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Abstract

The geometric trinity of gravity comprises three distinct formulations of general
relativity: (i) the standard formulation which interprets gravity in terms of spacetime
curvature, (ii) the teleparallel equivalent of general relativity which interprets gravity
in terms of spacetime torsion, and (iii) the symmetric teleparallel equivalent of general
relativity (STEGR) which interprets gravity in terms of spacetime non-metricity. In
this article, we complete a non-relativistic geometric trinity of gravity, by (a) taking
the non-relativistic limit of STEGR to determine its non-relativistic analogue, and (b)
demonstrating that this non-metric theory is equivalent to Newton–Cartan theory and
its teleparallel equivalent, i.e., the standard curvature and torsion based theories in
the non-relativistic regime that are both geometrised versions of classical Newtonian
gravity.
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1 Introduction
It has become increasingly well-known that general relativity (GR) constitutes but one
vertex in a ‘geometric trinity’ of gravitational theories [1]. The other two vertices of this
trinity are the ‘teleparallel equivalent general relativity’ (TEGR), in which the curvature
degrees of freedom of GR are traded for spacetime torsion, and the ‘symmetric teleparallel
equivalent general relativity’ (STEGR), in which the curvature degrees of freedom of GR
(and torsion degrees of freedom of TEGR) are traded for spacetime non-metricity. The
actions of all three theories are equivalent up to a total divergence term—in this sense, all
three theories are dynamically equivalent.

In a parallel vein, it has been known since Trautman in the 1960s [2] that standard
Newtonian gravity can be formulated similarly to GR in the sense that (non-relativistic)
gravitational effects become a manifestation of spacetime curvature: this theory is known
as Newton–Cartan (NC) theory, and was first developed in the 1920s by Cartan and
Friedrichs: see [3–5] for the original sources, and [6] for a recent review of non-relativistic
gravity. (To be clear: in this article, by ‘non-relativistic’, we always mean ‘Newtonian’,
rather than ‘ultra-relativistic’; we will leave the construction of an ultra-relativistic geomet-
ric trinity to future work.) In [7], it was shown that there is a precise sense in which classical
Newtonian gravitation can be understood as the teleparallelised version of NC, that we
name TENC, in which the gravitational potential can be understood as a manifestation of
the ‘mass torsion’ which arises once one gauges the Bargmann algebra (e.g., [8]). Adding
to this, it was shown recently in [9] that TENC can be secured as the non-relativistic limit
of TEGR using a 1/c expansion of the TEGR field equation (in [7] the same result was
shown using null reduction), just as NC is by now well-known to be the non-relativistic
limit of GR (on which see [6] and references therein).

These results invite the following question: can one complete a non-relativistic geomet-
ric trinity, by constructing a non-metric theory equivalent to both NC (understood as a
theory with spacetime curvature) and TENC (understood as a torsionful theory)? In this
article, we answer this question in the affirmative—indeed, we triangulate a non-relativistic
version of Newtonian gravity (which we dub ‘symmetric teleparallel equivalent Newton–
Cartan’ in analogy with its relativistic parent, shortened to STENC) in two ways: (a)
by taking the non-relativistic limit of STEGR (using the same 1/c expansion developed
in [10]), and (b) by proving that it includes classical Newtonian gravity, thereby obtaining
the analogues of the Trautman recovery theorems (see [11, Ch. 4]) for STENC.

The structure of this article is as follows. In Sec. 2, we review the essential details of the
geometric trinity of gravity; in Sec. 3, we construct STENC by taking the non-relativistic
limit of STEGR and show that it is equivalent to the NC formulation; in Sec. 4, we discuss
general properties of the non-relativistic trinity and of STENC specifically. We close in
Sec. 5 with some discussions of the upshots of this work.
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2 Background: The Geometric Trinity
The bulk of this section constitutes a review of the relativistic geometric trinity of gravity
(Sec. 2.2). In addition, we review briefly the state-of-play regarding geometric reformula-
tions of non-relativistic gravity (Sec. 2.3).

2.1 Notation

Since we will deal with four different connections, introduced at the relativistic and the
non-relativistic levels, we here define the following notation:

(i) The Lorentzian Levi-Civita connection Γµ
αβ relative to the Lorentzian metric gµν ,

with covariant derivative ∇, and Riemann tensor Rµ
αβν .

(ii) The general affine connection introduced at the relativistic level Γ̄µ
αβ, with covariant

derivative ∇̄, torsion T̄ µ
αβ, and Riemann tensor R̄µ

αβν .

(iii) The (symmetric) Galilean connection Γ̂µ
αβ (i.e., non-relativistic connection) relative

to (τµ, h
µν), with covariant derivative ∇̂, and Riemann tensor R̂µ

αβν .

(iv) The general affine connection introduced at the non-relativistic level Γ̃
µ
αβ, with co-

variant derivative ∇̃, torsion T̃
µ
αβ, and Riemann tensor R̃

µ
αβν .

When considering the non-relativistic limit, both the Lorentzian connection Γµ
αβ (and

related variables) and the general affine connection Γ̄
µ
αβ (and related variables) are written

as Taylor series of the speed of light. The full series will be denoted by an upper “λ” (e.g.,
λ

Γµ
αβ), and the n-th order will be denoted by an upper “(n)” (e.g.,

(n)

Γµ
αβ).

Finally, as will be detailed in Sec. 2.3, a non-relativistic (Galilean) structure does not
possess a metric allowing for raising and lowering indices. Therefore, when introducing
tensors at the non-relativistic level (denominated with a hat), the position of the indices
will be fixed.

2.2 Relativistic gravity

Spacetime theories are typically formulated in terms of a metric tensor gµν and an affine
connection Γ̄

α
µν . General relativity (GR) is of course the paradigmatic theory of gravity

and makes use of the Levi-Civita connection Γα
µν , setting Γ̄

µ
αβ = Γµ

αβ, with components

Γα
µν :=

1

2
gαλ (gλν,µ + gµλ,ν − gµν,λ) , (1)

which is the unique connection that is compatible with the metric and torsion-free. The
metric-compatibility condition is given by ∇αgµν = 0 and the torsion-free condition is given
by Γα

[µν] = 0 [12, Ch. 3]. Famously, GR describes gravity as a manifestation of spacetime
curvature, as encoded in the Riemann tensor, which has components

Rα
βµν(Γ) := ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ. (2)
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Spacetime curvature measures the rotation of a vector when it is parallel transported along
a closed curve.

One can alter or otherwise relax the above assumptions in order to construct spacetime
theories that manifest torsion and/or non-metricity. Torsion is given by the antisymmetric
part of the connection

Tα
µν

(
Γ̄
α
µν

)
:= 2Γ̄

α
[µν], (3)

and can be thought of as a measure of the non-closure of the infinitesimal parallelogram
formed by two vectors being parallel transported along each other. Non-metricity is given
by the non-vanishing of the covariant derivative of the metric tensor

Qαµν

(
Γ̄
α
µν

)
:= ∇̄αgµν , (4)

and can be thought of as a measure of how the length of a vector changes when parallel
transported.

