average outcomes observed in the treatment group and in the control group (Hernan 
& Robins 2018): 

𝐴𝑇𝐸^ =
1
𝑁 

 
This solution relies on randomization, which, in the long run, balances the overall impact 
of confounders between the treatment and the control group, so that the only explanation 
for the observed difference in means is the intervention under test (La Caze 2013). 
However, the estimate of the average treatment effect (𝐴𝑇𝐸^ ) does not inform the 
dispersion of individual treatment effects 𝑇𝐸(𝑛) in the population of patients. Indeed, the 
variance in outcomes (𝑌) is generated by individual differences in the values of 
confounding variables. To illustrate how confounders impact individual outcomes, 
consider the following situation analyzed by Greenland: 
 

[s]uppose I wish to study whether lidocaine prophylaxis prevents death within the 72 hours 
following hospital admission for acute myocardial infarction. I will enroll two patients for 
this study, two successive admissions to a hospital emergency room. When the first patient is 
admitted, I will toss a fair coin: If heads, the first patient will receive lidocaine and the second 
will not; if tails, the second admission will receive lidocaine and the first will not. Suppose 
now that the first admission is massively compromised and is certain to die within 72 hours 
of admission, whereas the second is a mild case and is certain to survive, whether or not either 
of them receives lidocaine therapy (1990, p. 421). 

 
To obtain warranted conclusions regarding the ATE, researchers need to recruit a sample 
of a size sufficient to ensure that the impact of confounders on an outcome of interest will 
average out (e.g., both the treatment and control groups will include similar numbers of 
mild and severe cases). This sample size is determined at the research design stage, given 
a chosen power (𝛽) and a threshold of statistical significance (𝛼). The exact number of 
patients that need to be recruited depends on the absolute effect size (|𝜇!̂ − 𝜇"̂|) and the 
dispersion of outcomes (measured by their variance 𝜎#) (see Cook & DeMets 2008, pp. 
115-139; Chow et al. 2018, pp. 47-49).  

Random differences in the distribution of confounders are not an obstacle to sound 
inferences, as the hypothesis of treatment effectiveness is tested statistically. Usually, the 
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null hypothesis of no difference is chosen (𝐻$: 𝜇! = 𝜇") versus the alternative (𝐻%: 𝜇! ≠
𝜇"), although the more warranted choice would be to test if the difference between trial 
arms is larger than the minimal clinically important difference (MCID) (McGlothlin & 
Lewis 2014; Lawler & Zimmermann 2021). As we mentioned, the randomization 
procedure is expected to assert that the confounders are distributed equally between the 
trial arms and their impact averages out (Deaton & Cartwright 2018). While this is a 
demanded feature of RCTs if one is interested in the population-wide average treatment 
effects, the loss of the individual characteristics that determine treatment outcomes is 
detrimental to predicting individual treatment responses. Indeed, only a small number of 
patients will experience treatment outcomes similar to the population-wide average. 

For simplicity, let us take a trial testing a treatment against a placebo and no placebo 
effects. In that case, the difference in mean outcome for the treatment and control groups 
(𝜇!̂ − 𝜇"̂) measures the effect size of the intervention (instead of an average difference in 
the effectiveness of two alternative therapies). The differentiation of individual treatment 
responses in the population of all patients fulfilling the inclusion and exclusion criteria is 
measured by the variance (𝜎#) of the primary outcome. In particular, the empirical rule 
(see above) allows for calculating the range including about 95% of individual treatment 
responses, which is given by the formula 𝑌!̂ − 2𝜎; 𝑌!̂ + 2𝜎 > (Freund & Wilson 2010, 
p. 27).  

Kent et al. (2016) re-analyzed data from 32 large (phase III) trials and observed that 
“the absolute risk reduction between the extreme risk quartiles ranged from -3.2 to 
28.3%” (p. 2075) despite the phase III trials “are often characterized as enrolling 
relatively homogenous populations” (p. 2084). The surprising level of treatment effect 
heterogeneity made Kent and colleagues conclude that  
 

clinically important differences in effect across predicted risk are likely to be common in trials 
with statistically significant average treatment effects. However, even when these factors are 
taken into account, considerable variation remains unexplained and could potentially be 
attributable to genetic differences between patients (2016, p. 2085). 

 
However, the empirical rule is only valid for inferences concerned with outcomes 
distributed normally. A growing body of evidence suggests that there are non-linear 
effects of substantial size in cases when treatments interact with moderators that produce 
non-normal distributions of individual treatment responses. For example, patients who 
inherited a thiopurine S-methyl transferase deficiency are more than ten times more 
sensitive to the effects of a leukemia drug on marrow suppression (Coulthard et al. 2002). 
Another example of treatment outcome heterogeneity that does not follow the Gaussian 
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distribution is the outcome distribution of glioblastoma patients, which effectiveness is 
determined by the presence/absence of one single genetic variant (Blunt 2019).2 

Another problem related to applying ATE estimates to individuals is that clinical 
trials are usually characterized by relatively strict inclusion criteria (e.g., excluding 
polypharmacy patients or those with comorbidities) resulting in samples being not 
representative of the general population of patients (Stegenga 2018), which creates the 
problem of extrapolation: even if an individual patient sufficiently resembles the average 
of all patients in the clinic, the 𝐴𝑇𝐸^  reported by a clinical trial may be different from the 
average treatment effect of the population of patients in the clinic. But this is only one 
side of the problem of extrapolation, as strict inclusion and exclusion criteria narrow 
down the estimates of variance (𝜎&̂) of the primary outcome and hence the variability in 
treatment responses observed in the clinic may be larger than the variance measured in a 
clinical trial. What follows, more than about 5% of patients will experience treatment 
effects deviating from the average by more than the interval described by the empirical 
rule. 

Notably, the farther away from the average an individual treatment effect is, the less 
accurate the clinical decision concerning that patient based on average treatment effect 
estimates stemming from large RCTs or meta-analyses. This inaccuracy of applying 
population-wide averages to individuals is related to the following two problems: first, 
uncertainty about the outcomes of untreated disease and, second, uncertainty about the 
individual response to treatment. 

For illustration, suppose that a patient suffers from a condition for which only one 
treatment is available. The patient may either be a moderate case or be unsusceptible to 
that drug and experience only limited benefits from the treatment while being exposed to 
the risk of adverse events (leaving the disease untreated). Or the patient may either be a 
severe case whose benefits outweigh potential risks and harm or a moderate case that 
tolerates the treatment well and still benefits from treatment. As Kravitz et al. put it, 

 
misapplying averages can cause harm, by either giving patients treatments that do not help or 
denying patients treatments that would help them (2004, p. 662). 

