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Abstract

General epistemic polarization arises when the beliefs of a population grow fur-
ther apart, in particular when all agents update on the same evidence. Epistemic
factionalization arises when the beliefs grow further apart, but different beliefs also
become correlated across the population. I present a model of how factionalization
can emerge in a population of ideally rational agents. This kind of factionalization
is driven by probabilistic relations between beliefs, with background beliefs shaping
how the agents’ beliefs evolve in the light of new evidence. Moreover, I show that in
such a model, the only possible outcomes from updating on identical evidence are
general convergence or factionalization. Beliefs cannot spread out in all directions:
if the beliefs overall polarize, then it must result in factionalization.

1 Introduction

Epistemic polarization arises when a population’s beliefs about some hypothesis
grow further apart. This is sometimes operationalized as an increase in the spread
or dispersion of the belief across the population (for example, seeDiMaggio et al.
1996, Bramson et al. 2017, Madsen et al. 2018, Pallavicini et al. 2021, Freeborn 2023,
Freeborn 2024a, Freeborn 2024b). For example, suppose that most of a population
are very unsure about the safety of vaccines. If this belief polarizes, then more
people might become very sure that vaccines are safe, more people might become
very sure that vaccines are unsafe, and fewer people may be left highly unsure.1

However, we are often interested in agents who hold many different beliefs, and
in how those beliefs might be related. For instance, different polarized beliefs might
also become more closely correlated. Epistemic factionalization arises whenmultiple,
different beliefs become correlated in a population of agents (see Bramson et al.,
2017; Kawakatsu et al., 2021; Levin et al., 2021; Weatherall and O’Connor, 2021).
For example, suppose that some population’s beliefs about vaccination efficacy and
anthropogenic climate change have both polarized. However, perhaps the same
people who are skeptical about vaccine efficacy also tend to be skeptical about
anthropogenic climate change, whilst those who strongly believe that vaccines are
effective also tend to believe in anthropogenic climate change. Then, if I know that
someone is highly skeptical about about anthropogenic climate change, this could

∗Department of Philosophy, Northeastern University, London
1For one recent empirical study with similar findings to this, see Lee and Sibley (2020).
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give some degree of evidence that they might also be skeptical of vaccines.2 This
would be a case of factionalization.

Perhaps such factionalization could be driven by the relationships between dif-
ferent beliefs. Consider that proposed correlation between skepticism about anthro-
pogenic climate change and skepticism about vaccines. At first glance, these might
seem like unrelated beliefs, pertaining to two very different fields, climate science
and medicine. However, these beliefs might be related by an underlying belief, per-
haps regarding the trustworthiness of scientists or scientific institutions. If someone
regards scientific institutions as generally reliable, this could drive them to accept
scientific results about both anthropogenic climate change and vaccines. On the
other hand, if someone regards scientific institutions as generally unreliable, this
could drive skepticism about both anthropogenic climate change and vaccines.

Previous research has already shown how underlying background beliefs can drive
rational polarization of individual beliefs (see Jern et al. 2014, Freeborn 2023, Free-
born 2024a, Freeborn 2024b ). In this paper, I demonstrate how factionalization can
arise even for populations of ideally rational agents who have probabilistic relations
between their beliefs.

To do this, I will assume that the agents are as similar as possible, sharing the
same probabilistic relationships between their beliefs, and updating on the same
evidence, differing only in their initial degrees of belief about various hypotheses. I
show how patterns of factionalization spontaneously emerge due to the probabilistic
relations between beliefs themselves. One can think of this model as explicating one
particular kind of factionalization – arising due to certain underlying background
beliefs, worldviews or ideologies shaping how the agents’ beliefs evolve in the light
of new evidence.

The paper is structured as follows. In section 2, I outline a general model for
representing a population of agents with multiple beliefs, which could undergo fac-
tionalization. I also outline some of the formalism that I will use throughout the
rest of the paper. In section 3, I suggest three different approaches for operational-
izing “factionalization”, “convergence” and “general divergence” within this model.
In section 4, I present three simple examples of belief networks, one that leads
to convergence and two that lead to factionalization. I explain whether and how
convergence, polarization and factionalization arise in each case. In section 5, I ex-
plain why factionalization must arise when agents’ overall beliefs polarize: general
divergence never arises.

2 General Model

To talk about factionalization more concretely, it will help to have a basic model
of a population in mind. This model will include only certain minimal necessary
features for factionalization to emerge3. My aim is to distill one particular form of
factionalization that emerges due to the relationships between beliefs.

2Indeed, some studies suggest that beliefs about vaccines and climate change may in fact be correlated
within the U.S. population (Hamilton et al., 2015; Latkin et al., 2022).

3This simple model also allows for a very direct comparison with other recent models looking at
polarization (Jern et al. 2014, Freeborn 2023, Freeborn 2024a, Freeborn 2024b) as well as the formation
of scientific paradigms (Grim et al., 2022).
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This model is highly idealized, but it will be helpful to have a concrete real-world
picture in mind. The model might represent a population, accumulating exactly the
same evidence about some particular hypotheses, and updating their beliefs about
many other hypotheses on this basis. For instance, we might imagine a subset of the
general public reading a series of newspaper articles about the a particular Covid-19
vaccine. From this evidence, each population member might update many other
(more or less closely related) beliefs: about the efficacy of vaccines in general, about
the reliability of scientists, or about whether humans cause anthropogenic climate
change, and so forth.