We can thus categorize spacetimes as

(i) metric (i.e., Qαµν

(
Γ̄
α
µν

)
= 0),

(ii) torsionless (i.e., Tα
µν

(
Γ̄
α
µν

)
= 0),

(iii) flat (i.e., Rα
βµν

(
Γ̄
α
µν

)
= 0).

Curvature, torsion, and non-metricity are all possible geometric properties of an affine
connection in relation with a Lorentzian metric. A completely general affine connection
Γ̄
α
µν can be decomposed in the following way [13]:

Γ̄
α
µν = Γα

µν +Kα
µν + Lα

µν , (5)

where
Kα

µν :=
1

2
T̄

α
µν + gασT̄

γ
σ(µ gν)γ (6)

is referred to as the ‘contortion tensor’, and

Lα
µν :=

1

2
gασQσµν − gασQ(µν)σ (7)

is referred to as the ‘distortion tensor’. Consequently, the difference tensor Γµ
αβ − Γ̄

µ
αβ

between the Levi-Civita connection and a general affine connection have the form

Γµ
αβ − Γ̄

µ
αβ = gµσ

(
∇̄(αgβ)σ −

1

2
∇̄σgαβ

)
− 1

2
T̄

µ
αβ − gµσT̄

ν
σ(α gβ)ν . (8)

We can use Eq. (5) to facilitate translations between different spacetime theories with
different connections (and associated different geometrical properties). As we have seen,
GR is a spacetime theory that is metric and torsionless, but non-flat as the Levi-Civita
connection in general possesses curvature. In this article, we will also be concerned with
two other spacetime theories: the ‘teleparallel equivalent general relativity’ (TEGR) and
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the ‘symmetric teleparallel equivalent general relativity’ (STEGR). TEGR spacetimes are
metric and flat but in general possess torsion; STEGR spacetimes are torsionless and flat
but in general possess non-metricity. Both TEGR and STEGR are dynamically equiva-
lent to GR, in the sense that the actions of all three theories are equivalent up to total
divergence terms [see Eqs (12)–(13)]; thereby, these theories are capable of modelling the
same empirical phenomena, and constitute a ‘geometric trinity’ of gravity—see [1, 14–16]
for recent discussions.

For example, we can find GR’s torsionful and non-metric equivalents by taking the
expressions for the Riemann curvature and Ricci scalar in GR in terms of the Levi-Civita
connection, and re-expressing these in terms of the ‘Weitzenböck’ connection of TEGR or
the non-metricity connection of STEGR. Consider that we can express a generic Riemann
curvature tensor R̄α

βµν as [17]:

R̄
α
βµν = Rα

βµν +∇µM
α
νβ −∇νM

α
µβ +Mγ

νβM
α
µγ −Mγ

µβM
α
νγ + T̄

α
βµM

β
αν , (9)

where Rα
βµν is the standard Riemann tensor from the Levi-Civita connection ∇µ and

Mα
µν := Kα

µν + Lα
µν . This formula is the heart of the trinity of GR.

One can choose to work with TEGR and the contortion tensor (i.e., Kα
µν ̸= 0 and

Lα
µν = 0) or with STEGR and the distortion tensor (i.e., Kα

µν = 0 and Lα
µν ̸= 0). Upon

index contraction, one constructs the curvature scalar and finds:

−R =
1

4
T̄αµνT̄

αµν
+

1

2
T̄αµνT̄

µαν − T̄
α
αµT̄

β
βνg

µν + 2∇αT̄
λα

λ with Qµαβ = 0, (10)

and

−R = gµν
(
Lα

µβL
β
να − Lα

αβL
β
µν

)
+∇α

(
Qα λ

λ −Qλ α
λ

)
with T̄

α
µν = 0. (11)

Importantly, this shows that the scalar expressions of curvature, torsion, and non-metricity
are equivalent up to a boundary term.1 This justifies the above claim that GR, TEGR,
and STEGR can be formulated in terms of dynamically equivalent Lagrangian expressions,
respectively as

LR := gµνRµν , (12)

LT :=
1

4
TαµνT

αµν +
1

2
TαµνT

µαν − Tα
αµT

β
βνg

µν , (13)

LQ := gµν
(
Lα

µβL
β
να − Lα

αβL
β
µν

)
. (14)

From these Lagrangians, the same equation of motion is found, but written as a function
1 See [18–20] for some discussions concerning the role and significance of these boundary terms.
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of either the Levi-Civita Ricci curvature Rµν , the contorsion Kµ
αβ, or the distorsion Lµ

αβ:

GR :

 Rµν =
8πG

c4

(
Tµν −

Tα
α

2
gµν

)
,

with T̄
α
µν = 0 and Qµαβ = 0,

(15)

⇕

TEGR :


−∇̄αK

α
µν + ∇̄µK

α
να −Kα

µβK
β
αν +Kα

αβK
β
µν

+ T̄
α
βµK

β
αν =

8πG

c4

(
Tµν −

Tα
α

2
gµν

)
,

with R̄
µ
αβσ = 0 and Qµαβ = 0,

(16)

⇕

STEGR :

 −∇̄αL
α
µν + ∇̄µL

α
να − Lα

µβL
β
αν + Lα

αβL
β
µν =

8πG

c4

(
Tµν −

Tα
α

2
gµν

)
,

with R̄
µ
αβσ = 0 and T̄

α
µν = 0,

(17)

where Tµν is the energy momentum tensor. These equivalences are a direct consequence of
relation (9), relating the Riemann tensors of two different connections.

While these particular theories are empirically equivalent to each other, there are a
number of reasons why physicists are interested in investigating such alternative geometric
representations. One reason has to do with the fact that these theories possess different
gauge structure. In particular, TEGR and STEGR can be understood as gauge theories of
translations [21, 22], which allows one to formulate the theories in a language more closely
resembling other fundamental interactions and potentially suggests different routes towards
quantisation. Another reason can be found in resolving cosmological puzzles. Despite
the incredible successes of the current ΛCDM model, there are a number of unresolved
issues that are the subject of heated debate, including our modeling of both early and
late time expansion of the universe [23–27]. While the theories within the trinity are
indeed equivalent, their geometric structures based on curvature, torsion, and non-metricity
suggest different routes to modifying gravity. Indeed, the equivalence is broken when we
move to modifications that consist in higher order scalar invariants of the relevant geometric
quantities. That is, e.g., f(R), f(T ), and f(Q) theories are not equivalent to each other,
and this has motivated exploring this theory space as possible novel realisations of dark
energy, inflation, the astrophysics of black holes, and bouncing cosmologies [28–32]

2.3 Non-relativistic gravity

So much by way of background on the relativistic geometric trinity of gravity; what is
the current state-of-the-art with respect to non-relativistic physics? It has been known
since the 1960s that standard, flat-space classical Newtonian gravity can be formulated
as a curved spacetime theory known as ‘Newton–Cartan theory’ (NC), in a way closely
reassembling GR. The geometric structure involved in the NC formulation is known as a
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‘Galilean structure’, defined by degenerate spatial and temporal metrics hµν and τµ that
are orthogonal, i.e., τµhµν := 0, and equipped with a Galilean connection Γ̂α