 
To sum up, RCTs are designed to control for individual-level confounders by averaging 
the effects across individual patients in treatment and control groups. However, this 
strategy risks overlooking important aspects of individual variability (Deaton & 

 
2 As we argue in Section 2, however, genetic heterogeneity is not the only confounding factor that moderates 
treatment response: other sources of uncontrolled heterogeneity are environmental exposures and 
interactions between them and genetic differences. 
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Cartwright 2018; Greenhalgh et al. 2014; Kent et al. 2010). While this criticism to the 
EBM evidence hierarchies is not new, in the next section we show that it also applies to 
typical evidentiary sources for genomics-based P-Medicine. 
 
 

2. P-Medicine and Individual Variability 
 
One of the major aims of P-medicine is to deliver evidence for therapeutic decisions 
concerned with individual patients and overcome the problem of applying population-
wide averages in the clinic. Knowledge about individual differences in heredity, 
environmental exposures, lifestyle, and epigenetic profiles would help understand 
variability in treatment response, prescribe more effective drugs, and avoid prescribing 
drugs with negative side effects. In this sense, P-medicine differs from the standard ‘one-
size-fits-all approach’ where medical treatments are designed for the ‘average patient’.3 

Generally speaking, the presence of gene-environment interactions (G×E) implies 
that the effect of an environmental factor (E) on the phenotype is mediated by genetic 
factors (G). For instance, the effects of environmental exposure can depend on the 
presence/absence of a certain allele and thus have a different impact on different 
individuals. This type of interaction has been observed in several complex traits and 
diseases, including cancer, psychopathologies, obesity, and general intelligence (see e.g., 
Caspi et al. 2003; Hyde et al. 2011; Serpico & Borghini 2021; Turkheimer et al. 2003). 

Current trends in pharmacogenomic use GWAS to identify statistical associations 
between genetic variation (G) and response to treatment (T).4 An increasing number of 
studies identifies G×T as a major source of treatment effect heterogeneity, suggesting that 
part of the variability in response to treatment can depend on how the drug interacts with 
the relevant genes. Here, a treatment is taken as the environmental factor (T=E). The 
major strength of pharmacogenomics studies is that drugs are relatively simple compared 
to other environmental factors that may interact with genetic variability: as Ritz and 
colleagues (2017) argue, drugs are often associated with a specific outcome phenotype 
(e.g., lowering blood pressure) and their mechanism of action and metabolic pathways 
are well understood. 
 
3 P-medicine is a heterogeneous field involving a variety of evidentiary sources and methodologies, ranging 
from genomics to proteomics, metabolomics, and many others (Snyderman 2012). In our analysis, we 
mostly focus on pharmacogenomics studies on the role of genetic differences in response to drugs targeting 
multifactorial diseases, although we acknowledge that personalized health care can involve much more than 
this. The analysis of individual genetic profiles plays such a key role in the emerging vision of P-medicine 
that it is genetic P-medicine that is usually practiced (Abettan & Welie 2020; Gamma 2016). 
4 GWAS are a hypothesis-free methodology that scan hundreds of thousands of single-nucleotide 
polymorphisms (SNPs), the most common type of genetic variants in the human genome. 
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A context in which pharmacogenomics studies have been performed widely is the 
study of asthma, a complex condition characterized by chronic airway inflammation 
(Global Initiative for Asthma, GINA 2019). Here, interactions have been identified 
between dozens of genetic variants and a variety of treatments, including short-acting 
beta2-agonists (SABAs), long-acting beta2-agonists (LABAs), inhaled corticosteroids 
(ICS), and leukotriene modifiers (LTMs) (Farzan et al. 2018; Kersten & Koppelman 
2018; Lima et al. 2006; Turner 2009; Wang & Tantisira 2016). 

Unfortunately, evidence on interactions between genetic variability and asthma 
treatments (G×T) is unsystematic and usually inconsistent across studies: reported results 
are often not replicated and associations between genetic variants and treatment response 
do not reach the threshold of statistical significance, with the consequence that much 
variability remains unexplained.5 As Farzan and colleagues conclude (2018, p. 3), these 
genomics markers are currently not ready for clinical application. And, indeed, while 
GINA (2019) acknowledges different treatment responses to standard therapies (e.g., 
inhaled corticosteroids, p. 52), its recommendations still adhere to the one-size-fits-all 
approach: patients with poorly controlled symptoms are advised to receive a next-step 
treatment based on the results of clinical trials. 

To clarify, the case of asthma is not isolated: similarly unclear are the findings 
obtained through genomics techniques on other complex conditions, such as major 
depression and obesity (Chang et al. 2015; Giacomelli et al. 2021; Keers & Uher 2012; 
Pedersen 2017). Asthma represents to us an interesting case for two main reasons: first, 
it is a widely investigated condition; second, it is related to well-understood physiological 
mechanisms and symptoms and is thus a relatively ‘simple’ phenotype compared with 
more complex traits like psychiatric ones. For these reasons, methodological issues in the 
identification of G×T in asthma treatment are unlikely dependent on limited data or 
conceptual imprecision in the definition of asthma. For instance, in studies on conditions 
such as major depression, questions may arise about how the trait is operationalized and 
the severity of symptoms assessed through psychometric methods — including questions 
on whether we should consider fine-grained phenotypes (e.g., serotonin dysregulation) 
rather than major depression itself. So, considerations that are often made about the 
genetics of human behavior can be made for simpler traits, too: the literature on asthma 
suggests that conflicting results regarding individual response to treatment do not depend 
on the lack of data or due to mere phenotypic complexity, but rather emerge because of 
difficulties with controlling for population stratification and genotype-treatment 
interactions (we focus on such difficulties in the next section). 
 
5 On ICS and LTMs, see Farzan et al. (2018). On conflicting outcomes for SABAs and LABAs, see Kersten 
& Koppelman (2018). 
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Contradictory findings are usually explained in terms of methodological limitations 
or biases.6 However, we suggest that some of these inconsistencies could be read in a 
different light: if we consider the variability that characterizes any human population, 
such results are unsurprising and can rather tell us something interesting about how 
treatments happen to interact with genetic and environmental factors that differ across 
individuals. As we explain below, the problem is that our current ability to detect and 
control for individual variability in G×T may be severely impaired by the complexity at 
stake. 
 