I assume a finite population of agents. I assume that there is a set of hypotheses
or propositions describing the world or some system within it, each of which can
be true or false, represented by discrete, binary random variables4. Each agent
holds a degree of belief, a probability, about each hypothesis. The agents can have
conditional probabilities relating pairs of different beliefs. However, I assume that
all the agents agree about each of the conditional relations between beliefs: any
disagreement comes down to disagreements about the hypotheses themselves.

To represent relations between beliefs, I use the formalism of Bayesian networks
(see section 2.1). A Bayesian network specifies a set of variables, representing hy-
potheses or propositions, and the conditional relationships between variables. Im-
plicit in this model is that the agents are rational: all of their beliefs must be prob-
abilistically consistent at each time, and upon learning any evidence, their beliefs
are updated in a dynamically coherent way.5

2.1 Formalism of Bayesian networks

More formally, a Bayesian network is a graphical model that aims to capture some
subset of the independence relationships given by a joint probability distribution
(Pearl, 2009). Let X = {X1, X2, . . . XN} be a set of N random variables, defined on
a probability space. Then, a joint probability distribution P (X1, X2, . . . XN ) gives
the probability that each ofX1, X2, . . . XN falls within some range or a discrete set of
values specified for that variable. A factorization of a joint probability distribution
makes a choice about how variables depend upon others. Given some particular
ordering of variables 1 to N , a factorized representation P (X1, X2 . . . XN ) takes the
form,

P (X1, . . . XN ) = P (X1 | X2, . . . , XN )× P (X2 | X3, . . . , Xn) . . . P (Xn). (1)

=

N∏
i=1

P (Xi | X1, . . . Xi−1). (2)

4This is for simplicity only, the analysis extends straightforwardly to discrete random variables more
generally. However, requiring the variables to be discrete allows it to keep the analysis in section 3.3
significantly simpler (see Lazo and Rathie, 1978).

5Recent work in philosophy of science has used Bayesian networks as tools to explicate webs of
interconnected beliefs, paradigms, or scientific hypotheses (Hartmann and Bovens 2002, Dizadji-Bahmani
et al. 2011, Sprenger 2017, Grim et al. 2021 Grim et al. 2022). Other research has already used Bayesian
networks as a tool to study belief polarization (Jern et al. 2014, Freeborn 2023, Freeborn 2024a, Freeborn
2024b ).
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Each of the N ! factorizations of a joint probability distribution will correspond
to a different Bayesian network. Let G = (V,D) be a directed, acyclic graph, where
V is a set of vertices (or “nodes”), and D is a set of directed edges, pointing from one
vertex to another. In a directed, acyclic graph, these directed edges can never form
a closed cycle. Nodes are associated with unique variables, and edges represent the
conditional relations between different variables. A directed edge (Xa, Xb) exists in
the network if P (Xb, Xa) is a factor in the joint probability distribution. If there is
a directed edge from node A to node B, we call A the “parent” and B the “child”.
Bayesian networks encode a series of local Markov independence assumptions. If the
joint probability distribution factorizes with respect to a directed graph G, then each
variable in the joint probability distribution, associated with some node in the graph,
is probabilistically independent of its non-descendants, given its parents (Geiger and
Pearl, 1993; Pearl, 2009). So, we can fully specify a Bayesian network by a set of
nodes, V, directed edges, D, random variables, X , where there is a 1-1 map between
the random variables and the nodes (I will often use the two interchangeably), and
conditional probability distributions P (Xi | Xpari), where Xpari are the variables
associated with the parents of Xi.

Bayesian networks can be updated on new evidence using upwards and down-
wards propagation procedures, such that the updated Bayesian network remains
consistent with the axioms of probability theory. Downwards propagation involves
a simple application of the specified conditional probabilities, upwards propagation
involves a Bayesian inference procedure. In practice this requires a particular al-
gorithm; in this case I use successive variable elimination (see Darwiche 2009 for
a comprehensive overview). Successive updating makes use of the rigidity assump-
tion, that conditional probabilities of the form P (Xi | Xj) do not change when Xj

is updated (see Bradley 2005; Diaconis and Zabell 1982; Jeffrey 1983)6). The belief
propagation process is governed by probability functions for each node which take
as input the possible values of the parent nodes, and give as output the probability,
or probability distribution, of the variable associated with the node.

2.2 Specification of the Evidence

In this model, the agents update their beliefs based on accumulating evidence over
time. So, I assume that the agents begin at some timestep 0, and the population
evolves through T discrete timesteps. All agents receive the same evidence at each
timestep, and then updates all of their beliefs in their belief network on the basis
of this evidence.7 I will assume that all the evidence, at every timestep, pertains
to just one single belief, corresponding to one single node, let us call it the “data
node”.8. However, the effects of updating this single belief will propagate through

6Probability kinematics is a generalization of Bayesian updating for uncertain evidence in which the
updating still obeys the rigidity condition.

