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Abstract 

 

Scientists and philosophers alike debate whether various systems such as plants and bacteria 

exercise cognition. One strategy for resolving such debates is to ground claims about nonhuman 

cognition in evidence from mathematical models of cognitive capacities. In this paper, I show 

that proponents of this strategy face two major challenges: demarcating phenomenological 

models from process models and overcoming underdetermination by model fit. I argue that even 

if the demarcation problem is resolved, fitting a process model to behavioral data is, on its own, 

not strong evidence for any cognitive process, let alone processes shared with humans. 
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1. Introduction 

What kinds of things have psychological capacities? Some cases readily inspire 

controversy. Mimosa plants, for example, fold their leaves in response to mechanical 

disturbance, and properties of their response depend on their relationship to the stimulus 

(Gagliano et al. 2014). Whereas novel disturbances elicit more folding, repeated exposure to a 

harmless stimulus such as water drops attenuates the response to the point that the leaves stop 

folding altogether. The researchers who produced this effect describe it as habituation, a type of 

learning that is well-studied in psychology. They further suggest that the mechanisms by which 

plants learn and remember are similar to those used by animals, including calcium signaling and 

neurochemical transmission. Unsurprisingly, these claims are controversial. Some botanists 

argue that such application of neurobiological concepts is based on “…superficial analogies and 

questionable extrapolations” which do not add to our understanding of plants (Alpi et al. 2007, 

136). Others argue further that plants lack consciousness, memory, and other psychological 

capacities attributed to them in the so-called “plant neurobiology” literature (Taiz et al. 2019). 

Similar controversies surround bacteria and artificial intelligence (Adams and Garrison 2013; 

Adams 2018).  

One strategy for resolving such debates is to ground claims about nonhuman cognition in 

evidence from mathematical models of cognitive capacities. For example, Joo et al. (2021) 

recently developed a formal model to help address whether rats have the capacity to evaluate 

confidence in their own memories and use it to guide decision making. The breadth and nature of 

metacognition across species is a source of spirited debate (Smith, Couchman, and Beran 2014; 

Carruthers and Williams 2022), and previous experiments with rats delivered equivocal results. 

Joo et al. (2021) combine behavioral data from a spatial memory task with the success of their 

quantitative model to justify the claim that rats maximize reward by computing memory 

confidence. Given the availability of alternative interpretations which do not posit this 

metacognitive capacity, the researchers further argue that the case illustrates the importance of 

supplementing behavioral results with formal models. Whether or not this case is resolved in 

favor of the metacognitive interpretation, it exemplifies a general point, made by several other 

scientists and philosophers, that comparative cognition research would benefit from a shift 

toward more mathematical modeling and focus on quantifiable similarities/differences (Allen 

2014; Mikhalevich 2017; Colombo and Scarf 2020; Farrar and Ostojic 2019; Figdor 2018).  
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In this paper, I highlight several obstacles to inferring the presence and nature of 

cognitive processing from mathematical models. Although a few more challenges arise along the 

way, I emphasize two in particular: demarcating phenomenological models from process models 

and overcoming underdetermination by model fit. Both are problems for any application of 

mathematical models in cognitive science, but they are especially acute in the comparative 

cognition case. My claim is not that mathematical models cannot help with discovering 

nonhuman cognition. Rather, these general issues in scientific modeling should not be neglected 

when evaluating evidence afforded by formal models. Doing so oversimplifies the epistemology 

of cognitive modeling and exaggerates the strength of evidence in favor of hypotheses tested by 

models (i.e., that some particular cognitive process underlies behavior). I will illustrate these 

points in application to Carrie Figdor’s (2018) appeal to formal models to guide judgments about 

the extension of psychological predicates beyond human cases. Her account helps bring into 

focus various difficulties with drawing inferences from mathematical models. She claims that 

quantitative similarity in behavior revealed by formal models constitutes strong evidence for 

shared psychological processes. Arguably, this claim or a qualified version of it is also implicit 

in the views of others optimistic about the epistemic benefits of formal modeling in comparative 

cognition. Unfortunately, things are not so simple. I argue instead that even if we solve the 

demarcation problem and consider only process models, fitting a process model to behavioral 

data is, on its own, not strong evidence for any cognitive process, let alone processes shared with 

humans.  

The next section sketches Figdor’s position on psychological continuity across taxa and 

one motivation for concentrating on mathematical models in this context. Section 3 analyzes her 

argument for the claim that quantitative similarity in behavior counts as strong evidence for 

shared cognition. I show that the notion of “quantitative similarity” is ambiguous and 

recommend operationalizing it in terms of model fit. In section 4 I begin by pointing out that the 

argument from quantitative similarity is only plausible with respect to process models. I then 

argue that demarcating phenomenological models from process models is a non-trivial task, and 

current accounts in the philosophy of science literature are unsuccessful at doing so. Section 5 

adopts a framework for process models from the cognitive science literature and demonstrates 

how fitting process models to behavioral data underdetermines what kind of underlying process 

generated the data. I conclude with a brief discussion of why the boundary between 
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phenomenological models and explanatory models is blurrier in cognitive science than in other 

sciences. The upshot is that philosophical accounts of phenomenological modeling have been 

overly focused on cases in physics, rendering them ill-suited for cognitive science. I further 

suggest that background theories within specific sciences influence whether models are judged 

phenomenological or not. 