2.1 Genetic and Environmental Heterogeneity 
 
There are major limitations affecting methodologies investigating G×T in large 
populations. A recent set of methods to test systematically for interaction effects between 
each single-nucleotide polymorphism (SNP) and a specific environmental factor (like a 
drug) is provided by GWIS. Like GWAS, GWIS is a hypothesis-free approach, and for 
this reason, it is also affected by the methodological issues usually imputed to GWAS.7 
Here, we would like to focus on limitations relating more specifically to population 
heterogeneity at the genetic and environmental levels — how it can bias the results of 
GWAS and GWIS, how heterogeneity is usually handled, and why such strategies are 
often ineffective. 

The first issue regards population stratification, i.e., undetected heterogeneity in 
allele frequencies due to non-random mating and geographical isolation (Hellwege et al. 
2018; Lawson et al. 2020). In any population, there are arguably different sets of 
individuals that differ systematically in both the genetic ancestry and the phenotype under 
investigation. If the effects of stratification are not properly corrected, spurious 
associations can arise due to differences in ancestry, especially in large meta-analyses 
(Uffelmann et al. 2021).8 

The stratification problem is intertwined with other sources of heterogeneity, 
particularly variability in disease etiology and mechanisms (Ogino et al. 2013a, 2013b), 
including their genetic basis (Gravel et al. 2011; Fuller 2021). For instance, a sample may 
comprise subgroups of individuals with similar phenotypes (e.g., asthma typical 
 
6 On G×E, see Dick et al. (2015). On behavioral genetics, see Chabris et al. (2012, 2013); Hewitt (2012). 
More generally on clinical trials, see Ioannidis (2005). 
7 On the difficulty of making causal claims based on genome-wide methods, see Craver et al. (2020); Kaplan 
& Turkheimer (2021); Oftedal (2022). On statistical biomarkers more generally, see Tabb & Lemoine 
(2021). 
8 Note that genetic studies can be affected by stratification biases even in relatively homogenous populations 
with common geographic origins (Sarmanova et al. 2020). 
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symptoms and immunological biomarkers), but such phenotypes may be due to different 
mechanisms associated with different genetic variants. At the same time, even in single-
gene diseases, carrying a given genetic variant can bring about different phenotypic 
effects in different individual (see Chen et al. 2016; Cooper et al. 2013; Katsanis 2016; 
Lynch 2021). In all such cases, statistical associations would likely be spurious, and the 
results reported by different studies in conflict. 

The ideal strategy to avoid stratification biases would be ensuring that the sample 
is homogenous at the genetic level (Rivadeneira et al. 2021). The trouble is that statistical 
associations are investigated through hypothesis-free methods like GWAS precisely 
when we know little about the genetic composition of a population and the genetic basis 
of a given disease. There exist other ways to correct for stratification, but current methods 
(e.g., principal component analysis and linear mixed models) come with important 
shortcomings (Lawson et al. 2020). Particularly worrying is the fact that they are based 
on common variants, but the genetic basis of complex diseases involves a variety of types 
of genetic variants beyond SNPs that are difficult to capture through GWAS, such as rare 
genetic variants (frequency <1%), copy-number variants, and structural variants 
(Baverstock 2019; Burt 2022; Fries 2020; Génin 2020; McClellan & King 2010; 
Uffelmann et al. 2021; Zaidi & Mathieson 2020). 

Environmental factors enter this already very complex picture by multiplying 
exponentially the number of moderators of individual treatment effects. Indeed, 
stratification biases regard not only genetic factors but also environmental factors and 
thus epigenetic markers (i.e., subgroups of individuals in a large sample can be exposed 
to different environmental influences). Moreover, inconsistency is to be expected when 
the interactions involve rare genetic variants that are difficult to capture through genome-
wide methods. 

This leads us to a second major issue, which depends on the difficulty of assessing 
environmental exposures and thus controlling for individual variability in such factors. 
As explained above, pharmacogenomics studies usually focus on interactions between 
genetic variants and treatments (G×T). However, we argue that the causal network 
generating an individual’s response to treatment can involve not just a given treatment 
(T) and the relevant gene (G) but also undetected environmental factors that can interact 
with both G and T, generating multiplicative interactions that we will call G×T×E. In the 
case of asthma, such environmental variables can involve air pollution and allergens, for 
example.9 
 
9 These triadic interactions have been investigated, for instance, in major depression. Chang et al. (2015) 
pointed out that interactions between corticotropin-releasing hormone (CRH) polymorphisms and 
antidepressants is mediated by stressful life events. Unfortunately, assessing environmental variables like 
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Over the past two decades, scholars have repeatedly called for an increase in sample 
sizes as the solution to the many limitations of genome-wide studies: ideally, bigger 
numbers would come with more statistical power, and confounding factors of any sort are 
more likely to average out in larger trials. However, there is disagreement as to whether 
this strategy alone could bring substantial benefits. In fact, with the development of better 
techniques, geneticists have become able to test thousands of individuals, but 
inconsistencies and low replicability have never fully disappeared. This led many to 
believe that genetic effect sizes are even smaller and more elusive than initially expected, 
rather than questioning the very reliability of genome-wide methods.10  

Something very similar is going on in the study of gene-environment interactions, 
including studies where the investigated environmental factor is just one single drug. 
Even by considering only interactions between genetic variants and one environmental 
factor, interactions have turned out to be extremely elusive: indeed, an environmental 
effect on phenotypic variance can be weak in the general population but extremely 
relevant in a subgroup of individuals that carry a relevant allele. To scan effectively for 
G×E through GWIS, the required numbers are thus much greater than in standard GWAS 
(Dai et al. 2018, p. 470). 

The power of GWIS to detect sources of heterogeneity in response to treatment is 
likely to decrease further if we consider what we said above about G×T×E: if we take 
treatment as the only environmental factor at stake, we might be unable to account for the 
actual network of relevant interactions, which arguably includes not just the genotype and 
the drug, but also uncontrolled (and often poorly understood) environmental variance.  