7For reasons of simplicity, I do not consider network effects or information sharing in this paper.
Every agent has access to exactly the same data. However, the interaction of network effects and belief
networks suggests a promising avenue for further study.

8In this sense, the evidence that the agents obtain will be “incomplete” (see Freeborn, 2024b for a
discussion of this point.) The results in this paper do generalize to evidence received on multiple different
beliefs. However, the other assumptions of this paper satisfy the Blackwell-Dubins assumptions about
Bayesian merging (see Blackwell and Dubins, 1962; Huttegger, 2015; Kalai and Lehrer, 1994; Nielsen,
2018; Schervish and Seidenfeld, 1990), so were the agents receive the same sufficient evidence to settle
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the network to other beliefs.
In order to explore the evolution of beliefs over time, I will look at successive

updating on uncertain evidence.9 Rather than the evidence determining that one of
the hypotheses is definitely true or false (with probability 1 or 0), I will specify this
as fixed likelihood evidence.

What does it mean for agents to receive the same likelihood evidence? In this
case, I will represent that as receiving evidence with the same likelihood ratio.
Following, Mrad et al. (2015), I define likelihood evidence η on a variable H of a
Bayesian network, as evidence given by a likelihood ratio,

L(H = h1) : . . . : L(H = hn) = P (η | H = h1) : . . . : P (η | H = hn), (3)

where the L(H = hi) are likelihoods, representing the probability of the observed
evidence, given that H is in the state hi. This is a natural standard of “sameness”
of evidence for several reasons. First, it allows the updating procedure to be com-
mutative (see Field, 1978; Jeffrey, 1988; Wagner, 2002, and Huttegger, 2015 for a
philosophical discussion; see also Diaconis and Zabell, 1982; Mrad et al., 2015 for
some mathematical considerations about the explication of uncertain evidence rele-
vant to Bayesian networks). Second, the same likelihood evidence of this kind can
also be thought of as exactly the same hard “virtual evidence” in an augmented
Bayesian network (Chan and Darwiche, 2005; Jacobs, 2018; Pearl, 1988)10

2.3 Agreement Between Agents

Summarizing, I assume that the agents agree about almost everything.

• The agents will form beliefs about the same set of propositions, X.

• The agents will agree about which beliefs are dependent or independent of
others (i.e. the agents will share the same belief network structure G).

• The agents will agree about the conditional relations between beliefs (i.e. the
agents will share the same conditional probability distributions between parent
and child beliefs).

• Each agent will receive the same likelihood evidence ηt, at each timestep t.

all of their beliefs, then the agents’ beliefs should converge. The kind of factionalization results I will
discuss here are most relevant to the case where the information is insufficient to settle every belief– see
Freeborn (2024b) for an argument that this is a reasonable assumption under a broad range of conditions.

9However, nothing in this analysis will depend on the use of uncertain evidence: the results also apply
to the special case of agents updating on certain evidence. I focus on uncertain evidence because it is
a more general case than certain evidence, and because it will generally yield more gradual changes in
the agents’ beliefs than certain evidence. It is easier to observe the evolution of the population’s beliefs
when they change more gradually.

10To represent evidence about some variable, H, we augment the original Bayesian network with a
virtual node, η, which has no children and whose only parent is the node corresponding to variable H.
We can represent uncertain evidence pertaining to H as certain evidence about this virtual node, and
update H by Bayes’ rule. The uncertainty regarding evidence on H is now specified by the likelihoods
given the virtual evidence η, i.e. P (η | H = hi). Therefore if different agents obtain evidence from
virtual nodes with the same conditional probabilities, this represents evidence with the same likelihoods
for each agent. If the reader is still uncomfortable with this notion of sameness of uncertain evidence,
they can at least be reassured that the results in this paper will apply to cases of certain evidence, as a
straightforward limiting case.
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The agents will only disagree about one thing: the initial probabilities that
they assign to each proposition. Given the Bayesian network structure, and the
rationality constraints on the agents, this disagreement can entirely summarized
by their beliefs about the exogeneous variables: those with no parents. Beliefs
about these variables are in some sense prior to other beliefs: we could imagine as
basic background beliefs held by the agents. Any polarization or factionalization
that arises must be driven entirely by these disagreements about those exogeneous
variables. I will assume that the exogeneous beliefs of our population are drawn
from a random distribution (more precisely, that the degrees of belief are drawn
from a uniform distribution between 0 and 1). As such, the exogenous variables will
be statistically independent of each other, at least at the initial timestep, t0.

2.4 Limitations of the Model

This idealized model is not intended to fully capture the complexity of real-world
factionalization, which is likely to arise from multiple factors. A sophisticated under-
standing of real-world factionalization should also consider other potential sources,
which may include social trust, political alliance-building or underlying psychologi-
cal attitudes (for example, see Lakoff, 2010; Weatherall and O’Connor, 2021 ). None
of these play a role in the model presented here.

However, this model may still provide insight of one plausible mechanism that
drives factionalization. It seems likely that the principles driving factionalization
in this idealized model could also be at work within the multifaceted models that
better represent the complexities of real-world factionalization.