 

2. Other Minds and Mathematical Modeling 

Figdor claims that due to various empirical discoveries, there is increasing pressure to 

reconsider the meaning and reference of psychological predicates. Traditional semantics of 

psychological predicates are anthropocentric and no longer scientifically respectable.
1
 As she 

sees it, “…all the relevant scientific evidence shows that psychological capacities are possessed 

by a far wider range of kinds of entities than often assumed” (Figdor 2018, 5). In support of this 

conclusion, she describes some empirically discovered behaviors of plants and bacteria which 

the researchers characterize psychologically (e.g., bacteria learning about their environments). 

However, her argument rests primarily on cases in which researchers also fit formal models to 

their behavioral data.  

By Figdor’s lights, a key advantage of mathematical models is that they can powerfully 

challenge anthropocentric intuitions about what counts as cognition. In her view, “a 

mathematical model provides strong evidence that two domains have important similarities 

whether or not intuition agrees” (Figdor 2018, 135). Consider, for instance, the fact that 

neuroscientists frequently describe neurons as predicting stimuli. It may seem odd to think of 

neurons as formulating predictions like whole animals, but Figdor argues that such impressions 

are an unreliable guide. Mathematical models help guard against the bias of intuitions by 

revealing quantitative similarity in behavior. Such similarity is independent of qualitative 

similarity to humans and supports inferences to shared cognitive processes. Regardless of 

whether Figdor is right about anthropocentrism and formal modeling as a remedy for it, the claim 

that mathematical models provide strong evidence for psychological similarity is intriguing and 

worth exploring.  

                                                           
1
 This starting point is controversial. Machery (2020) argues that there is little evidence for 

widespread anthropocentrism as far back as the 19
th

 century. Though see Buckner (2013) for a 

discussion of “semantic anthropocentrism” in comparative psychology. 
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3. Inferring Shared Cognition from Quantitative Similarity 

 Figdor discusses only two types of formal models in depth: the temporal difference (TD) 

model and the drift-diffusion model (DDM) used in decision-making studies. I’ll describe the 

former case in more detail but summarize her conclusions regarding both. Making explicit how 

she reasons from specific modeling results will reveal some conceptual and metaphysical 

difficulties in interpreting mathematical models and their data. However, I will show in this 

section how these initial obstacles can be overcome. 

The TD model was introduced by Sutton and Barto (1987) as an improvement over the 

well-known Rescorla-Wagner model used to explain results from classical conditioning 

experiments. Although both models are specified by equations that describe the strength of 

association between a conditioned stimulus (CS) and an unconditioned stimulus (US), the TD 

model also represents changes in associative strength within trials. By capturing these changes in 

real-time, as opposed to between discrete trials, the TD model can predict animal behaviors in a 

wider range of experimental conditions.  

Briefly, the model works as follows.
2
 At each time step, the algorithm uses a 

representation of available stimuli to formulate a prediction about upcoming US’s. It compares 

this US prediction with the US prediction formulated at the previous time step. The comparison 

yields the temporal difference which is then compared to any actual US received. The value of 

this second comparison is the prediction error at that time step. Prediction errors are then used to 

update the weight on each element of the stimulus representation and thereby drive learning.  

Although the TD model was originally developed for classical conditioning experiments 

with lab animals, it turns out that it can also model some neural activity. Based on a series of 

experiments in the latter half of the 20
th

 century, neuroscientists theorized that midbrain 

dopamine (DA) neurons process reward prediction errors (Schultz, Dayan, and Montague 1997). 

Through electrophysiological recordings in monkeys, it was shown that unexpected rewards 

boost DA neuron activity. However, as animals learn that reward is associated with a prior CS, 

DA neurons gradually respond less to the reward. They instead fire selectively upon presentation 

of the CS. If well-trained animals expect a reward and it is omitted, activity is suppressed. These 

results have since been replicated in rodents and humans, and the reward prediction error model 

                                                           
2
 For a thorough guide with the formal details, see Ludvig, Sutton, and Kehoe (2012). 
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is still widely accepted (Schultz 2016). Given the TD model’s reliance on prediction errors and 

success with classical conditioning, it wasn’t long before neuroscientists tried using it to 

understand DA signals.  