µν that is
separately compatible with both spatial and temporal metrics such that ∇̂αh

µν := 0 and
∇̂ατµ := 0. Similarly to GR, the dynamical degrees of freedom of NC theory are captured
by its curvature tensor R̂α

βµν , with the field equations

R̂µν = 4πρτµτν ,

R̂α µ
ν β = R̂µ α

β ν ,

∇̂µT
µν = 0,

(18)

where ρ is the mass density. The first equation is known as the Newton–Cartan equation,
and encodes the Newton-Poisson equation (see e.g. [11, Ch. 4]). The second equation is
a condition (due to Trautman) that the curvature tensor must satisfy such that inertial
frames, a defining feature of Newtonian theory, exist. The third equation is just the
conservation of the energy-momentum tensor. Contrary to the GR case, the first equation
does not implies the third one, which, therefore, is an additional independent equation.

The equivalence of this spacetime theory with classical Newtonian gravity is most
easily obtained by projecting along hµν and τµ the above system of equations [33], i.e.,
performing a 3+1-projection. Recovering classical Newtonian theory is also codified in the
Trautman geometrisation and recovery theorems [11, Ch. 4], where one can define another
connection ∇′ such that ∇̂βv

α = ∇′
βv

α−τβτνvνhαµ∇′
µΦ where Φ is the familiar Newtonian

gravitational potential. Upon assuming an isolated system, i.e., no cosmic expansion, one
can then show that this connection is also compatible with the metrics and leads to a flat
spacetime where one recovers the familiar Poisson equation ∇′α∇′

αΦ = 4πρ.
Newton–Cartan theory, and non-relativistic gravity more generally, is still a very active

field of research as it has found important applications in non-relativistic holography [34],
quantum gravity [35, 36], and condensed matter systems [8, 37–39]. What constitutes much
more recent knowledge is that it is possible to obtain a teleparallel equivalent Newton–
Cartan theory (TENC) [7, 9], similarly as TEGR for relativistic gravity. In this TENC
formulation, the gravitational field present in the classical Newtonian formulation can be
understood as the torsion of the mass gauge field mµ obtained by gauging the Bargmann
algebra [7]. In other words, the torsion of the flat-torsionful-metric connection ∇̃ present
in TENC is sourced by the mass gauge field. Moreover, TENC can be obtained by taking
a 1/c2 expansion of TEGR [9].

In view of the relativistic trinity presented in Sec. 2.2, this invites the following ques-
tions: (a) can one construct a non-metric non-relativistic theory of gravity by taking a
1/c2 expansion of STEGR, and (b) is that theory equivalent to the NC theory, thereby
retrieving the classical Newtonian theory? In the remainder of this article, we answer in
the affirmative both (a) and (b), obtaining, as a result, a symmetric teleparallel equiva-
lent Newton–Cartan theory (STENC). Thereby, we fill in the dotted lines in the Figure 1,
and so complete for the fist time a non-relativistic geometric trinity of gravity, which we
summarise in Sec. 3.5.
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GR TEGR

STEGR

NC TENC

STENC

c→∞ c→∞

c→∞

Figure 1: The geometric trinity and its (conjectured) non-relativistic limit.

3 The Non-Relativistic Limit of the Trinity
The goal of this section is to perform the non-relativistic limit of the STEGR field equa-
tions. For this, we will first define what is, in general, a contorsion K̂µ

αβ and a dis-
torsion L̂µ

αβ relative to a Galilean connection ∇̂ (Sec. 3.1). We will then define the non-
relativistic limit using Lorentzian and Galilean structures (Sec. 3.2), and apply this limit to
a relativistic contorsion Kµ

αβ, distorsion Lµ
αβ and difference tensor Γµ

αβ− Γ̄
µ
αβ (Sec. 3.3).

Finally, in Sec. 3.4, we perform the limit of the relativistic trinity, hence rederiving the
TENC formulation, but most importantly, obtaining the STENC formulation.

3.1 Distorsion and contorsion tensors with respect to a Galilean
connection

In this section, we define the notion of distorsion L̂µ
αβ and contorsion K̂µ

αβ relative to a
Galilean connection Γ̂µ

αβ and a general affine connection Γ̃
µ
αβ.

Contrary to the Levi-Civita connection of a Lorentzian metric, a (symmetric) Galilean
connection defined with respect to a spatial metric hµν and a temporal metric τµ is not
unique. Two freedoms exist: (i) in the choice of a timelike vector Bµ defined such that
Bµτµ = 1; (ii) in the choice of a 2-form κµν called the Coriolis field. The connection
coefficients Γ̂µ

αβ have the form

Γ̂µ
αβ = hµσ

(
∂(αbβ)σ −

1

2
∂σbαβ

)
+Bµ∂(ατβ) + 2τ(ακβ)νh

µν , (19)

where bµν is the spatial projector orthogonal to Bµ defined such that bµνBµ := 0 and
hαµbβµ := δαβ − τβB

α.
We now consider an (additional) general affine connection Γ̃

α
µν whose torsion is denoted

T̃
α
µν := 2Γ̃

α
[µν]. Using the general formula (19) for a symmetric Galilean connection, the
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difference tensor Γ̂µ
αβ − Γ̃

µ
αβ takes the form

Γ̂µ
αβ − Γ̃

µ
αβ = hµσ

(
∇̃(αbβ)σ −

1

2
∇̃σbαβ

)
+Bµ∇̃(ατβ) + 2τ(ακβ)νh

µν

− 1

2
T̃

µ
αβ − hµσT̃

ν
σ(αbβ)ν . (20)

From this formula, we can define what is a Galilean contorsion tensor K̂µ
αβ, by assuming

metricity, i.e., assuming ∇̃αh
µν = 0 and ∇̃µτν = 0:

−K̂µ
αβ := Γ̂µ

αβ − Γ̃
µ
αβ

(
with ∇̃αh

µν = 0, ∇̃µτν = 0
)

(21)

= hµσ
(
∇̃(αbβ)σ −

1

2
∇̃σbαβ

)
+ 2τ(ακβ)νh

µν − 1

2
T̃

µ
αβ − hµσT̃

ν
σ(αbβ)ν .

We can also define the Galilean distorsion tensor L̂µ
αβ, by assuming ∇̃ to be torsionless,

i.e., T̃
µ
αβ = 0:

−L̂µ
αβ := Γ̂µ

αβ − Γ̃
µ
αβ

(
with T̃

µ
αβ = 0

)
(22)

= hµσ
(
∇̃(αbβ)σ −

1

2
∇̃σbαβ

)
+Bµ∇̃(ατβ) + 2τ(ακβ)νh

µν .