Furthermore, this model does demonstrate how epistemic factionalization, a phe-
nomenon that one might intuitive suppose to be a result of “irrationality”, can arise
for a population of rational agents, who are all updating on the same evidence in
highly idealized circumstances. This insight challenges the notion that factional-
ization is solely a product of cognitive biases or misinformation, suggesting instead
that it can be a natural outcome of rational interrelations among beliefs. Therefore,
addressing factionalization is not as straightforward as correcting cognitive biases
or rectifying skewed information sources; it demands a deeper understanding of the
inherent dynamics between beliefs.

2.5 Related Models

With this model in hand, it is worth considering how it relates to, and differs from
certain other models. Weatherall and O’Connor (2021) demonstrate how factional-
ization can arise in networks of agents. These agents adopt a heuristic for evaluating
the reliability of evidence – they discount evidence from other agents as a function of
the overall differences between their beliefs. This model deliberately avoids appeal-
ing to background beliefs, worldview or ideologies. Indeed each of the agents’ beliefs
are assumed to be independent (except insofar as they depend on the agents beliefs
about other agents). Nonetheless, the beliefs systematically become correlated as
the population updates its beliefs. As such, they explicate a form of factionalization
that emerges solely “from trust grounded in shared belief”.

The approach taken here is importantly different: the factionalization does not
arise from network effects or social trust between agents. Indeed, in the model
presented here, all agents have access exactly the same evidence. Rather, it arises
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from relationships between the beliefs of agents. As such, whilst Weatherall and
O’Connor (2021) treat beliefs as independent, in the model presented here, the
beliefs are explicitly probabilistically related.

Grim et al. (2022) also create a model with some similarities to the one presented
in this paper. In their model, individual agents with multiple, probabilistically
related beliefs exhibit patterns of stable beliefs and punctuated equilibria, which
they suggest might resemble patterns of paradigm shifts. However, these equilibria
arise under different conditions, and by a different mechanism from the factions that
I study in this paper. In the Grim et al. (2022) model, agents receive an “evidence
barrage” of continually surprising evidence, of different likelihoods. As such, this
does not represent a “learning scenario” (see Huttegger, 2015) in which the agents
cumulatively learn the state of the world. Stable belief patterns arise when the
agents’ credences become resistant to change as a result of nearing either 0 or 1.
By contrast, I will study a population of many agents who receive an increasing
(but incomplete) set of information about the world. Most of the time, most of the
agents’ credences never become close to 0 or 1.

3 Convergence, Polarization and Factionalization

Recall the model in mind from section 2. What should we expect to happen to
the population’s beliefs as they update on the successive datapoints? We might
distinguish three ways in which the population’s beliefs could evolve: convergence,
general divergence and factionalization. In this section, I will suggest three different
ways to explicate convergence, general divergence and factionalization within this
model.11

3.1 Intuitive Idea

To begin with, let us consider an informal first pass, meant to capture the intuitive
ideas of convergence, general divergence and factionalization. We can understand
these possibilities as follows.

• Convergence: The beliefs of the population members will grow closer to-
gether as they gain evidence.

• General Divergence: The beliefs of the population members will grow fur-
ther apart in all directions as they gain evidence.

• Factionalization: The beliefs of the population members spread out, but not
uniformly. Instead, different beliefs become more correlated.

Convergence would be perhaps the least surprising of these possible outcomes.
After all, it is well known that Bayesian agents will often converge when they update
on the same information (as indicated by the famous results of Blackwell and Dubins,
1962; Huttegger, 2015; Nielsen, 2018; Schervish and Seidenfeld, 1990; see Freeborn,
2024b for a discussion of these results in the context of agents with a Bayesian
belief network)12. However, it is well known that Bayesian agents can polarize in

11However, note that different authors have used these terms in a wide variety of different ways– see
Bramson et al. (2017) for an overview.

12We may not see belief merging if the evidence is not complete, in the sense of being enough to settle
every belief that the agents hold (see Freeborn, 2024b)
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single beliefs when they update on evidence (see Freeborn, 2024a; Jern et al., 2014).
General divergence and factionalization would be more surprising outcomes: in some
sense the agents would be polarizing not just in one belief, but in their overall beliefs.

I will suggest some more precise definitions in sections 3.2 and 3.3, but it will
be useful to keep this intuitive picture in mind. I represent an example of each of
these cases for an imaginary population in figure 1.

3.2 Variance Explication

We can use the statistical variance to measure the spread of a single belief is across
the population. A high variance in a population’s beliefs about hypothesis X sug-
gests that the agents’ beliefs are spread out, whilst a low variance suggests that the
agents’ beliefs are closely clustered together. We can use the absolute covariance
to give one measure of the degree to which one belief gives us information about
another. If the absolute covariance between X and Y is large, then knowing an
agent’s belief about X allows us to predict something about their belief in Y 13. We
can define these quantities for our population as follows,

Variance: σ2
X =

1

N

N∑
i=1

(xi − µx)
2 (4)

Absolute Covariance: |σX,Y | =
1

N

N∑
i=1

|(xi − µx)(yi − µy)|, (5)

where X,Y are binary random variables representing two propositions, xi and yi
are the probabilities assigned to propositions X or Y being true by agent i, µx and
µy are the corresponding average degree of beliefs across the population, σX and σY

are the corresponding standard deviations across the population.
With this in hand, we can give a new explication the concepts of convergence,

general divergence and factionalization.