How far should we go with an increase in sample sizes before considering a 
different approach? There is clearly a tradeoff between analyzing increasingly larger 
populations and focusing on smaller groups: although larger sample sizes may allow for 
more generalizable results, this will also bring more genetic and environmental 
heterogeneity into the analysis, making it even harder to get biologically significant or 
interpretable results (note that larger studies are more acutely affected by stratification 
biases, see Hellwege et al. 2018; Marchini et al. 2004). By contrast, smaller and more 
homogeneous samples allow for finer phenotyping and better control of the extensive 

 

stressful life events can be difficult due to the lack of standardized measures, which limited the integrity of 
data collected by Chang and colleagues (for a review including other studies, see Keers & Uher, 2012). 
Moreover, due to the small sample size (193 and 149 individuals in the control and case groups, 
respectively), Cheng et al. (2015) could not stratify the populations according to types of antidepressants 
with different mechanisms of action. This is a further source of heterogeneous treatment effects that is 
beyond the aims of this paper. 
10 See long-standing debates on the missing heritability problem (Downes & Matthews 2019; Maher 
2008; Manolio et al. 2009; Matthews & Turkheimer 2022; Turkheimer 2011). 
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genetic and environmental heterogeneity involved in treatment response (for similar 
considerations, see Giangrande et al. 2022).  

The literature on G×T×E suggests that individual-level variation is not ‘an 
exception’ or a factor to ‘average out’ from clinical studies: accounting for individual 
variability is rather necessary given the aims of P-medicine. As we have shown, 
heterogeneity in individual treatment response is, however, an obstacle that neither RCTs 
nor GWAS seems to be able to handle easily: when major G×T×E are present, running 
effective studies ideally needs subtyping the population in such a way to track down 
actual biological differences; however, this requires (often missing) prior knowledge 
from GWAS, candidate-gene studies, and environmental epigenetics on what specific 
G×T×E can affect treatment response.  
 
 
3. N-of-1 Trials as a Potential Solution 
 
In the previous sections, we explained that individual treatment responses are determined 
by individual-level genetic and environmental characteristics and their interactions with 
an intervention. We also argued that existing methods to assess such interactions have 
major limitations and that incremental improvements in such techniques may be unable 
to overcome the issue. If so, pharmacogenomics will not solve the problem of predicting 
individual treatment response as it would require screening every relevant factor to which 
a given patient is exposed and understanding their role in shaping phenotypic outcomes. 
This might turn out to be an unachievable ideal due to the difficulty of controlling for 
G×T×E in systematic and unbiased ways.  

However, one research design already used in some areas of medicine allows for 
estimating individual treatment responses even when the interactions among the 
treatment, environment, and genes remain unknown: in N-of-1 studies, single patients 
undergo cycles of a treatment under test followed by the appropriate control conditions. 
For instance, Nikles suggested that 
 

[u]ntil pharmacogenetics […] becomes further developed and widely available, N-of-1 trials 
remain the best method of identifying patients who respond to certain drugs (2015, p. 13). 

 
Measuring outcomes repeatedly allows for averaging out random environmental 
exposures or spontaneous deteriorations and improvements and measuring the immediate 
treatment effects (as opposed to long-term effects). Together with randomization, such 
features have various advantages, e.g., they help ensure the integrity of results and offer 
a solution to the problem of extrapolation that we discussed in Section 1.  
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N-of-1 trials have mostly fallen outside the range of topics studied by philosophers 
of medicine (Jukola 2019). However, a few voices speak for their potential. Guyatt et al. 
(1990) concluded that N-of-1 studies are feasible and useful in clinical practice. N-of-1 
trials have been observed to be a promising source of evidence regarding individual 
treatment response, especially in chronic conditions (Duan et al. 2013), and have a track 
record of informing clinical decisions that allowed the reduction of pharmaceutical 
treatments (e.g., the number of prescribed drugs) or the prescription of more effective 
drugs for individual patients. For instance, N-of-1 trials of methylphenidate (Nikles et al. 
2015) proved that some individuals benefit from the treatment while others suffer from 
its side effects, which makes the ATE estimate close to zero. Scuffham et al. (2010) 
observed that fewer treatments were prescribed after N-of-1 trials aimed at finding 
treatments most effective for those individuals. Both patients and physicians questioned 
by Kronish et al. (2017) in New York Presbyterian Hospital perceived N-of-1 studies as 
useful for individualizing treatments (see also Moise et al. 2018). Recently, Vogt (2022, 
p. 66) voiced his belief that N-of-1 “studies do present one promising way forward for 
precision medicine in aligning with the tenets of evidence-based medicine.” Finally, the 
Oxford Centre for Evidence-Based Medicine (OCEBM) guidelines elevated this research 
design to the highest level of evidence quality for evaluating treatment effectiveness 
(Bradbury et al. 2020). 

Despite their virtues, the popularity of N-of-1 trials is limited so far. At first sight, 
this is surprising if we consider two aspects. First, using them to make clinical decisions 
could allow for the reduction of overtreatment and overall healthcare costs compared to 
standard care (Scuffham 2010). Second, there is an increasing prevalence of chronic 
diseases and elderly patients suffering from multiple comorbidities. This corresponds to 
an increase in the number of patients that would benefit from a careful assessment of their 
individual treatment effects, which provides the perfect environment for wider use of N-
of-1 trials, given that the N-of-1 trials can mainly be used to study chronic conditions that 
are stable in time. Indeed, such studies are suitable for patients with chronic conditions, 
multiple comorbidities, polypharmacy, and rare diseases (Vohra et al. 2015) and less 
adequate for studying individual treatment responses in acute or progressive conditions 
(Duan et al. 2013).  

The limited use of N-of-1 trials in standard clinical practice seems to result from 
the low feasibility of such studies and the burden imposed both on the physicians willing 
to use them and on patients whose treatment response is to be assessed. This, for instance, 
is the explanation provided by Kravitz et al. (2008) based on a literature review and in-
depth interviews with proponents of N-of-1 trials, who pointed at the physicians’ lack of 
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interest in reducing uncertainty about individual treatment response. As Mirza and 
colleagues put it:  

 
The obstacles to conducting N-of-1 trials as an element of routine clinical practice have been 
too great. For many pharmacists, preparing identical drug and placebo combinations proved 
too labour-intensive. For clinicians, N-of-1 trials take too much time, even with easy-to-use 
guidance: preparing questionnaires, instructing patients, and examining the results all require 
clinician commitment (2017, p. 334). 