Note that, contrary to the Lorentzian case, the relation Γ̂µ
αβ − Γ̃

µ
αβ = −L̂µ

αβ − K̂µ
αβ

does not hold, as the two definitions given above are only valid if the other one is set
to zero. This means that the notion of contorsion and distorsion in the Galilean case is
ill-defined for a general affine connection.

3.2 The non-relativistic limit

In this section, we define the non-relativistic limit we will use to obtain STENC from the
relativistic trinity. The limit begins with an expansion of the relativistic objects in terms of
powers of c, the speed of light. As there is no absolute velocity in non-relativistic physics,
one takes c → ∞, which can be thought of as ‘flattening’ the null cones at all spacetime
points. Essentially, “in the limit the cones are all tangent to a family of hypersurfaces, each
of which represents “space” at a given “time”, which corresponds to the standard Newtonian
picture of spacetime” [40]. More precisely, the fundamental ansatz of the non-relativistic
limit is to consider a Lorentzian metric admitting of a Taylor series in terms of λ := 1/c2

given by the following [10]:

λ
gµν := hµν + λ

(1)

g µν + λ2
(2)

g µν +O
(
λ3
)
, (23)

λ
gµν := −1

λ
τµτν +

(0)

gµν + λ
(1)

gµν +O
(
λ2
)
, (24)
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where hµν is a tensor whose kernel is 3-dimensional and τµ is a 1-form. The leading orders
of this Taylor series are degenerate, contrary to the full Lorentzian metric.2

The defining relation λ
gµα

λ
gµβ = δαβ for the full Lorentzian metric implies the orthogo-

nality relation τµhµν = 0, along with the following formulae for
(1)

g µν and
(0)

gµν :

(1)

g µν = −BµBν + kµν , (25)
(0)

gµν = bµν − 2τµ τνϕ, (26)

where kµν τµ := 0, and Bµ and bµν are defined after Eq. (19). Finally, ϕ is an arbitrary
scalar (see e.g. [10, 33] for further discussion related to these objects). Both Bµ and ϕ
have some gauge freedom coming from the infinitesimal gauge freedom in the definition of
the Taylor series (see Appendix F. in [42] for a detailed discussion).

The non-relativistic expansion defined in Eqs. (23)–(24) in orders of λ implies that the

standard Levi-Civita connection expands as
λ

Γα
µν =

(−1)

Γα
µν +

(0)

Γα
µν + O (λ). However, it is

only the zeroth order of the expansion of this connection that transforms as a connection,
so it is only this order that can properly serve as a connection for the theories that emerge
in this limit [43]. Consequently,

(−1)

Γα
µν must vanish, which happens when we impose that

dτ = 0 [6, 10]; or in other words, when τ is closed, which gives us a notion of absolute time
inherent in standard Newtonian spacetime theories. The zeroth order of the expansion of
the Levi-Civita connection then defines a (symmetric) Galilean connection ∇̂α compatible
with hµν and τµ, as introduced in Sec. 2.3.

It should be noted that this is not the only way one can proceed. As detailed in [44, 45],
one can take the non-relativistic limit of GR using a more general connection that does not
force us to impose any conditions on τ . When we do impose dτ = 0, we recover familiar
NC, which has been dubbed ‘Type I’ Newton–Cartan theory in these papers, whereas
relaxing this condition to τ ∧ dτ = 0 leads to ‘Type II’ Newton–Cartan theories. Here we
will adopt the condition that τµ is closed, even exact, thereby staying within the realm of
traditional Newtonian spacetime theories with a notion of absolute time. We proceed now
to take the non-relativistic limit of STEGR, which will involve taking the non-relativistic
limit of the distortion tensor Lα

µν that distinguishes this theory from GR.

3.3 Distorsion and contorsion in the non-relativistic limit

3.3.1 General formulae

If the Galilean connection Γ̂µ
αβ derives from the non-relativistic limit (as defined in the

previous section) of a Lorentzian connection
λ

Γµ
αβ, assuming τµ to be closed, then it has

2 Rendall [41] showed that there is not much other choice than this ansatz for the leading orders, but also
that odd orders in c should be considered. However, for the first few orders that we consider, these odd
orders are purely gauge. Therefore, not considering them should not change the result of the paper.
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the form:

Γ̂µ
αβ :=

(0)

Γµ
αβ = hµσ

(
∂(αbβ)σ −

1

2
∂σbαβ

)
+Bµ∂(ατβ) + τατβh

µν∂νϕ. (27)

Compared to a general Galilean connection (19), the connection deriving from a non-
relativistic limit has an exact Coriolis field as κµν = τ[µ∂ν]ϕ.

Now the goal is to take the limit of the contorsion
λ

Kµ
αβ [defined by (6)], the distorsion

λ

Lµ
αβ [defined by (7)], and the difference tensor Γµ

αβ − Γ̄
µ
αβ. As for the Levi-Civita

connection, the general affine connection Γ̄
µ
αβ should, a priori, have a Taylor series as a

function of λ. Let us assume that the leading order of this series is the zeroth order, i.e.
λ

Γ̄µ
αβ =

(0)

Γ̄µ
αβ + O (λ). We will discuss this hypothesis in Sec. 3.3.4. We obtain for the

contorsion

−
λ

Kµ
αβ =

1

λ

[
hσµ

(0)

T̄ γ
σ(ατβ)τγ

]
− 1

2

(0)

T̄ µ
αβ − hµσ

(0)

T̄ γ
σ(α

(0)

gβ)γ +
(1)

g σµ
(0)

T̄ γ
σ(ατβ)τγ + hσµ

(1)

T̄ γ
σ(ατβ)τγ +O (λ) , (28)

and for the distorsion

−
λ

Lµ
αβ =

1

λ

[
hσµ

(
τα

(0)

∇̄[στβ] + τβ
(0)

∇̄[στα]

)]
− hµσ

(1)

T̄ γ
σ(ατβ)τγ +

(
2ϕhσµ +

(1)

g σµ
)(

τα
(0)

∇̄[στβ] + τβ
(0)

∇̄[στα]

)
+ hσµ

(
(0)

∇̄(αbβ)σ −
1

2

(0)

∇̄σbαβ

)
+Bγ

(0)

∇̄(ατβ) + τατβh
γσ∂σϕ+O(λ), (29)

where
(0)

∇̄ := ∂ +
(0)

Γ̄. These two formulae imply that the limit of the relativistic formula (8)
is

λ

Γµ
αβ −

λ

Γ̄µ
αβ = hσµ

(
(0)

∇̄(αbβ)σ −
1

2

(0)

∇̄σbαβ

)
+Bγ

(0)

∇̄(ατβ) + τατβh
γσ∂σϕ

− 1

2

(0)

T̄ µ
αβ − hµσ

(0)

T̄ γ
σ(αbβ)γ +O (λ) , (30)

where we used the fact that τµ is closed, implying
(0)

∇̄[στβ] = −1
2

(0)

T̄ γ
αβ τγ.