Suri and Schultz (2001) trained an artificial neural network with the TD learning 

algorithm under conditions used in previous monkey experiments. They then compared the 

model’s performance with electrophysiological data collected from monkeys. They found that 

the model’s reward prediction error signal reproduced characteristics of midbrain DA neuron 

activity, while its reward prediction signal resembled cortical and striatal activity. For example, 

after the model was trained on one CS followed by reward, its reward prediction signal was 

boosted upon CS presentation compared to pretraining, and the signal progressively increased 

until reward onset. Putamen neurons show the same pattern of activity in monkeys trained on the 

task. The model also reproduced features of electrophysiological data from a more complicated 

task involving three different CS’s and two types of reward. 

What should we make of such findings? In this case, Figdor (2018, 53) concludes that 

“…real neural populations appear to be adaptive elements that learn to predict future rewards in 

the quantitatively similar sense that humans, monkeys, rats, and other adaptive elements do”. She 

goes on to say, “[the TD model simulation] is finding structure in neural behavior that is 

quantitatively analogous to the structure of reinforcement learning in a behaving animal” (Figdor 

2018, 53-54). In her response to a critical notice, she characterizes shared structure in behavior as 

a “criterion” for inferences to cognition (Figdor 2020). Regarding the DDM, she says, “[it] 

captures in formal terms the dynamics of the behavior from which we infer to [human] decision-

making. We then use this formal structure as a criterion for inferences to decision-making in 

other cases” (Figdor 2020, 692). Based on a study in which researchers fit the DDM to 

behavioral data from fruit flies (DasGupta, Ferreira, and Miesenböck 2014), Figdor infers that 

fruit flies make decisions. As she puts it, “given its fit to both human and fruit fly data, the model 

helps justify the ascription of decision-related component cognitive processes posited by the 

model (e.g., evidence accumulation) to the intended target populations of decision-makers” 

(Figdor 2018, 47). Such inferences are defeasible because justifying is weaker than proving: 

“Satisfying the DDM does not prove fruit flies make decisions (though it is an excellent source 

of confirmatory evidence)” (Figdor 2020, 692).  
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An immediate problem with the above proposal is that it’s unclear when behaviors from 

systems in different taxa count as quantitatively similar. Since no two datasets are identical, we 

need some way of deciding when they are similar enough to justify inferences to shared 

psychological capacities. Several of Figdor’s passages suggest that fitting the same formal model 

structure to different behavioral datasets is sufficient to count behaviors as quantitatively similar. 

On the other hand, she repeatedly characterizes scientific models as revealing structure in the 

world. For example, in addition to the above passage describing the TD model as “finding 

structure in neural behavior” (Figdor 2018, 53), she says, “indeed, social scientists are busy 

employing network modeling tools to explore the structure of human social relationships…” 

(180). Behaviors may instead be considered sufficiently quantitatively similar when they have 

the same formal structure. Whichever interpretation Figdor intended to endorse, I will clarify the 

distinction below and argue in favor of the first option. 

Describing quantitative similarity in terms of shared formal structure trades one concept 

in need of operationalization for another. Without further explication of “formal structure”, it 

brings us no closer to determining when behaviors from systems in different taxa are 

quantitatively similar enough to infer shared cognition. Focusing on the formal structure of 

behavior also invites metaphysical worries. Taken literally, the idea that behaviors instantiate 

mathematical structure is an assumption about the way in which mathematical entities exist, and 

that is a topic of controversy in the philosophy of mathematics.
3
 Mary Leng (2010), for instance, 

denies that mathematical entities exist at all, precluding their instantiation in the world. Another 

ontological possibility coming from the philosophy of science literature is that mathematical 

structure is a feature of models but not their targets. So-called discoveries of mathematical 

structure in behavior are just conceptual reifications, “…mistaking an aspect of a model—its 

structure, its construal, or the union of both—for an aspect of empirical data or the natural world; 

mistaking the math for the territory, so to speak” (Andrews 2021, 29). Several analyses from 

philosophers help make sense of how theoretical models can be useful in science despite 

containing descriptions and equations that are true of no object (e.g., Potochnik (2017); 

Cartwright (1983); Toon (2012); Rice (2015)) or only partly true (Levy 2015). 

                                                           
3
 Talk of objects or systems “instantiating” mathematical structure is common in that literature, 

and Figdor (2018, 53) uses this expression when describing the study by Suri and Schultz: “They 

used the network to model dynamic structure instantiated by real neural populations in prior 

neurophysiological research”. 
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The assumption that mathematical structures are instantiated in nature is also ill-defined. 

What does it mean for a mathematical structure to be “in” or “instantiated by” (the behavior of) a 

system? One possibility is that mathematical structures are abstract entities that exist 

independently of the physical world, and physical systems sometimes exemplify their structures 

(Shapiro 1997). An alternative is that there exists some structural relation (isomorphism, 

homomorphism, etc.) between a physical system and a mathematical system, though the latter 

need not exist as an abstract entity (Pincock 2012). Several other possibilities are defended in the 

philosophy of mathematics literature. Interpreting scientific models as revealing mathematical 

structure in the world shoulders these metaphysical burdens, but that is unnecessary for 

explaining the success of models and operationalizing quantitative similarity.  