 
Furthermore, Selker et al. (2022) observed recently that the stakeholders have not 
sufficiently recognized the benefits of using N-of-1 studies in clinical practice and listed 
the requirements for N-of-1 studies to be adopted more broadly: (1) clear articulation of 
the reasons for patients to participate in the N-of-1 studies; (2) definition of needs and 
costs of N-of-1 studies; (3) understanding the inter-patient heterogeneity; (4) specification 
of the criteria for covering participation in N-of-1 studies; (5) understanding how N-of-1 
studies help patients and healthcare systems; (6) specification of the types of evidence 
stemming from N-of-1 trials required by regulatory agencies for drug approval.  

It is beyond our aim to consider all such facets of this complex issue. Below, we 
will focus on various versions of N-of-1 designs involving different methodological 
choices. Our aim is to assess the epistemic and pragmatic trade-offs of such trials and 
encourage wider use of the N-of-1 trials that rely on more pragmatic choices. In this view, 
the N-of-1 design can be simplified to achieve higher feasibility without significantly 
impacting study integrity. 

Let us emphasize that, as in other aspects of scientific research, balancing epistemic 
(e.g., methodological choices) and non-epistemic aspects (e.g., feasibility) involved in 
clinical trials is crucial: indeed, such trials do not represent a value-free epistemic 
enterprise but are rather entangled with crucial pragmatic considerations regarding their 
very applicability. If the aim of a clinical study is to impact medical practice (e.g., by 
helping us select the best treatment option for a given patient), we do need not only strict 
methodological requirements but also agile and feasible practices that can be applied in 
real-world scenarios by clinicians. In other words, N-of-1 trials are susceptible to an 
adequacy-for-purpose evaluation exactly like scientific models, which demands 
considering how epistemic factors promote or facilitate their practical aims.11  
 
 
 
 
11 For recent discussions on this type of evaluation in scientific models, see Luck & Elliott (2022); Parker 
(2020). 
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3.1 Towards a Greater Feasibility of N-of-1 Trials 
 
Some attempts have already been made to increase the feasibility of N-of-1 trials in day-
to-day clinical practice. One way to limit the burden for physicians and patients is to use 
new technologies for measuring outcomes and reporting. For example, the mobile health 
app Trialist allows for designing and conducting personalized N-of-1 studies. The app 
was studied in an RCT, where patients suffering from chronic pain were assigned to either 
the Trialist app or standard care (Barr et al. 2015). Despite patients’ positive opinions 
about the app, no statistically significant difference in pain management was observed 
(Kravitz et al. 2008). Another attempt that relies on technological developments is 
described by Mande et al. (2022) pilot study on the iMTracker app involving the N-of-1 
design to self-manage chronic conditions such as chronic pain, headaches, anxiety, and 
depression.  

An alternative way to make the N-of-1 trials more feasible would be to simplify 
their design. This possibility was considered by Kravitz and colleagues, who pointed out 
that 
 

in a single-patient head-to-head trial of (generic) omeprazole versus Nexium® for acid reflux, 
considerable information might be gleaned by simply alternating the two medications 
(without blinding) every fortnight for a total of eight to twelve weeks and asking patients to 
keep detailed symptom diaries. Research is needed to determine whether the reduction in 
costs and burden and the gain in acceptability from such diluted designs would be worth the 
reduction in scientific rigor (2008, p. 548-549). 

  
In what follows, we will consider a continuum of alternative N-of-1 designs, each of 
which involves different methodological choices and comes with different degrees of 
feasibility. Before considering such a continuum, though, we need to introduce a 
distinction between the standard vs. pragmatic dimensions of trials. This distinction 
draws, by analogy, on a distinction made by Schwartz and Lellouch (1967) between 
standard RCTs (also known as explanatory) and pragmatic RCTs. 

The main purpose of standard RCTs is to assess treatment effectiveness (i.e., assert 
internal validity). To narrow down the variability of outcomes and make valid 
conclusions about effectiveness, such RCTs have inclusion and exclusion criteria that 
make trial participants differ systematically from the population of patients suffering from 
the condition targeted by the tested treatment. Some standard RCTs thus exclude certain 
subpopulations (e.g., patients with comorbidities) that experience outcomes 
systematically different from the population-wide averages. By contrast, pragmatic RCTs 
aim to test the effects of treatment on the population of patients suffering from the 
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condition targeted by the tested treatment, i.e., establishing that treatment benefits the 
actual population of patients (pragmatic RCTs have become increasingly popular, see 
Patsopoulos 2011). For this purpose, they have broader inclusion criteria and fewer 
exclusion criteria, pose only a limited burden related to participation, and rely on outcome 
measures that are relevant to study participants and patients (Loudon et al. 2015). 
Moreover, some pragmatic RCTs do not use blinding to mask patient assignment, but 
substantial heterogeneity exists in the design of pragmatic trials (Dal-Ré et al. 2018).  

It is worth noting that pragmatic RCTs do not represent a solution to the problems 
we analyzed in Sections 1 and 2. In fact, by analyzing a broader population, the outcomes 
observed in a pragmatic RCT may be more heterogeneous than in an explanatory RCT; 
thus, such trials may require larger sample sizes to achieve the same statistical power 
under the assumption of the same effect size. But even if pragmatic RCTs deliver effect 
size estimates that are closer to the actual average benefit of the population of patients 
suffering from a condition, obtaining outcome measures that are closer to the true average 
effect size of the target population does not address the problem of individual treatment 
effect heterogeneity. As La Caze argued: 
 

The main selling point for large pragmatic trials is that by allowing considerably more 
variability in the patients recruited and in the non-experimental treatments that they receive, 
the trial provides more insight into the likely effects of the treatment in routine clinical care. 
This is true to an extent. A well-conducted successful large pragmatic trial provides good 
evidence that the average effects of giving the treatment are positive. However, in extending 
the results of such a trial to a given specific population or individual, the critical assumption 
is that the positive average effects are consistent across the many subpopulations included 
in the trial. Sometimes this seems to be a reasonable assumption, but often it is an 
assumption that is difficult to justify (2016, p. 204-205). 

  
Thorpe et al. (2010) suggested that the distinction between pragmatic and explanatory 
trials is not to be considered dichotomous but in terms of a continuum (see also 
Patsopoulos 2011). As we mentioned, the same can be said about single-patient designs 
and the alternations of N-of-1 design and the traditional trial-and-error approach to 
choosing a therapy. On this view, like the distinction between alternative RCTs, various 
types of N-of-1 trials can be put on a continuum that takes into account epistemic and 
pragmatic aspects (see Figure 1). 
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Figure 1: A continuum of single-patient designs prioritizing validity and feasibility to different degrees. 