We see that, in general, the contorsion and the distorsion tensors have negative orders
in the limit. However, the difference tensor (30) only has positive orders. Furthermore,
this tensor does not depend on first orders of the torsion tensor contrary to the contorsion
and the distorsion. The formula (30) is very similar to the general Galilean formula (20)

when associating the zeroth order
(0)

∇̄ with ∇̃, the only difference being the exactness of the
Coriolis field.
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3.3.2 Non-relativistic limit with torsion and metricity

We assume that
λ

Γ̄µ
αβ is metric. In the limit, this implies

(0)

∇̄µh
αβ = 0 ;

(0)

∇̄µτν = 0, (31)

implying
(0)

T̄ γ
αβ τγ = 0. Using

λ

Lµ
αβ = 0, we also have

hµσ
(1)

T̄ γ
σ(ατβ)τγ = hσµ

(
(0)

∇̄(αbβ)σ −
1

2

(0)

∇̄σbαβ

)
+ τατβh

γσ∂σϕ. (32)

Finally, the contorsion tensor in the limit is

−
λ

Kµ
αβ = hσµ

(
(0)

∇̄(αbβ)σ −
1

2

(0)

∇̄σbαβ

)
+ τατβh

γσ∂σϕ

− 1

2

(0)

T̄ µ
αβ − hµσ

(0)

T̄ γ
σ(αbβ)γ +O (λ) . (33)

Compared to the general formula (21) for Galilean contorsion, the one obtained in the limit
features an exact Coriolis field. That form of the contorsion tensor at zeroth order of the
non-relativistic limit is in agreement with the one derived by Schwartz [9, Eq. (2.33a)]. His

“
(
τ(αfβ)

µ
)
” is replaced by “ 1

2

(0)

T̄ µ
αβ − hσµ

(
(0)

∇̄(αbβ)σ − 1
2

(0)

∇̄σbαβ

)
− τατβh

γσ∂σϕ” in our case,

which has the same properties when projected along hµν and τµ.
From the metricity relations (31), we can also show

(0)

T̄ µ
αβτµ = 0 ;

(0)

T̄ (α
µν h

β)µhνσ = 0. (34)

3.3.3 Non-relativistic limit without torsion and with non-metricity

We assume that
λ

Γ̄µ
αβ is torsionless, which implies

(0)

T̄ µ
αβ = 0 and

(1)

T̄ µ
αβ = 0. Then the

distorsion tensor becomes in the limit

−
λ

L̄µ
αβ = hσµ

(
(0)

∇̄(αbβ)σ −
1

2

(0)

∇̄σbαβ

)
+Bµ

(0)

∇̄(ατβ) + τατβh
µσ∂σϕ+O(λ). (35)

Compared to the general formula (22) for a general Galilean distorsion tensor, the one
obtained in the limit features an exact Coriolis field.

3.3.4 Limit of a flat (reference) connection

The specificity of taking the non-relativistic limit of TEGR or STEGR compared to GR
is that there is an additional field, namely ∇̄, whose behaviour in the limit needs to be
understood. In the previous section, the formulae derived and depending on ∇̄ are valid
regardless of the Riemann curvature of that connection. However, in the case of interest
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for this paper, the connection Γ̄ is flat. Therefore, each order of its Riemann tensor must
be zero. Since we assumed that the leading order of the connection is the zeroth order,

then that order is a connection whose Riemann tensor
(0)

R̄µ
αβν is zero. In other words, this

implies that the zeroth order of the connection
λ

Γ̄µ
αβ is also flat.

Therefore, the connection
(0)

∇̄ appearing in the distorsion and contorsion tensors in the
non-relativistic limit is flat. This was expected of course, but not that trivial considering
the fact the reference connection has, in general, a Taylor series. This zeroth order will
correspond to the flat affine connection present in the non-relativistic trinity, and will be
denoted by ∇̃.

Remark 1. That results obtained in the limit hold only if
λ

Γ̄ has positive orders. If we allow for

negative orders, then the flatness condition
λ

R̄µ
αβν = 0 implies the constraint

(N)

Γ̄α
µλ

(N)

Γ̄λ
νβ =

(N)

Γ̄α
νλ

(N)

Γ̄λ
µβ, (36)

where N < 0 is the leading order, which is by definition strictly negative. As for the Levi-Civita
connection

λ

Γµ
αβ , because only the zeroth order of the connection is not a tensor, all the other

orders are tensors, then
(N)

Γ̄ is a tensor. Therefore, the above condition is a tensor equation. We

suspect that this constraint implies
(N)

Γ̄ = 0, which would mean that the reference connection
necessarily has positive orders once it is considered flat, hence justifying the hypothesis. But
we have not been able to prove such a result.

3.4 Non-relativistic limit of STEGR

In the case of taking the non-relativistic limit of TEGR, the prescription followed in [9]
is the following one: (a) write the Einstein equation of GR in terms of the TEGR con-
tortion (and associated torsion); (b) take the non-relativistic limit—constructed in the
above way—of that equation. Following the same prescription for the non-relativistic limit
of STEGR, we first recall the expression in Eq. (17), and take the non-relativistic limit.
Taking the non-relativistic limit of the rhs gives [10]:

8πG

c4

(
Tµν −

Tα
α

2
gµν

)
→ 4πGρτµτν . (37)

The validity of this formula requires the leading orders of the energy-momentum tensor
λ

T µν to be positive [42]. Cases where these orders are negative have been studied in [45],
dubbed “strong gravity”. In the present paper, we will not consider this possibility.

We proceed now to take the limit of the lhs of the field equation (17), which is the
Ricci tensor of the Levi-Civita connection expressed in terms of the distortion and the
non-metric connection. As mentioned earlier, when taking the non-relativistic limit of the
connection, we will be seeking the zeroth order term in the expansion. This means that
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we will be searching for L̂α
µν :=

(0)

Lα
µν =

(0)

Γ̄α
µν −

(0)

Γα
µν = Γ̃

α

µν − Γ̂α
µν , which is given by the

leading order term in Eq. (35). Consequently, the non-relativistic limit of the field Eq. (17)
of STEGR is:

−∇̃αL̂
α
µν + ∇̃µL̂

α
να − L̂α

µβL̂
β
αν + L̂α

αβL̂
β
µν = 4πGρτµτν , (38)

where

−L̂α
µν = hγα

(
∇̃(µbν)γ −

1

2
∇̃γbµν

)
+Bα∇̃(µτν) + τµτνh

αγ∂γϕ. (39)

This is the field equation of STENC.
As it is formulated in Eq. (39), the non-relativistic distorsion tensor is not written

explicitly as a function of a single non-metricity tensor as in the relativistic case (7).
There are two reasons for this: first, we do not have a single metric like in GR, and second,
the distorsion tensor does not depend only on these two metrics, but also on Bµ and bµν .
This means that there are four different non-metricities that can naturally be defined in
the STENC formulation:

Q̂µ
αβ := ∇̃µh

αβ ; Q̂µν := ∇̃µτν ; Q̂αµν := ∇̃αbµν ; Q̂µ
ν := ∇̃µB

ν . (40)

We recall that since there is no duality between forms and vectors with Galilean structures,
i.e. no way of raising and lowering indices, then Q̂µ

ν and Q̂µν (as well as Q̂µαβ and Q̂µ
αβ)

have to be understood as different tensors. Consequently, the distorsion tensor of STENC
can be written in the form

−L̂α
µν = hγα

(
Q̂(µν)γ −

1

2
Q̂γµν

)
+BαQ̂(µν) + τµτνh

αγ∂γϕ. (41)

Writing the non-relativistic distorsion in this way, one can clearly see the analogy with the
relativistic version given in Eq. (7). It should be noted; however, that this non-relativistic
distortion tensor that emerges in the limit is not uniquely defined, as it is expressed in terms
of the non-metricity of the spatial projector bµν . Here, the fixed spacetime structure is given
by τµ and hµν . Furthermore, one can compute the non-metricity of the fixed spatial metric
hµν and find that it is given by ∇̃αh

µν = −2h(µσhν)γ
(
Q̂(ασγ) − 1

2
Q̂σαγ

)
− 2B(µhν)σQ̂(ασ).