• Convergence: The average variance of the population’s beliefs decreases as
the agents gain evidence.

• General Divergence: The average variance of the population’s beliefs in-
creases, and the average absolute covariance increases or remains the same, as
the agents gain evidence.

• Factionalization: The average variance of the population’s beliefs increases,
but the average absolute covariance decreases, as the agents gain evidence

3.3 Information-Theoretic Explication

Finally, we are ready to develop a more general explication of convergence, general
divergence and factionalization. To do this, we will deploy several concepts from
information theory (see appendix A for definitions and a brief discussion; see Cover
and Thomas (2006) for further detail).

13More precisely, it tells us the linear joint variability. I use the absolute variances and covariances
in particular, rather than correlation coefficients, because we are not interested in the direction of the
relationship between two variables, only the degree to which one variable tells us about the other.

8



(a) A starting distribution of beliefs for the
population.

(b) A possible evolution from (a) in which
the both beliefs have grown closer together.
This is a case of convergence.

(c) A possible evolution from (a) in which
both beliefs have grown apart. This is a
case of general divergence.

(d) A possible evolution from (a) in which
both beliefs have grown apart, but not uni-
formly: the two beliefs have become corre-
lated. This is a case of factionalization.

Figure 1: A schematic representation of an imaginary population of 60 agents, with two
different beliefs, 1 and 2, represented by probabilities. The beliefs are shown at a starting
timestep, and three hypothetical evolutions of this population at a later timestep.
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Suppose that we have two joint probability distributions with the same sup-
port, P (X2, X2 . . . XN ) and Q(X2, X2 . . . XN ). The Jensen-Shannon (JS) divergence
DJS(P | Q) gives one natural way to measure the overall relatedness between two
joint probabilistic distributions. It is given by,

DJS(P | Q) =
1

2
DKL

(
P

∣∣∣∣∣ P +Q

2

)
+

1

2
DKL

(
Q

∣∣∣∣∣ P +Q

2

)
. (6)

where DKL is the Kullback-Leibler divergence, given by,

DKL(P | Q) = −
∑

x1∈X1,
...,

xN∈XN

P (x1, . . . xN )log
P (x1, . . . xN )

Q(x1, . . . xN )
. (7)

The Jensen-Shannon entropy effectively gives a measure of the symmetrized joint
information between two such distributions. It has the advantage of measuring
the overall information that one distribution gives us about another, whereas the
absolute covariance is only sensitive to linear relations.

For each joint probability distribution, P (X1, X2, . . . XN ), we can define a cor-
responding product of marginal probabilities, Pm = P (X1)P (X2) . . . P (XN ). In
effect, the marginal probabilities product tells us what the probability distribution
of the random variables would be if they were all independent. If we regard each
of the P (Xi) as telling us the agent’s credence about some salient hypothesis of
interest, Xi, then we could interpret the marginal probabilities product as telling
us the agent’s credences about each individual salient hypothesis, whilst neglecting
beliefs about how those salient hypotheses are related.

Suppose that our population of A agents holds the set of joint probability
distributions, P1, P2, . . . , PA, with corresponding marginal probabilities products,
Pm
1 , Pm

2 , . . . , Pm
A . Then the average JS divergence between the joint distributions

across the population, ⟨Djoint
JS ⟩, gives one way to measure the overall relatedness of

the joint probability distributions. On the other hand, the average JS divergence
between the marginal probabilities products across the population, ⟨Dmarginal

JS ⟩, gives
one way to measure the overall closeness of the agents’ beliefs about the propositions,
ignoring any correlations between these beliefs.

Now we have the tools in place for a plausible information-theoretic explication
of convergence, general divergence and factionalization.

• Convergence: ⟨Dmarginal
JS ⟩ decreases as the as the agents gain evidence.

• General Divergence: ⟨Dmarginal
JS ⟩ increases and ⟨Djoint

JS ⟩ increases or stays
the same as the agents gain evidence.

• Factionalization: ⟨Dmarginal
JS ⟩ increases and ⟨Djoint

JS ⟩ decreases as the agents
gain evidence.

Seen this way, there is one sense in which factionalization can be understood
as a form of epistemic divergence, but another in which it can be thought of as a
form of epistemic convergence. Factionalization is a form of divergence in the sense
that the agents’ beliefs about the key, salient hypotheses grow further apart overall,
⟨Dmarginal

JS ⟩ increases. However, it is a form of convergence, in the sense that, when
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the dependencies between beliefs are taken into account, the overall joint probability
distributions grow closer together, ⟨Djoint

JS ⟩ decreases.
From hereon, I will primarily use the information-theoretic approach, which has

the advantage of being sensitive to any statistical relation between the variables
across the population, linear or not. However, at times it will be convenient to con-
sider the variances of variables and the covariances or correlations between variables.