 
 

The left end of the continuum is populated by standard (explanatory) trials, which aim 
to higher results’ integrity but pose a burden on participants and physicians. These can be 
understood as such trials that include all possible measures to assert integrity, such as 
blinding, randomized assignment, and washout periods. On the right end of the 
continuum, we have instead trial-and-error approaches to select therapies. Such 
approaches, which are the default strategy to making therapeutic decisions when a patient 
does not respond to the treatment of first choice, rely on an informal assessment of 
treatment response and the prescription of alternatives when the patient is not content 
with their treatment outcome due to poor symptoms control or adverse effects (Kravitz et 
al. 2014, ch. 1). 

Although such two extremes capture idealized versions of existing trials, 
introducing this distinction might be useful for clinicians and patients willing to make 
decisions adjusted to a single patient. Moreover, the scheme in Figure 1 could be used 
(and further refined) to frame various designs within a comprehensive framework where 
single-patient designs can be seen as somewhat explanatory and somewhat pragmatic 
depending on the emphasize a design puts on methodological rigor (at the expense of 
lower feasibility) or pragmatic considerations (at the expanse of lower internal validity). 

There is, in fact, much heterogeneity in how N-of-1 trials can be designed. But as 
Kravitz et al. (2014, ch. 1) pointed out, the defining feature of N-of-1 trials is the use of 
multiple crossovers conducted on a single patient. What are, then, the peculiarities of 
different designs? What kind of methodological choices do they typically make? 

As we mentioned, on the explanatory end of the continuum, we find designs that 
leverage blinding, randomized assignment, and washout periods to achieve higher rigor.  
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As regards randomization and blinding, they are used in the majority but not all N-
of-1 studies (Punja et al. 2016). Considering, however, that the decision-makers in clinical 
practice are usually concerned with the overall effect size of treatments rather than the 
net effect of the therapy in comparison to the placebo, blinding may not be necessary 
(Kravitz et al. 2014, ch. 1). N-of-1 trials dispensing of blinding can report biased results 
in cases when patients are too optimistic about one of the treatments or exaggerate a 
treatment’s harms (Howard & Rajasundaram 2022), but the nocebo effect seems to have 
only a limited impact on patients’ decisions after the N-of-1 trial concludes (Tudor et al. 
2022). In contrast, if a patient is expected to have positive views about only the tested 
treatment and not the control (e.g., in a N-of-1 study that tests the effects of an expensive 
drug and its generic version), then blinding might be necessary as the placebo effect 
confounds results. 

Some N-of-1 studies use washout periods, whose application depends on a 
pharmacokinetic understanding of a drug’s metabolism and effects duration. In a paper 
discussing the use of cross-over trials in drug development, Senn (2001) admitted that the 
trialists should determine the length of the treatment period or washout based on 
knowledge concerning carry-over effects. Since some treatments are less likely to have 
carryover effects, washout periods can sometimes be omitted without much impact on the 
risk of biases. However, N-of-1 studies differ regarding design even when testing similar 
drugs' effectiveness. For example, Kronish et al. 2018) reviewed five N-of-1 studies 
assessing the effectiveness of depression drugs: three out of five psychiatric trials reported 
using a washout period shorter than or equal to one day, and two other studies set its 
duration at one or six weeks.12  

In some cases, methodological rigor imposes a burden that exceeds the patient’s 
and physician’s resources, which undermines the use of N-of-1 trials altogether. 
Resigning from some methodological aspects, potentially reducing rigor, may 
nonetheless make N-of-1 trials more popular and benefit the patients participating in 
them. In fact, each of the methodological decisions above results from pragmatic 
considerations (a study’s feasibility, the worry that having washout periods will lead to 
patient deterioration), also bearing in mind the context (a patient’s values, diseases-
specific characteristics, available resources, etc.). In other words, differences among N-
of-1 designs are not shaped exclusively by epistemic reasons, but also by non-epistemic 
factors. 
 
12 Another aspect that could reduce the burden on physicians, thus increasing the feasibility of single-patient 
trials, regards using outcome measures that are easier to self-report. While some N-of-1 studies use 
objective outcome measures, Gabler et al. (2011, p. 764) reported that 82% of trials employed “patient-
reported outcome measurement such as a patient diary (46%), visual analog scale (27%), or a Likert scale 
(12%)”.  
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Closer to the pragmatic end of the continuum (depicted in Figure 1) are thus 
attempts to simplify the N-of-1 design. 

For example, Smith, Yelland & Del Mar supported the use of Single Patient Open 
Trials (SPOTs), which “lie somewhere in between formal N-of-1 trials and totally 
informal trials of treatment in terms of rigor” (2015, p. 195). SPOTs employ at least one 
crossover with in-between washout, rely on patient-centered outcome measures, and do 
not require physicians to arrange the study in a way that asserts blinding, randomized 
assignment, or statistical analysis of results. The rationale for using SPOTs instead of the 
standard N-of-1 design is that they are less demanding to arrange than the latter. 

Still, SPOTs are more demanding than the trial-and-error approach but promise 
higher validity of results. The reason is that repeated crossovers make confounding effects 
less likely, washout periods prevent carryover effects, and predefining outcome measures 
assert that neither patients nor doctors choose outcome assessment post-factum based on 
non-epistemic values. However, the higher feasibility of SPOTs is nevertheless related to 
the higher risk of biases. For example, using patient-centered outcome measures without 
conducting statistical analysis poses a risk of interpreting random differences between 
treatment regimes as resulting from drugs’ actions. 
 A more radical alternative is the type-2 N-of-1 design. Selker et al. (2022) recently 
argued that in some cases (e.g., when testing treatments for severe, rare diseases), having 
only one cycle of candidate treatment alternation is sufficient. But such studies can also 
be used to study the effects of interventions targeting common chronic diseases in cases 
when the expected effect size of the intervention significantly exceeds the potential 
impact of all other confounders. In a sense, type 2 N-of-1 studies can be considered a 
more pragmatic version of SPOTs. However, these studies can be seen as close to a trial-
and-error approach that uses formal outcome assessment defined prior to trying a new 
therapy: if the treatment effect size is expected to vastly exceed the summary impact of 
confounders (such as expected deterioration during the trial duration), then this type of 
design offers a promising way of testing treatment candidates. 
 Overall, there exists a menu of alternations in the N-of-1 designs aimed at 
choosing the best treatment options that differ with respect to the use of assignment 
procedures, blinding, outcome assessment, the number of crossovers, and washout 
periods. Decisions concerned with each of those characteristics of N-of-1 trials can 
arguably be made separately depending on the patient’s values, the resources available to 
the physician, and treatment- and disease-specific characteristics. This implies that the 
question of which design would do better is highly contextual and will depend on the 
explanatory and pragmatic aims at stake. 
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3.2 Potential Caveats  
 
In the previous section, we introduced a distinction between explanatory (standard) and 
pragmatic trials. Two observations are in place here. 