However, it is not possible to write the distorsion uniquely as a function of Q̂µ
αβ and Q̂µν ,

showing, again, that some gauge freedom remain in the definition of this tensor.

3.5 The non-relativistic trinity

In conclusion, the non-relativistic limit of the trinity of general relativity gives the three
following equivalent systems of equation for non-relativistic gravitation:
(i) the curved–torsionless–metric formulation (NC) is

R̂µν = 4πGρτµτν ,

∇̂µT
µα = 0,

Γ̂µ
αβ = hγµ

(
∂(αbβ)µ −

1

2
∂µbαβ

)
+Bγ∂(ατβ) + τατβh

γµ∂µϕ,

(42)
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(ii) the flat–torsionful–metric formulation (TENC) is

−∇̃αK̂
α
µν + ∇̃µK̂

α
να − K̂α

µβK̂
β
αν + K̂α

αβK̂
β
µν + T̃

α
βµK̂

β
αν = 4πGρτµτν ,

∇̃µT
µα − 2T σ(αK̂µ)

µσ = 0,

−K̂µ
αβ = hσµ

(
∇̃(αbβ)σ −

1

2
∇̃σbαβ

)
+ τατβh

γσ∂σϕ− 1

2
T̃

µ
αβ − hµσT̃

γ
σ(αbβ)γ,

with R̃
µ
αβν = 0 ; ∇̃µh

αβ = 0 ; ∇̃µτν = 0.

(43)

(iii) the flat–torsionless–non-metric formulation (STENC) is

−∇̃αL̂
α
µν + ∇̃µL̂

α
να − L̂α

µβL̂
β
αν + L̂α

αβL̂
β
µν = 4πGρτµτν ,

∇̃µT
µα − 2T σ(αL̂µ)

µσ = 0,

−L̂µ
αβ = hσµ

(
∇̃(αbβ)σ −

1

2
∇̃σbαβ

)
+Bγ∇̃(ατβ) + τατβh

γσ∂σϕ,

with R̃
µ
αβν = 0 ; T̃

µ
αβ = 0.

(44)

We recall that T µν is the energy-momentum tensor.

The Galilean connection Γ̂µ
αβ, contorsion tensor K̂µ

αβ and distorsion tensor L̂µ
αβ

are not uniquely defined since there is a gauge freedom in the choice of the observer
4-velocity Bµ with respect to which bµν is defined, and in ϕ. The origin of this freedom can
be traced back to the gauge freedom in the Taylor series of the Lorentzian metric when
considering the non-relativistic limit [42, Appendix F.].

In each case, the Coriolis field is exact, which implies the existence of vorticity-free
observers and the absence of gravitomagnetism, two necessary features for the theory
to be considered “Newtonian”. Furthermore, since the first equations in each case are
equivalent (considering the definition of ∇̃ along with the formulae for K̂µ

αβ and L̂µ
αβ),

and correspond to the Newton–Cartan equation, then each of these systems of equations
are equivalent and lead to the classical Newtonian theory (for an isolated system) [46] and
to the cosmological Newtonian theory (if closed boundary conditions are considered) [33],
as explained in Sec. 3.6. The first system has been known since Trautman [46], while the
second was derived by Read and Teh [7], Schwartz [9]. What is new in the present paper is
the third system, defining the STENC formulation. Hence, this completes the construction
of the non-relativistic trinity of gravity, as summarised in Figure 2.

3.6 Recovering the (classical) Newtonian theory

Classical Newtonian theory is described by a system of equations defined on a 3-manifold.
Therefore, recovering that theory from the Newton-Cartan formulation requires obtaining
spatial equations from one of the Newton-Cartan systems of the non-relativistic trinity.
The most general way of performing such a recovery is through a 3+1–projection where
the 4-dimensional spacetime equations are projected along the time metric τµ and the
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spatial metric hµν . In the relativistic case, such a projection leads to the so-called 3+1–
GR formulation, a way a describing the Einstein equation with equations defined on a
3-manifold, allowing for, in particular, numerical resolution of that equation [47].

When performing the 3+1–projection on the NC system, one does not directly ob-
tain the classical Newtonian equations (in which, in particular, the Poisson equation is
∆hϕ = 4πGρ, with ∆h the spatial Laplacian), but similar equations featuring additional
fields that depend on the choice of boundary conditions [33].3 Only when the physical
fields are considered integrable and the space infinite, in other words choosing an isolated
system, then the 3+1-projection of the NC system leads to the classical Newtonian the-
ory. However, if closed boundary conditions are chosen, which is more representative of
a cosmological setup, then, instead, the cosmological Newtonian theory is retrieved, in
which expansion is present. This was first studied by [48] in the homogeneous case, and
fully derived in the general (inhomogeneous) case by [33]; see [49] for related foundational
discussions.

The fact that the NC formulation naturally features expansion is usually missed in
references studying the recovery of (classical) Newtonian theory. The main reason is that
the spatial metric is, in general, assumed to be δij in some coordinate systems, i.e. inde-
pendent of time, which imposes the vanishing of expansion. In other references [e.g., 9],
a covariant condition is taken by assuming the existence of observers whose 4-velocity uµ
satisfies hµ(α∇̂µu

β) = 0. This is exactly the covariant condition for vanishing expansion in
NC, as shown in [33] (see also Sec. 4.1).

Now, with regard to the recovery process from STENC, since that system of equations
is equivalent to the NC formulation, the same recovery is therefore possible. This means
that STENC leads to either the classical or the cosmological Newtonian theory, depending
on the choice of boundary conditions, answering by the positive to the second question
raised at the end of the introduction.

4 Discussion
Having now constructed the non-relativistic geometric trinity of gravity, in this section we
discuss (i) observers in the non-relativistic trinity (Sec. 4.1), (ii) the special case of Weylian
(i.e., pure trace) non-relativistic non-metricity (Sec. 4.2), and (iii) different possible choices
for non-relativistic non-metricity in relation to the Poisson equation (Sec. 4.3).