By contrast, model fit is well-defined given standard techniques for fitting models to 

data. There is nothing metaphysically mysterious about fitting formal models to data. Whether 

models fit data doesn’t hinge on the possibility that mathematical structures are instantiated by 

target systems or an account of what that means. Of course, choice of fitting method will 

influence how well a model fits experimental data, and there is always room for debating how 

much goodness of fit is good enough within a context. But the concept of fit is still rooted in 

modeling practice and therefore poised to operationalize quantitative similarity. Figdor more 

often describes formal models as applying to various domains, but fit is a more appropriate 

concept since it is understood that fit is a matter of degree. Talk of models applying suggests an 

all-or-none relation. In sum, I recommend operationalizing quantitative similarity with model fit 

because unlike Figdor’s current account, it makes precise the cases under consideration and 

circumvents orthogonal debates in the philosophy of mathematics. 

We are now ready to evaluate the following claim: 

(QS) Quantitative similarity in behavior constitutes strong evidence that different systems 

share specific psychological processes.  

Behaviors from systems within or across taxa count as quantitatively similar when a 

mathematical model fits their data, and the psychological processes at stake are specified in the 

hypothesis tested by the model. We may further assume that (QS) applies only to cases where the 

data under comparison are from the same kind of behavioral task. Importantly, Figdor’s account 

is not so much a target here as a launchpad for critically assessing when mathematical models 
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provide compelling evidence about cognitive processes. Anyone interested in debates over 

nonhuman cognition might find (QS) appealing. 

 

4. Phenomenological vs. Process Models: A Blurry Boundary? 

 Model fit is not a reliable guide to cognition in general because it matters what kind of 

formal model is being fit. Some models such as Snell’s law are phenomenological in the sense 

that they have instrumental value (e.g., aid in prediction) but reveal nothing about underlying 

processes or mechanisms (Bokulich 2011). Phenomenological models are usually constructed by 

fitting a model structure to data ad hoc. Although phenomenological models are often discussed 

in the context of physics, psychologists and neuroscientists also use the concept (Luce 1995; 

Mauk 2000; e.g., Bassett, Zurn, and Gold 2018). Despite their instrumental value, 

phenomenological models in cognitive science neither describe nor provide evidence for internal 

cognitive processes. Instead, they formally redescribe a target system’s behaviors or interactions. 

Thus, (QS) is false as a general claim about formal models in cognitive science. If fitting a 

phenomenological model isn’t evidence for any psychological process, then fitting one to 

behavioral data from another system isn’t evidence that the two systems share any specific 

psychological process. 

Once phenomenological models are taken into consideration, (QS) is only plausible as a 

claim about models that represent possible cognitive processes underlying behavior. Following 

the lead of cognitive scientists, let’s call these models ‘process models’. Unfortunately, beyond 

this basic characterization, there is no agreed upon definition of the term or consensus on which 

models count as process models (Jarecki, Tan, and Jenny 2020). Below I will argue that standard 

accounts in the philosophy of science literature fail to demarcate phenomenological models from 

process models. I’ll demonstrate this with the example of linear models in mathematical 

psychology. I chose models fit to behavioral data from humans to underscore the problem faced 

by researchers in comparative cognition. If it is unclear whether models of human cognitive 

capacities are phenomenological, all the worse for models fit to data from plants, insects, etc. 

where the presence of cognition is in question. The upshot is that contrary to Figdor’s 

suggestion, quantitative similarity is not readily applicable as a criterion for inferences to 

cognition. 
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 Linear models in mathematical psychology began proliferating in the 1960s. Hoffman 

(1960) first proposed that judgments in decision-making tasks could be modeled as linear 

functions of cues. Subjects in a typical task are given a set of cues either sequentially or 

simultaneously and asked to predict an outcome or value of some property. In one of Hoffman’s 

tasks, for example, subjects used nine cues about 100 persons such as their high school rating 

and mother’s education level to judge their “intelligence”. The structure of a linear model is a 

weighted (usually multiple) linear regression equation in which variables represent cues, and 

weights represent the significance subjects assign to each variable with respect to what they’re 

judging. Hoffman showed that such models accurately predict the judgments of subjects, and the 

result was replicated many times over in various tasks (see Dawes and Corrigan (1974) for 

references and discussion). Linear models of judgment are also building blocks of the lens model 

equation, which is used extensively in learning studies (Karelaia and Hogarth 2008). The 

equation is a formalization of Brunswik’s (1952) lens model, and it is useful for quantifying how 

much different variables influence the accuracy of judgments. For instance, Luan, Schooler, and 

Tan (2020) recently showed that people judge the monetary value of objects more accurately 

when cues are presented sequentially instead of simultaneously. They then performed a lens 

model analysis to demonstrate that the improvement was primarily due to increased consistency 

in judgments. 