First, the distinction between explanatory and pragmatic RCTs, on which our 
distinction draws by analogy, has received criticism in the literature. For example, 
Karanicolas et al. (2009a) criticized the notion of pragmatic trials on the grounds that 
there are varying perspectives in clinical decision-making, and hence the results of such 
trials are not directly applicable to each decision problem at hand. Kent & Kitsios (2009) 
argued that extrapolating the results of pragmatic RCTs to individual patients may be as 
problematic as the extrapolation of outcomes reported by explanatory trials and warned 
that diminishing the problem of extrapolation in such cases may lead to introducing 
harmful policies. Pawson (2019) pointed out that the problem of extrapolation is 
simplified in the literature concerned with the pragmatic-explanatory trials distinction, 
and regardless of where a particular trial is located on this continuum, no single result can 
be generalized without a mechanistic understanding of how an intervention works in a 
particular context. Recently, Tresker (2022) analyzed the relationship between the 
pragmatic/explanatory distinction with generalizability, internal validity, external 
validity, efficacy, and effectiveness, and argued that the distinction is conceptually 
problematic. However, despite being aware of some drawbacks of the distinction, other 
authors support the use of pragmatic trials in medicine (e.g., Patsopoulos 2022; Casey et 
al. 2022). We think that the distinction is useful as it allows one to focus on the trade-off 
between feasibility and epistemic rigor. This is particularly relevant given that the variety 
of pragmatic trials has grown in the last ten years (Palakshappa 2022), which speaks of 
their growing importance, even if some conceptual issues remain to be resolved in future 
research.  

Second, applying the explanatory/pragmatic distinction to N-of-1 trials fruitfully or 
coherently may be difficult for the reason that N-of-1 trials “enable us to compare two 
treatments under the conditions in which they would be applied in practice” (Schwartz 
and Lellouch 1967, p. 638) and deliver evidence “aimed at decision" (p. 647). While we 
fully agree that all N-of-1 trials are aimed at assessing treatment effectiveness for the 
patient participating in them (and some constitute evidence amalgamated with other N-
of-1 trials), for patients other than trial participants, some N-of-1 trials create an artificial 
context, as some features of N-of-1 studies are unlikely to be used in clinical practice 
(e.g., in the traditional trial-and-error approach to choosing therapy). For instance, wash-
out periods, which are used in some N-of-1 studies (those located towards the explanatory 
end of the continuum) are unlikely to be used when treatments are changed in the clinic 
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because they pose a risk of deterioration for the patient not receiving any treatment for 
their condition. 

Other distinctions have been introduced to replace the explanatory/pragmatic 
divide. For instance, Karanicolas et al. (2009b) distinguished between mechanistic trials 
that assess a biological relationship and ‘practical’ studies that deliver evidence for 
decision-makers in the clinic. Our distinction could be read in the latter sense, in terms of 
‘feasibility’, so that N-of-1 designs that are closer to the explanatory end of the continuum 
are less feasible, i.e., more difficult to execute in everyday clinical practice, while those 
closer to the pragmatic end of the continuum are more feasible. However, such a 
simplification would omit the matter of fact that the trials that are easier to implement in 
clinical practice are epistemically inferior to those that are less feasible. For this reason, 
again, we still think that it can be useful for providing a workable taxonomy of the many 
existing trials.  

Furthermore, the literature does include some suggestions about applying the 
explanatory/pragmatic distinction to N-of-1 studies. For example, in a recent article 
criticizing the distinction, Tresker (2022) considered whether pragmatic trials are better 
in terms of representativeness of the population of patients and observed that  

 
[r]epresentativeness can certainly be important in certain contexts, though it is inadequate 
as a unifying conceptual approach for indicating a trial’s potential for informing valid 
treatment effectiveness claims. Possibly only in N-of-1 trials is the “population” the 
same, although even here the “population” is different at different time points, which 
complicates simple inferences of effectiveness because of carryover effects and other 
issues (pp. 315-316). 
 

This suggests that some types of N-of-1 trials (e.g., those including washout periods) 
might have a higher degree of verisimilitude to the counterfactual situation of a patient 
being treated in a clinic. 

Before concluding, it is worth asking how one can evaluate the success of different 
types of N-of-1 designs. At present, there is no definitive evidence of the effects of 
participating in standard versus pragmatic versions of N-of-1 trials. The lack of such 
evidence can depend on the mixed results of existing RCTs comparing the use of standard 
N-of-1 trials in clinical practice to standard care (Samuel et al. 2022). 

The ideal way to compare alternative designs would be to run an RCT where 
patients are randomly assigned to either a treatment group involved in a pragmatic version 
of an N-of-1 study or a control group employing the standard N-of-1 design. If the two 
trial arms tested the same treatment and were sufficiently powered, the observed 
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difference in outcomes (if any), could be ascribed to how the two types of N-of-1 trials 
are designed.  

This methodology has been applied to compare the effects of participating in 
(standard) N-of-1 study versus standard care for patients suffering from irreversible 
chronic airflow limitation (Mahon et al. 1996; Mahon 1999). Such research shows that 
using N-of-1 trials to assess individual response to theophylline allows for reducing drug 
use without adverse effects. The results of 39% of 57 N-of-1 trials conducted at McMaster 
Hospital convinced physicians to change their treatment advice before patients 
participated in the trial (ibid.).  

Samuel et al. (2022) reviewed the literature comparing the outcomes of N-of-1 trials 
to standard care using parallel arm design. Only one out of 12 studies showed the 
superiority of the N-of-1 arm in the primary outcome, and five studies reported 
statistically significant and positive differences in at least one secondary outcome. 
However, all those studies suffered from methodological drawbacks such as the lack of 
blinding patients and outcome assessors, and non-randomized assignment. As we 
mentioned in Section 3, other studies reported positive effects experienced by patients 
participating in N-of-1 studies (e.g., Duan et al. 2013; Guyatt et al. 1990; Nikles et al. 
2021; Scuffham et al. 2010). 