4.1 Observers in the non-relativistic trinity

In non-relativistic theories, a (timelike) observer is defined by a 4-velocity uµ unit with
respect to the time metric, i.e. uµτµ = 1. Two types of observers are of major importance:
geodesic observers and inertial observers. The former are related to the equivalence prin-
3 This paper refers to ‘1+3’ instead of ‘3+1’ for the projection. In general relativity these two procedures
differ depending on whether the time vector is vorticity free or not. However, in non-relativistic theories
with an exact τµ, 3+1 and 1+3 projections become degenerate. We choose to use the ‘3+1’ denomination
in the present paper.
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GR

STEGRTEGR

NC

TENC STENC

c → ∞c → ∞c → ∞ c → ∞

3+1 projection

3+1 projection

3+1-NC:

{Isolated systems → Classical Newtonian theory
Closed boundaries → Cosmological Newtonian theory

3+1-GR

Figure 2: The geometric trinity of gravity, its now-constructed non-relativistic counterpart,
and the relations of both to the 3 + 1 formulations of GR and NC, respectively.

ciple while the latter to the concept of inertial frames of Newtonian theory as well as the
gravitational field:

(i) Geodesic observers: As for GR, in non-relativistic gravitation an observer subject
only to gravity follows the geodesics (related to the Galilean connection) of spacetime.
In the trinity, this translate into the following three equations:

NC : uµ∇̂µu
α = 0, (45)

TENC : uµ∇̃µu
α = uµuνK̂α

µν , (46)

STENC : uµ∇̃µu
α = uµuνL̂α

µν . (47)

(ii) Inertial observers: As shown in [33], the NC equation implies the existence of an
inertial observer (called Galilean observer in this paper) which is defined by a 4-
velocity Gµ with the following constraints:4

hµ(α∇̂µG
β) = χhαβ + Ξαβ, (48)

hµ[α∇̂µG
β] = 0, (49)

4 In terms of a (unique) scalar-vector-tensor decomposition of symmetric tensors, the first condition means
that the expansion tensor hµ(α∇̂µG

β) of Gµ has no gradient part [33].
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where χ is a scalar field (imposed to be a spatial constant by the Newton–Cartan
equation), representing global expansion, and Ξµν is a traceless-harmonic spatial
tensor (with respect to the spatial metric hµν) representing anisotropic expansion.
The value of the expansion fields χ and Ξµν depend on boundary conditions. For
an isolated system, where χ = 0 and Ξµν = 0, i.e. no expansion, the first condition
implies that in a coordinate system where ∂µt = Gµ, the spatial metric components
are independent of time. If expansion is present with χ ̸= 0 or Ξµν ̸= 0, one or several
scale factors appear. The second condition means that Gµ is vorticity free.

The gravitational field gµ in the Newton–Cartan formulation is elegantly defined as the
opposite of the 4-acceleration of an inertial observer:

gα := −Gµ∇̂µG
α. (50)

From the Newton–Cartan equation and the exactness of the Coriolis field, we can show
that gµ is vorticity free (i.e. no gravitomagnetism), and that its potential is the scalar field
Φ entering into the Poisson equation [33]. These properties also follow from the definition
of an inertial observer. In the language of the non-relativistic trinity, the gravitational field
can be written in the following forms:

TENC : gα = −Gµ∇̃µG
α +GµGνK̂α

µν , (51)

STENC : gα = −Gµ∇̃µG
α +GµGνL̂α

µν . (52)

Remark 2. We suspect that in both cases the gauge freedom in the definition of ∇̃ allows
us to assume Gµ∇̃µG

α = 0, with the elegant interpretation that inertial observers are not
accelerating with respect to the flat connection. However, we were not able to prove this
property.

4.2 The Weylian special case

As we have been concerned with theories that exhibit general non-metricity, we consider
now the special case of ‘Weylian’ non-metricity, of the form

Qαµν = σαgµν , (53)

where σ is a 1-form. In other words, we consider now the case in which the non-metricity is
‘pure trace’. This form of non-metricity is of both historical and modern interest. Histori-
cally, Weyl famously generalized Riemannian geometry by relaxing the metric compatibility
condition in a failed attempt to unify gravity and electromagnetism [50]. While this partic-
ular attempt was unsuccessful, Weyl geometries and Weyl-inspired gravitational theories
themselves are still an active field of research as these theories manifest scale-invariance as
they are invariant under the well-known ‘Weyl transformations’ [51, 52]:

gµν 7→ e−fgµν ,

σα 7→ σα − ∇̄αf.
(54)
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Most relevantly to us, [51] shows how to formulate GR in the language of Weyl geometry
by adopting the condition in Eq. (53). This leads to a distortion tensor given by:

Lα
µν = −σ(µδαν) +

1

2
σαgµν . (55)

In the following, we proceed to take the non-relativistic limit of this ansatz in the same
way as before, using the Taylor expansion defined in Sec. 3. First, we must consider the
Taylor expansion of σ:

λ
σµ =

(0)

σµ + λ
(1)

σµ +O
(
λ2
)
. (56)

The non-metricity in this Weylian case then becomes

∇̃αh
µν = −(0)

σαh
µν ; ∇̃µτν =

1

2

(0)

σµτν , (57)

where, again, we denote
(0)

∇̄ by ∇̃ which is flat and torsionless. (Note that this is consistent
with [53].) We see that in the limit the Weylian form in the ansatz (54) remains present for
∇̃µh

αβ and ∇̃µτν as these two derivatives are both proportional to the 1-form
(0)

σµ obtained
in the limit. This suggests that conformal gravity theories should have a non-relativistic
limit preserving the conformal symmetry, but transferring it to the spatial and the temporal
metrics.

Regarding the distorsion tensor, as before, when taking the non-relativistic limit, we

are searching for L̂α
µν :=

(0)

Lα
µν =

(0)

Γ̄α
µν − Γ̂α

µν = Γ̃
α

µν − Γ̂α
µν while assuming ∇̄ to be

torsionless, but with the ‘Weylian’ versions of the non-metric objects. One obtains a (-1)-

order term
(−1)

Lα
µν = −1

2
hαβ

(0)

σβτµτν which has to vanish to obtain a Galilean connection in
the limit. This gives us hαβ

(0)

σβ = 0. In other words, σµ is proportional to the time metric,
i.e., σµ = ψ τµ, where ψ is an arbitrary scalar. This implies

(0)

Lα
µν = −(0)

σ(µδ
α
ν) −

1

2

(
(1)

g αβ (0)

σβ + hαβ
(1)

σβ

)
τµτν

= −ψ τ(µδαν) +
1

2

(
ψBα − hαβ

(1)

σβ

)
τµτν . (58)

Using this result and ∇̃[µ
(0)

σν] = 0 (that σ is closed is implied by the non-metricity condition),
the field equations under the Weylian assumption for non-metricity are given by

− ∇̃µ
(0)

σν −
1

2

(0)

σµ
(0)

σν +
1

2
∇̃α

[
(1)

g αβ (0)

σβ + hαβ
(1)

σβ

]
τµτν = 4πGρτµτν . (59)

4.3 Choice of non-metricity and the Poisson equation

In this section, we show that there are two mirror ansatzes that can be imposed on the non-
relativistic non-metricity tensors defined in Eq. (40), such that the field equation of STENC
becomes explicitly the Poisson equation written in terms of a spacetime connection. The
two conditions are:
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(i) Q̂µαβ = 0 and Q̂µ
ν = 0.