4 Simple Examples

To get a better grasp on convergence and factionalization, it will be helpful to
investigate some relatively simple examples. These should allow us to see how an
actual belief network might drive convergence or factionalization. I will not provide
an example of general divergence, for reasons that I will explain in section 5.

In each example, we will follow the model assumptions set out in section 2. I
will also simulate a randomly generated population in each case, and demonstrate
how its beliefs evolve. In each case I will assume that the agents’ degrees of belief
about the exogeneous hypotheses are uniformly distributed between 0 and 1.14

4.1 Example 1: Convergence

Let us suppose that agents have beliefs about two distinct hypotheses, H1 and H2,
and agree that H2 probabilistically depends on H1 as in figure 2. However, the
agents do not agree about the probabilities that they assign to the two hypotheses,
H1 and H2: let us assume beliefs about H1 are uniformly distributed across the
population.15 Perhaps, H1 represents the proposition, “The air pressure is low
today”, and H2 represents the proposition, “It will rain today”. All agree that
learning that it is raining today (H2 is true) provides the same degree of evidence
that the air pressure is low today (H1 is true), and vice versa. Therefore, we should
not expect any polarization to take place.

If agents receive the same evidence, then their beliefs will all update in the
same direction, as shown in figure 3. The variance in their beliefs about H2 will
decrease, and this in turn may drive a decrease in the variance of their beliefs about
H1. Overall, epistemic convergence takes place. The joint probability distributions,
P (H1)P (H2 | H1), and marginal probabilities products, P (H1)P (H2), will move
closer together.16

14Figures 3, 5 and 7 show results for simulated populations. However, I draw the exogeneous variables
from a quasi-random 3-dimensional Halton sequence, with prime-numbered bases 2, 3 and 5, rather than
from a true random uniform distribution. This is for purely demonstrative purposes: the Halton sequence
exhibits low mathematical discrepancy. As such the sequence is generally more evenly spaced than a
sequence generated by random draws (see Halton and Smith, 1964; Kocis and Whiten, 1997).

15As a result of agreeing about the conditional relations, the agents will agree more about H2 than
H1. In general, for a population who share a chain belief network, in which all nodes have at most
one parent, the variance of the children variables across the population will be always be less than
or equal to the variance of the parents. For instance, suppose that 2-valued variable B depends only
on 2-valued variable A, through a linear conditional probability distribution. We can write P (A =
true) = aP (B = true) + bP (B = false) = cP (B = true) + b, for some a, b ∈ [0, 1], c = a − b. Then
var(B) = c2var(A) ≤ var(A).

16Note that the beliefs in H1 and H2 across the population both begin and end perfectly correlated.
There are no external sources of information that can serve to change the perfect correlation: H2 depends
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4.2 Example 2: Factionalization

Now, let us allow the agents to have a slightly more complex network of beliefs, one
that allows them to update particular beliefs in opposite directions. Let the popula-
tion hold beliefs about three related hypotheses, H1, H2 and H3. It is already well
known that Bayesian networks of this form can drive the polarization of individual
beliefs (see Freeborn, 2023,2,2; Jern et al., 2014 for similar examples).17

Once again, suppose that the agents start with uniformly distributed degrees of
belief between 0 and 1, now about each of the exogeneous variables, H1 and H3.
Suppose that all agents agree that these beliefs are related: H2 probabilistically
depends on H1 (as in figure 4). Perhaps H1 represents the proposition “The air
pressure is low today”, H3 represents “My barometer will give the correct reading”
and H2 represents “My barometer states that the air pressure is low today”. All
agree about the same conditional relationships between these hypotheses. However,
their different beliefs regarding H3 will partly determine how agents update their
expectations about what the barometer will say. If I believe that the barometer is a
systematically reliable instrument, then a low air pressure reading should increase
my degree of belief that the air pressure really is low. On the other hand, if I believe
the barometer systematically gives incorrect readings, then a low air pressure reading
should decrease my degree of belief that the air pressure is low.

As before, all of the agents receive the same evidence about H2. Now the agents’
beliefs about H1 and H3 may be drawn in one of two different directions: ei-
ther they increase their credence in H1 being true, and decrease it in H3 or vice
versa, as in figure 5. Different degrees of belief in H3 drive polarization of beliefs
H1, upon updating beliefs about H2. Likewise, different degrees of belief in H1

drive polarization of beliefs about H3. Indeed, the marginal probabilities products,
P (H1)P (H2)P (H3) may grow further apart. However, when we look at both be-
liefs, about H1 and H3 together, we see that the beliefs that started independent
become correlated. As a result of these correlations, the joint probability distribu-
tions, P (H1)P (H3)P (H2 | H1, H3) grow closer together. The population’s beliefs
factionalize.

Why do the beliefs factionalize, rather than diverging in all directions, without
correlations forming? One way to understand this is in terms of the independencies
between the variables. Belief polarization arises here because the agents’ beliefs
about the H1 and H3 can both provide independent information about how to
update the other, given some value of H2.