Although the success of different N-of-1 designs is yet to be assessed in randomized 
trials, we believe that the implications of simplifying the standard N-of-1 design can be 
predicted based on an empirically informed methodological analysis of the decisions 
involved in planning and executing N-of-1 trials in clinical practice. Designing N-of-1 
trials in a more pragmatic way would allow practitioners to choose a therapy more 
suitable for a given patient instead of using the recommendations for the average patient 
or applying the trial-and-error approach. Even if the epistemic gain from using such a 
pragmatic N-of-1 trial is lower compared with the application of standard designs, 
pragmatic trials are more feasible and hence more likely to become part of the standard 
clinical practice. 
 
 
Conclusions 
 
In this paper, we argued that neither RCTs (a key research design in EBM) nor 
GWAS/GWIS (the main tools of genomics-based P-medicine) can easily elucidate and 
predict individual treatment responses. A convincing solution to handle individual 
variability lies in N-of-1 trials. Unfortunately, their use in everyday clinical practice is 
limited at present. We have analyzed a continuum of single-patient designs that range 
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from restrictively designed N-of-1 trials that mimic explanatory RCTs to the trial-and-
error approach. We have argued that the N-of-1 trials that are closer to the pragmatic end 
of the continuum are more suited for everyday clinical practice while their epistemic 
tradeoffs are limited. 

More specifically, in Sections 1 and 2, we argued that both standard RCTs and 
GWAS struggle with the characterization and control of inter-individual heterogeneity at 
various levels of analysis: first, we showed that gene-treatment interactions (G×T) and 
gene-treatment-environment interactions (G×T×E) are an ineliminable source of 
individual differences in response to treatment that undermine using the results of RCTs 
to inform therapeutic decisions concerned with a single patient; second, systematic 
attempts to investigate such interactions through genomics methods come with major 
limitations. This may suggest the need for larger populations with the hope that genetic 
and environmental variability would ‘average out.’ 

However, here we considered a different strategy: identifying principled methods 
to capitalize on individual variability rather than trying to exclude it from the picture. 
This basic idea is consistent with recent trends toward P-medicine. In classical clinical 
trials aimed at establishing universally applicable treatments, the variability in 
populations is often perceived as an impediment and a ‘threat’ to the reliability of the 
results. But, in P-medicine, such variability is arguably the main source of information: 
understanding where it comes from and using such knowledge for a patient’s good, are 
key epistemic goals. Heterogeneity in treatment response is thus precisely the kind of 
factor that P-medicine should aim to include into medical models and clinical decisions. 

In Section 3, we considered N-of-1 trials as one potential methodology that would 
help handle individual variability effectively. However, standard N-of-1 trials pose a 
significant burden on practitioners and patients, and their complication is likely a factor 
that limits their use in clinical practice despite the growing prevalence of chronic diseases 
and comorbidities. We thus applied the distinction between explanatory and pragmatic 
RCTs to analyze the differences among the menu of single-patient trials and argued for 
the use of N-of-1 studies that are designed in a more pragmatic way. 

The main selling point of pragmatic N-of-1 trials is that they would solve the 
problem of extrapolation and uncertainty about individual-level gene-environment-
treatment interactions: indeed, the evidence informing therapeutic decisions about a given 
patient stems from the outcomes of that patient. For this reason, applying N-of-1 trials in 
everyday clinical practice would lead to more precise therapeutic decisions. So far, the 
N-of-1 trials are rarely used in everyday clinical practice; due to the lower burden for both 
the practitioner and the patient, pragmatic N-of-1 trials represent a more suitable choice 
for everyday clinical practice than the standard design. If compared with standard N-of-
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1 trials, pragmatic designs such as SPOTs, type-2 N-of-1 studies, and other alternations 
to the single-patient designs involve methodological choices such as the use of a non-
randomized assignment procedure and pragmatic outcome measures as well as the 
possibility of resigning from blinding and washout periods. Although such designs might 
be more susceptible to biases than the standard one, they would outperform both informal 
trials of therapy with the trial-and-error approach and decisions based on population-wide 
averages. 

Although more pragmatic alternations to the N-of-1 design would bring about 
substantial benefits in terms of both simplicity and feasibility — maximizing the overall 
value of N-of-1 trials — we need to point out a few limitations. First, like any type of 
single-patient trials, pragmatic N-of-1 trials have a specific area of application: they can 
only be used to inform therapeutic decisions regarding patients suffering from a stable, 
chronic condition and treatments that tend to alleviate the symptoms but do not cure them 
(see Nikles & Mitchell 2015, pp. 51 et seq.). Second, N-of-1 trials designed pragmatically 
should not, due to their epistemic shortcomings compared to the standard N-of-1 trials, 
be understood as a method to gather evidence for new treatments, but rather to inform 
therapeutic decisions concerned with a single patient when two or more alternative 
therapies have been approved by a drug agency. However, standard N-of-1 studies have 
been applied in the field of precision oncology to develop fine-tuned treatments (Gouda 
et al. 2023) and supported as a cost-effective strategy for drug development in other fields 
(Mirza et al. 2017). Pragmatic N-of-1 trials will prove useful in deciding about treatments 
whose mechanism of action is poorly understood, including details about individual-level 
G×T×E. This design can also be applied to studying harms in cases when two or more 
alternative therapies are effective but cause negative side effects — for instance, Herret 
et al. (2021) conducted a series of N-of-1 trials to assess the relationship between muscle 
symptoms and the use of different types of statins. 

In other words, the type of evidence that pragmatic N-of-1 trials would help gather 
is about a single patient’s response to treatment. It should be noted, however, that this 
evidence could in principle have a ‘second use’ to inform a new hypothesis on G×T×E to 
be further assessed. For instance, if a patient suffering from asthma reacts positively to 
ICS and not to montelukast, data can be collected about the patient’s systematic 
environmental exposures to allergens or air pollutants. This way, pragmatic trials have 
the potential to provide evidence on relevant therapy-environment interactions and advise 
further, more systematic investigation of such interactions. Furthermore, evidence 
stemming from N-of-1 trials testing the same compounds might also be useful for patients 
not participating in them when amalgamated in aggregate N-of-1 trials. Further research 
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is needed to assess the impact of changes in N-of-1 designs on the reliability of such 
amalgamated treatment effect estimates. 
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