(ii) Q̂µ
αβ = 0 and Q̂µν = 0.

Both of these approaches restrict the possible physical solutions as spatial expansion is
set to zero with Q̂µ

αβ = 0 or Q̂µαβ = 0, meaning that only an isolated system can be
considered. The goal of these ansatzes is mainly to illustrate how the physical degrees of
freedom can be shifted between the different non-metricities.

With the first choice, the distorsion tensor becomes

L̂α
µν = −Bα∇̃(µτν) − τµτνh

αγ∂γϕ. (60)

Furthermore, this choice implies that L̂α
αβ = L̂α

να = BαQ̂(αβ) + τατβh
αγ∂γϕ = 0. The

second term vanishes by the orthogonality of the spatial and temporal metrics, while the
first term vanishes as setting Q̂µ

ν = 0 implies that BαQ̂αµ = 0 because ∇̃µ (B
ατα) =

Q̂µ
ατα +BαQ̂µα = 0. Consequently, the field equation simplifies to:

− ∇̃αL̂
α
µν − L̂α

µβL̂
β
αν = 4πGρ τµτν , (61)

Carrying through the calculations, we have that

−∇̃αL̂
α
µν = 2Q̂αµτνh

αγ∇̃γϕ+ τµτν∇̃α

(
hαγ∇̃γϕ

)
,

−L̂α
µβL̂

β
αν = −2Q̂αµτνh

αγ∇̃γϕ.
(62)

The field equation of STENC then takes the form

τµτν∇̃α

(
hαγ∇̃γϕ

)
= 4πGρτµτν , (63)

which is the Poisson equation expressed in terms of a curvature-free, torsion-free connection
that also possesses non-metricity. For this version of Newtonian gravity, the compatibility
conditions of the metrics are given by:

∇̃αh
µν = 2B(µQ̂αγh

ν)γ ; ∇̃µτν = Q̂µν . (64)

A similar equation was obtained in [7, Eq. 31] and [9, Eq. 4.20] in the torsional case. These
papers fixed both the expansion and spatial torsion to vanish, and obtained the ‘standard’
formulation of Newtonian gravity in terms of a torsional connection rather that the non-
metric connection here. See e.g. [54] for further discussion of these versions of Newtonian
gravity that result from such geometric considerations.

In the second choice, the distorsion tensor takes the form

L̂α
µν = −τµτνhαγ∂γϕ, (65)

leading the the field equation

τµτνh
αβ∇̄α∇̄βϕ = 4πGρτµτν , (66)
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which is formally equivalent to Eq. (63).
At this stage, in either ansatz, one gauge freedom remains in the definition of Bµ. A

natural gauge fixing is to assume Bµ = Gµ, i.e., the gauge dependent 4-velocity refers to
an inertial observer, which is a gauge choice that can always be taken [33, 42]. This implies
that the gauge dependent scalar ϕ becomes the gravitational potential Φ present in the
gravitational field gµ = hµν∂νΦ that we defined in Sec. 4.1. Then, in both of the above
ansatzes, the gravitational field is directly encoded in the distorsion tensor.

There is nevertheless a major conceptual difference between the two approaches, as
with the second one, the connection ∇̃ is a Galilean connection, i.e. it is compatible with
the space and time metrics. In this sense, arguably we lose to some degree the philosophy
of the STENC formulation, where the goal was to have two symmetric connections: one
Galilean and one non-Galilean.

5 Conclusion
In this article, we have taken the non-relativistic limit of the symmetric teleparallel equiva-
lent formulation of general relativity (STEGR), and have obtained the symmetric telepar-
allel equivalent formulation of Newton–Cartan theory (STENC). Just as in the relativistic
case, the gravitational degrees of freedom in STENC are in the non-metricity; thereby,
we have triangulated a non-metric alternative theory to Newton–Cartan theory (NC) and
its equivalent teleparallel version (TENC). We have therefore completed a non-relativistic
geometric trinity for gravity—this also makes good on a question raised in [9] as to what
one would obtain on taking the non-relativistic limit of STEGR.

In completing this work, we cast new light and understanding upon the relationship
between the non-relativistic limit and geometrical reformulations of spacetime theories, as
well as come to understand better the geography of the ‘space of spacetime theories’ more
generally (cf. [55, 56]). Moreover, the existence of the non-relativistic geometric trinity
need not be a mere theoretical or philosophical curiosity: it is already known in the case of
the relativistic geometric trinity that different nodes of the trinity are more or less apt to
represent different physical scenarios (e.g., black hole boundaries—see [18]); in principle,
we expect the same to be true in the non-relativistic case, although we will leave such
explorations for future work.

There are many future prospects to the present work. To name three:

(i) Recently, in [44], a novel version of NC (so-called ‘Type II NC’) has been constructed
by taking a more careful and systematic 1/c expansion of the GR dynamics. Type II
NC has revealed several novel features of non-relativistic gravitational theories, in-
cluding that non-relativistic theories can account for many of the strong gravitational
effects previously believed to belong to relativistic theories and can also reproduce
much of the solution space of GR [45, 57]. This raises the question: what would be
the ‘Type II’ equivalents of TENC and STENC? Indeed, finding such theories would
have conceptual payoff, for in this article we have demonstrated equivalence of the
three vertices of the non-relativistic geometric trinity only at the level of equations of
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motion, whereas the equivalence of the relativistic geometric trinity can—as we have
seen—be demonstrated at the level of the action. However, action principles for the
‘Type I’ theories provably do not exist [45]; not so for ‘Type II’ theories (and, indeed,
an action for Type II NC is explicitly constructed in [45]); therefore, to construct a
non-relativistic trinity using action principles (as in the relativistic case), one would
have to construct and work with the ‘Type II’ theories.

(ii) It has very recently been shown that there exists an ‘extended’ geometric trinity
between f(R), f(T,B) and f(Q, B̃) theories (for boundary terms B and B̃) [15]—
does a similar extension of the non-relativistic geometric trinity exist? (For further
discussion on this issue in the relativistic case, see [58, 59].).

(iii) It is possible to understand different nodes of the relativistic geometric trinity as
different gauge theories of gravity: GR can be understood as a gauge theory of the
Lorentz transformations; TEGR as a gauge theory of the translations; and STEGR
as a gauge theory of shear/scale (and—as mentioned above—also the translations)
[60]. This invites the question: can the nodes of the non-relativistic trinity also be
understood as gauge theories of gravity in a similar manner? We are optimistic about
the prospects for an affirmative answer here but, again, we will leave a full study of
this question for future work.
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