Although it is possible that subjects solve linear functions in their minds to reach 

judgments in decision-making tasks, and some researchers have defended this sort of conclusion 

(Einhorn, Kleinmuntz, and Kleinmuntz 1979; Goldberg 1971; Payne, Bettman, and Johnson 

1993), the evidence is hardly decisive. Indeed, when Hoffman (1960) proposed using linear 

models of judgment, he called them “paramorphic representations” to emphasize that it’s unclear 

whether they accurately represent underlying mental processes. In the more recent literature, 

psychologists typically say people behave as if they use a linear model in these tasks (Hogarth 

and Karelaia 2007).
4
 Some take a firmer stance, claiming that linear models merely predict 

judgments without capturing the cognitive operations leading to them (Glöckner and Betsch 

2011), or attempt to explain away the success of linear models (Dawes 2018; Dawes and 

Corrigan 1974).  

                                                           
4
 See van Rooij et al. (2018) for more on “as if explanations” in psychology, including an 

analysis of the many possible meanings of ‘as if’ in this context. 
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Here I’ll just give a couple reasons for remaining skeptical of the claim that linear models 

accurately represent internal cognitive processes. First, linear models aren’t based on any 

biological mechanisms. In the terminology of Marr’s (2010) framework, there is no evidence that 

any neural mechanisms implement an algorithm computing the hypothesized linear functions. 

Some degree of looseness between levels of description is both tolerable and expected (Allen 

2014), but in this case an implementation story is completely absent. Second, heuristic models, 

which don’t consist of linear functions, can also fit the same data and in some cases fit even 

better (Gigerenzer and Goldstein 1999). They are also arguably more psychologically plausible 

with respect to properties such as computational tractability (Gigerenzer, Hoffrage, and 

Goldstein 2008). For example, some heuristic models predict judgments based on fewer of the 

available cues compared to linear models (Hogarth and Karelaia 2007). Instead of solving linear 

functions in decision-making tasks, it is possible that people utilize various heuristics. Though it 

should be stressed that the options aren’t exclusive. There is evidence that people switch 

strategies depending on the circumstances, including within an experimental task (Lee, Gluck, 

and Walsh 2019; Newell, Weston, and Shanks 2003). 

The preceding discussion provides a test case for philosophical accounts of 

phenomenological models. Linear models of judgment fit behavioral data from humans engaged 

in cognitive tasks, but are they merely phenomenological models? Early writings in philosophy 

of science cast phenomenological models as independent from theory. However, Margaret 

Morrison (1999) has persuasively argued that this view is inadequate (see also Frigg and 

Hartmann 2020). In the more recent literature, philosophers typically characterize 

phenomenological models by appealing to what they describe and whether they count as 

explanatory. These features are complementary, but let’s consider them in turn.  

According to Kaplan and Craver (2011), the signature of phenomenological models is 

that they describe behaviors of systems but not the mechanisms underlying their behavior. A 

problem with this criterion and any other based on description is that what a model represents 

arguably depends on the intentions of its user (Giere 2010; Callender and Cohen 2010; Weisberg 

2013). In the case of linear models, many psychologists take them to redescribe behavior, 

whereas Einhorn, Kleinmuntz, and Kleinmuntz (1979) claim that linear models represent 

underlying cognitive processes, albeit at a higher level of abstraction than models specifying 

algorithms. Thus, the very same model might be classified as phenomenological or not 
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depending on whom you ask. Even if agent-based accounts of scientific representation are 

wrong, the fact remains that scientists sometimes disagree about what models represent. Given 

the possibility of disagreement, appealing to what models describe fails to settle whether some 

are phenomenological or process models. The same reasoning extends to accounts that 

emphasize what phenomenological models aim at (e.g., Bokulich (2011)).  

Explanatory status also supports opposing classifications because when models count as 

explanatory—in the sense of answering why certain things happen—is emphatically disputed. 

Proponents of the mechanistic framework argue that models across the mind-brain sciences have 

explanatory force only to the extent that they describe details of mechanisms. Their case studies 

include models in cognitive science (Kaplan and Bechtel 2011), psychology (Piccinini and 

Craver 2011), cognitive and systems neuroscience (Craver and Kaplan 2020; Kaplan and Craver 

2011), and computational neuroscience (Kaplan 2011). Unsurprisingly, others have found their 

mechanistic demands on explanatory adequacy overly narrow. These critics highlight other 

explanatory patterns in the mind-brain sciences, including functional explanations (Weiskopf 

2011), dynamical explanations (Ross 2015; Silberstein and Chemero 2013), computational 

explanations (both causal and non-causal) (Chirimuuta 2014; Serban 2015; Chirimuuta 2018), 

and topological explanations (Kostić 2018; Kostić and Khalifa 2023). Depending on one’s views 

about sources of explanatory force, linear models may be classified as phenomenological or 

process models. Even if it is granted that they are explanatory in some sense, there is room for 

disagreement about which kinds of explanation matter for being a process model. 