18 As a result, unlike in the previous
example, the correlations between variables can vary after updating H2. In fact, the
correlations must vary if H2 is updated to a new value: given some agreed value of
H2, then knowing the beliefs about H3 provides new information to us about the
beliefs about H1.

entirely on H1 However, the slope of the relation between H1 and H2 has changed. In accordance with
the rigidity assumption, the probability p(H1 | H2) does not change, but the probability p(H2 | H1) can
change for each agent. One way to see this is that not every probability can change by the same amount
in light of the same evidence, as the probabilities are fixed between 0 and 1.

17More precisely, they allow for what (Freeborn, 2024a) terms the contra-directional updating of
individual beliefs. The network in example 1 already allows for a different kind of polarization, belief
divergence, in which the difference between particular beliefs increases.

18In fact, all that is required is that H1 and H3 are fully or partly independence sources of information,
conditional on the value of H2, i.e. P (H1 | H2) ̸= P (H1 | H3, H2) (and so likewise, P (H3 | H2) ̸= P (H3 |
H1, H2)) – see Freeborn (2024a); Jern et al. (2014).
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We can draw a more general lesson from examples like this. Whenever updating
one variable in a Bayesian population leads to the polarization of another variable,
then at least some fully or partly independent variables must experience changes in
their correlations. In Appendix B, I explain why this is the case. This realization
is very suggestive: if at least some variables must become more correlated, does
polarization always lead to factionalization, rather than general divergence? I will
return to this question in section 5.

4.3 Example 3: Multiple Factions

Let us augment the previous example once more, to see how this process can lead to
the population dividing into many different factions, rather than just two. A simple
way to do this is to add a second polarizing node.

Let the population hold beliefs about five related hypotheses, H1, H2, H3, H4,
andH5. Suppose that all agents agree that these beliefs are related, withH3 depend-
ing on H4 and H5, and with H2 depending on H1 and H3, as in figure 6. Perhaps
H1 represents the proposition “The air pressure is low today”, H3 represents “My
barometer will give the correct reading”, H2 represents “My barometer states that
the air pressure is low today”, H4 represents “The barometer is aneroid” and H5

represents “aneroid barometers give systematically reliable results”. Now, different
beliefs about H5 will drive polarization in H4 (and vice versa) given updated beliefs
about H1. But the updated beliefs about H1 are themselves already polarized by
the different beliefs about H3, given evidence about H2. As a result, rather than
dividing into two factions as in the previous example, the beliefs about H4 and H5

now divide into four distinct factions, as shown in figure 7. In general, augmenting
networks in this way, by adding more polarizing nodes can increase the number of
factions that may form.

5 Why do Populations Factionalize?

The examples in section 4 illustrate how convergence and factionalization both arise,
but not general divergence. In fact, given the definitions in section 3.3, then agents
should never rationally expect their population to exhibit general divergence upon
learning the value of some variable, under the assumptions of our general model,
and assuming that they know the population is rational. We can state this as a
general condition.

No General Divergence Condition
Suppose that we have two rational agents, with beliefs specified by joint probabil-
ity distributions P(X, Y, . . . Z, D) and Q(X, Y, . . . Z, D) over the same set of
discrete, binary variables, X = {X,Y, . . .D}. Let us suppose that the two agents
share the same conditional relationships, P (Y |X) = Q(Y |X), for all X,Y,∈ X .
Let us suppose that at least one agent is not certain about the value of D. Then,
DJS(P (X,Y, . . . Z,D | D) | (P (X,Y, . . . Z,D | D)) < DJS(P (X,Y, . . . Z,D) | (P )).

Proof. From the Kullback-Leibler divergence chain rule (equation 18) and the pos-
itivity of Kullback-Leibler entropy, it immediately follows that,

DKL(P (X,Y, . . . Z | D) | (P (X,Y, . . . Z | D)) < DKL(P (X,Y, . . .D) | (P (X,Y, . . .D)).
(8)
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H1

H2

(a)

H1 P (H2 = true)

True 0.9
False 0.1

(b)

Figure 2: (a) A Bayesian network structure with two variables, corresponding to degrees
of belief about hypothesesH1 andH2. I assume that all agents agree about this structure.
(b) The conditional probabilistic relations between H1 and H2.

Figure 3: Belief trajectories for a population of 15 agents, with regards to two related
hypotheses, H1 and H2 as in figure 2b. The agents all update on 20 datapoints about
H2, each with a likelihood ratio of 0.65. This drives all agents to update in the same,
positive direction about H1. Arrow are indicative, showing only the directions in which
their degrees of belief change.
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H1 H3

H2

H1 H2 P (H3 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

Figure 4: (a) A Bayesian network structure with three variables, corresponding to degrees
of belief about hypotheses H1, H2 and H3. I assume that all agents agree about this
structure. (b) The conditional probabilistic relations between H1, H2 and H3.