In this section I’ve argued that (QS) is false because phenomenological models in 

cognitive science provide no evidence for psychological capacities. Rescuing (QS) depends on 

limiting its scope to process models, yet current philosophical accounts fail to demarcate 

phenomenological models from process models. This hampers the usefulness of quantitative 

similarity as a criterion for inferences to cognition. (QS) may be true of process models, but 

neither Figdor nor the modeling literature in philosophy of science make clear which ones those 

are. The situation seems to fit Morrison’s (1999) view that the distinction between 

phenomenological and theoretical models is of dubious philosophical value since it is difficult to 

draw a sharp boundary between the two.  

In response, one might argue that even if it’s unclear whether a mathematical model is 

phenomenological or not, the fact that it fits behavioral data from different systems supports the 
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inference that they share some underlying cognitive process. It just doesn’t reveal which one. 

Such inferences are problematic, though, in light of what Taylor et al. (2022) call the “many-to-

one mapping problem”: different possible cognitive processes can generate any particular 

behavior. A better strategy is to distinguish process models in a way that helps modelers cope 

with the many-to-one mapping problem. That might salvage (QS) by weeding out 

phenomenological models, and more generally, it doesn’t give up on the intuitively valuable 

distinction between phenomenological and explanatory models. Fortunately, more promising 

ways of distinguishing process models can be found in the cognitive science literature. 

 

5. Fitting and Comparing Process Models 

I propose adopting the conceptual framework developed by Jarecki, Tan, and Jenny 

(2020). In my view, it offers the most thorough characterization of process models in the current 

cognitive science literature and evades the problems outlined in the previous section. Like 

previous proposals, they claim that process models represent testable assumptions about how 

cognitive systems transform inputs. They call this the “intermediate stage” between stimulus 

input and behavioral output. So far, this is too flexible. Linear models arguably represent the 

assumption that people transform inputs by computing linear functions during decision-making 

tasks, and that is a testable hypothesis in the sense that linear models will fit (within some degree 

of goodness) behavioral choice data or not. Or perhaps linear models are merely 

phenomenological because they formally represent overt choice behaviors and nothing more. 

The blurry boundary strikes again. However, Jarecki, Tan, and Jenny (2020) add the further 

condition that process models must make separate predictions at two levels: behavioral output 

and the intermediate stage. The theoretical significance of the latter kind, called “process 

predictions”, has also been urged by other cognitive scientists (Pachur et al. 2013; Sun 2008; 

Johnson, Schulte-Mecklenbeck, and Willemsen 2008). Process predictions include predictions 

about attention, speed, error types, etc. They are specific to models (e.g., the DDM predicts 

reaction time distributions), but all are consequences of the cognitive process hypothesized by 

modelers. Note that process predictions, like behavioral output predictions, are typically about 

behavioral measures. Which behaviors correspond to each type of prediction is defined within a 

modeling context. One modeler’s behavioral output prediction may be another’s process 

prediction. 
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The summary above leaves out important details of the framework, but it is enough to 

demonstrate that process models are distinguishable in a principled way. To see this, consider the 

following points. If a hypothesis about cognitive processing successfully predicts only one kind 

of behavior, then it is no more plausible than any competing hypothesis that makes the same 

prediction. As mentioned earlier, both linear and heuristic models of judgment predict the same 

choices made by people in some decision-making tasks, but they are based on competing 

hypotheses about the causal processes underlying those choices. Process predictions help deal 

with the many-to-one mapping problem by providing further points of comparison between 

models, allowing modelers to test competing hypotheses when they explain other data equally 

well. Models that fail to make process predictions might still accurately represent cognition at 

some level of abstraction, but they are too underspecified to be rigorously tested.
5
 Jarecki, Tan, 

and Jenny (2020) apply their framework to demonstrate that at least one heuristic model of 

judgment qualifies as a process model, whereas equal weighting models (a species of linear 

models) do not. Since the details matter, every model type must be inspected individually to 

determine whether they meet the proposed criteria for process models. 

The remainder of this section argues that (QS) is still false when charitably interpreted as 

a claim about process models. Fitting a process model to behavioral output data is, on its own, 

not strong evidence for any cognitive process, let alone shared processes. As examples of process 

models, I’ll use DDMs and Bayesian models of perceptual decision making. According to the 

framework above, every DDM qualifies as a process model because they represent a specific 

process of evidence accumulation toward decision boundaries (see Ratcliff and McKoon (2008) 

for details), and they make separate predictions about choices (behavioral output) and reaction 

time distributions (intermediate stage). The Bayesian model built by Bitzer et al. (2014) and 

further developed by Fard et al. (2017) is also a process model of decision making in two-

alternative forced choice tasks. Instead of the diffusion process represented by DDMs, Bayesian 

models assume that cognitive systems generate predictions about stimuli and compare them to 

noisy input. An inference mechanism calculates the likelihood of each stimulus alternative given 

the observations up to some timepoint. The calculated posterior beliefs are then compared to a 

                                                           
5
 A stronger view is that such formal models are devoid of conceptual content and neither 

express nor test anything about cognitive processing. See Smith, Zakrzewski, and Church (2016) 

for a defense of this view based on competing formal models in animal metacognition research. 
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decision policy which determines what choice will be made. The Bayesian models developed by 

Bitzer and colleagues also make independent predictions about choices and reaction times. 

It turns out that under certain assumptions about the parameters, it is possible to 

“translate” DDMs into Bayesian models that make the same predictions and vice versa (Fard et 

al. 2017; Bitzer et al. 2014). More specifically, from parameters estimated by behavioral data in 

one kind of model, one can determine what parameters the other kind of model should take to 

predict the same choices and reaction time distributions. These models have distinct formal 

structures, including different numbers of parameters. Thus, they are not “…exactly the same 

mathematical thing” or “…simple rotations of each other…” as Smith, Zakrzewski, and Church 

(2016, 1347) argue is the case in their example of competing two parameter models. The DDMs 

and Bayesian models also make very different assumptions about the decision-making process as 

summarized in the previous paragraph. In the terminology adopted by Figdor (2018), their model 

construals are completely different.  

Despite good fit to both behavioral output and process data, the kind of cognitive process 

generating decisions in forced choice tasks is underdetermined. From fit alone, we do not have 

strong evidence either that target systems use a sequential sampling process represented by 

DDMs or that they formulate predictions and use Bayesian inference to calculate the likelihood 

of each stimulus. That is why Bitzer et al. (2014) emphasize a theoretical virtue of their Bayesian 

models: unlike DDMs, they explicitly model how sensory input is converted into evidence. Fard 

et al. (2017) further motivate translating DDMs into Bayesian models by showing that modeling 

input more precisely leads to improved fit. These dialectical moves reflect an understanding 

among researchers that epistemic considerations beyond good fit are necessary for motivating 

their theoretical accounts. Though it is worth recognizing that, historically, many psychologists 

have supported theories primarily by demonstrating model fit (see Roberts and Pashler (2000) 

for a widely cited critique of the practice). 

Cognitive scientists further acknowledge the epistemic limitations of model fit by 

emphasizing the importance of comparing models. Busemeyer and Stout (2002, 260) make the 

point sharply: “It is meaningless to evaluate a model in isolation, and the only way to build 

confidence in a model is to compare it with reasonable competitors”. I’ll conclude my rejection 

of (QS) by drawing attention to the fact that model comparison adds yet another layer of 

epistemic challenges. An initial problem is that the best fitting model is not always the most 
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accurate. If researchers simply pick the model that fits their data best, they will end up choosing 

overly complex models. (Relevant factors of model complexity include the number of 

parameters and functional form.) The result has been mathematically proven in simulation 

studies. As long as there is some error in the data, which is inevitable in experimentation, more 

complex models will fit better than the model that actually generated the data (Myung 2000; Pitt 

and Myung 2002). Such models are overfit. They fit a particular dataset well but are sensitive to 

random error in it, so they are unlikely to fit new data.  

Because a good fit can mislead researchers into favoring the wrong hypothesis, model 

selection techniques are used to achieve a balance between goodness of fit and complexity (see 

Myung, Cavagnaro, and Pitt (2016) for a recent review). However, there are many factors to 

consider when picking a model selection method. The reliability of some methods depends on 

sample size (Busemeyer and Wang 2000). Different classes of methods often disagree on which 

competing model is best because they seek out and punish different properties, and consistency 

between them further depends on circumstances such as effect size (Evans 2019). There are also 

broader methodological issues at play. Bayesians argue that their techniques for assessing the 

credibility of model parameters are better at deciding between competitors than model selection 

methods which attempt to balance goodness of fit and complexity (Kruschke 2011; Kruschke 

and Liddell 2018).  

If fitting a process model is not strong evidence that humans use some cognitive process, 

then discovering that the same model fits behavior of some nonhuman systems is not strong 

evidence that they share that cognitive process with humans. Further epistemic considerations 

are necessary for strong confirmation of hypotheses about what kind of underlying process 

generates behavior. Exactly what considerations and how they should be weighted are topics 

which deserve thorough analysis elsewhere. However, the discussion above indicates that model 

selection techniques have a key role to play, and circumstances matter (sample size, effect size, 

etc.). Though it should be stressed that no model selection method is optimal in all cases (Evans 

2019), and choices should arguably be guided by the variable goals of researchers (Kellen 2019; 

Navarro 2019).  

In this section I’ve concentrated on how model fit underdetermines the nature of 

cognitive processing and the many epistemic issues involved in selecting a model among 

multiple that fit the same data. Importantly, this kind of underdetermination is no threat to 
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scientific realism. Underdetermination arguments against scientific realism rest on all epistemic 

considerations failing to direct theory choice. Model fit is just one of many considerations. At 

most, the epistemic limitations of model fit suggest cases of “practical” underdetermination (see 

Turnbull (2018) for a useful taxonomy of underdetermination). According to this relatively weak 

form of underdetermination, present evidence fails to direct theory choice, and that is fully 

compatible with scientific realism. Thus, my argument doesn’t rely on any anti-realist 

maneuvers. Scientific theories may (eventually) track truths about cognitive processes 

underlying behavior, but formal modeling is no silver bullet.  

 

6. Concluding Remarks 

Mathematical models may bolster evidence for cognitive capacities in nonhuman 

systems, but they also introduce complications of their own. Some are metaphysical such as the 

question of whether mathematical structure is a property of models and their targets or just 

models. Failure to distinguish these possibilities and other modeling concepts (e.g., model 

structure vs. model construal) is a source of confusion among scientists and philosophers 

(Andrews 2021). Others are more methodological. What counts as “quantitative similarity” and 

why is it a relevant kind of similarity for inferring shared psychological processes? These 

questions indicate a general burden on philosophers analyzing implications of modeling results: 

notions which aren’t well-defined within the considered studies require explication and 

justification (cf. Bickle (2008) on metascience). Furthermore, drawing inferences about 

modeling results without attending to more general issues in scientific modeling is hasty. Here 

I’ve concentrated on phenomenological modeling and underdetermination, but the same 

conclusion is also defensible by considering issues regarding scientific representation (Drayson 

2020). 

The problem of underdetermination by model fit is one epistemic challenge which 

cognitive modelers have addressed by adopting model selection techniques. However, I hasten to 

emphasize that there is no simple story about how model selection takes place in cognitive 

science or any straightforward solution to the problem. Again, no currently available model 

selection method is optimal, and under some conditions there are no practical differences 

between them (Evans 2019). This highlights the need for further epistemic considerations 

(process predictions, mechanistic evidence, etc.) and perhaps non-epistemic values, but how they 
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should be jointly assessed is itself an open question. My preliminary suggestion is that the weight 

of each type of evidence should be sensitive to the kind of system in question. For example, 

mechanistic similarity may be a useful criterion for inferring shared cognition in other mammals, 

but misleading when applied to more distant relatives where very different mechanisms might 

have evolved to achieve similar ends. 

Elucidating what distinguishes phenomenological models from process models is perhaps 

a manageable problem. The fruitfulness of Jarecki et al.’s (2020) framework remains to be seen, 

and future proposals may improve upon theirs. But the underdetermination of cognitive 

processing by model fit is a hard barrier to directly inferring shared cognition from quantitative 

similarity in behavior. Both phenomenological modeling and underdetermination are classic 

topics in general philosophy of science with extensive literatures. However, general issues can 

play out in different and interesting ways across the sciences. I conclude below by briefly 

reflecting on why current philosophical accounts deliver a blurry boundary between 

phenomenological and process models in cognitive science.  

An uninspired remark is that philosophical attempts at demarcating kinds of models rest 

on intuitions about what models represent and when they count as explanatory. Such intuitions 

are bound to generate controversy. However, the case of linear models suggests a more 

interesting explanation of the hazy boundary. My suspicion is that any formalism which 

accurately describes behavior is a how-possibly model given the computational theory of mind. 

According to this theory, cognitive systems are the kinds of things whose behavior is governed 

by internal algorithms computing functions. Given this theoretical framework, any mathematical 

model fit to behavioral data is doubly interpretable as a representation of both behavior and 

internal processing which causes behavior.  

By contrast, consider the case of light. No one thinks its behavior is determined by 

internal computations. Hence, Snell’s law is uncontroversially judged a phenomenological model 

(Kaplan and Craver 2011). Although it is useful as a formal representation of light behavior and 

aids in predicting how light will refract, no one is tempted to think that Snell’s law explains why 

light behaves as it does. Stephan Hartmann’s (1999) account of models and stories is insightful 

here. He argues that stories inspired by an underlying fundamental theory (but not deduced from 

it) play an important role in model acceptance. Stories told around the formalism fit a model into 

the broader framework of the fundamental theory, and there is no good model without such a 
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story. In this terminology, what distinguishes mathematical models in cognitive science from 

Snell’s law and other phenomenological models in physics is that stories linking models of 

behavior to a dominant background theory (i.e., the computational theory of mind) are readily 

available. Consequently, any cognitive model which formally describes a system’s behavioral 

data is also a how-possibly model. It is a plausible possibility that the system computes the 

function specified by a well-fit model, and this would help explain its behavioral data, especially 

when supplemented with an algorithm by which the function is computed. (See Egan (2017) for 

more on function-theoretic characterization as an explanatory strategy in cognitive science.) Not 

so for formal models of light behavior. This allows a relatively clear boundary between 

phenomenological models and explanatory models in the case of light and perhaps physics more 

generally.  

Given that philosophical thinking about phenomenological modeling has been so 

concentrated on models in physics, it is unsurprising that current accounts are ill-suited for 

cognitive science. Hopefully, this paper encourages more philosophical work on 

phenomenological models, process models, and model selection, specifically in cognitive 

science. 
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