Figure 5: Belief trajectories for a population of 40 agents, with the belief network shown
in figure 4. Only two beliefs, H1 and H3 are shown. The agents all update on 20
datapoints about H2, each with a likelihood ratio of 0.65. This drives the agents to
polarize in their beliefs about H1 and H3. Observe that the agents beliefs about H1 and
H3 become correlated as they coalesce into two clusters. Arrow are indicative, showing
only the directions in which their degrees of belief change. Colors indicate whether the
belief pair (P (H1 = true), P (H2 = true) ends closest to (0,0) (blue) or (1,1) (orange) at
the final timestep, as measured by the Euclidean distance .
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H1 H3

H2

H4 H5
H1 H3 P (H2 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

H4 H5 P (H3 = true)

False False 0.9
False True 0.1
True False 0.1
True True 0.9

Figure 6: (a) A Bayesian network structure with five variables, corresponding to degrees
of belief about hypotheses H1, H2, H3, H4 and H5. I assume that all agents agree about
this structure. (b) The conditional probabilistic relations between H1, H2 and H3. (c)
The conditional probabilistic relations between H3, H4 and H5.

Figure 7: Belief trajectories for a population of 60 agents, with the belief network shown
in figure 6. Only two beliefs, H4 and H5 are shown. The agents all update on 20
datapoints about H2, each with a likelihood ratio of 0.65. This drives the agents to
polarize in their beliefs H1, in turn leading to four-way factionalization in their beliefs
about H4 and H5. Arrow are indicative, showing only the directions in which their
degrees of belief change. Colors indicate whether the belief pair (P (H4 = true), P (H5 =
true) ends closest to (0,0) (blue), (0,1) (purple), (1,0) (green) or (1,1) (orange) at the
final timestep, as measured by the Euclidean distance.
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Furthermore,

DKL(P (X,Y, . . . Z | D) = DKL(P (X,Y, . . . Z,D | D). (9)

Then,

DKL(P (X,Y, . . . Z,D | D) | (Q(X,Y, . . . Z,D | D)) < DKL(P (X,Y, . . . Z,D) | Q(X,Y, . . . Z,D)).
(10)

The result for Jensen-Shannon divergences follows immediately.

Therefore, if the agents’ overall beliefs grow further apart, then agents should
always expect factionalization, not general divergence.19 We can understand this as
a cumulativity of information condition. If all of the rational agents in some sense
acquire the same information, then in some sense their beliefs should move closer
together. This does not mean that beliefs cannot polarize, but rather, if polarization
generally takes place across all of their beliefs (i.e. their beliefs about the salient

hypotheses become more spread out; Dmarginal
JS increases) then the beliefs across the

population must factionalize, or become more correlated (i.e. their beliefs about

the salient hypotheses become more spread out; Djoint
JS must decrease). Whilst the

population’s marginal beliefs about all the hypotheses individually can diverge, if
we look at the the joint probabilities, then the population’s beliefs must nonetheless
grow closer together. Another way to think of this is that, in one sense Bayesian
learning is genuinely taking place in such a population. Alternatively, one might say
that the population’s beliefs are becoming more orderly or predictable, even as the
agents’ individual beliefs diverge.

Certain kinds of Bayesian belief polarization can only arise given certain struc-
tural or independence relations between the variables (see appendix B).20 In fact,
we can understand these as conditions on the dependence between variables: polar-
ization can only take place if the salient variables are dependent in precisely such a
way that they must become more generally correlated after polarization. In other
words, they can be viewed as conditions that exclude general divergence but allow
for factionalization, consistent with our cumulativity of information approach above.
I discuss this further in appendix C.

6 Conclusions

Epistemic factionalization arises very naturally, even for ideally rational agents, who
update on exactly the same evidence. This factionalization is driven by probabilistic
relations between different beliefs. Different background beliefs drive polarization
when the agents update beliefs on the same evidence in different ways: the same
evidence can cause some agents to increase their confidence, whilst others decrease

19However, this does not immediately rule our general divergence as a possibility altogether. As I
explain in appendix A, conditional Kullback-Leibler divergences are the expectations of the Kullback-
Leibler divergences of the conditional probabilities relative to the current probability distributions. Thus
whilst no agent should rationally expect the Kullback-Leibler divergences to increase upon learning the
same information, this does not mean that surprising results could not happen, in which upon learning
new information, the actual Kullback-Leibler divergences could increase.

20Freeborn (2024a) denotes the types of polarization that can only happen under these conditinos as
“contra-directional updating”.
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theirs. However, this same process tends to lead to different beliefs becoming cor-
related across a population. Factions emerge, in which agents tend to hold not just
one, but many similar beliefs. This process often, but not always, corresponds to
the coalescence of distinct clusters of agents, who hold many very similar beliefs,
different from the agents in other clusters.

This kind of factionalization is an epistemically rational process. Indeed, it
arises precisely because the agents are all rationally learning from the same evi-
dence. There are two perspectives through which we might view factionalization.
From one perspective, factionalization might look like a kind of convergence, whereas
from another viewpoint, factionalization might look like a particularly severe form
of polarization. Fully understanding factionalization requires us to study the phe-
nomenon stereoscopically, using both of these lenses.

In the first sense, factionalization corresponds to the agents’ beliefs genuinely
moving closer together: the agents’ overall joint probability distributions become
more similar, as measured by the Kullback-Leibler divergences or Jensen-Shannon
entropies. As a population factionalizes, the agents’ beliefs line up into two or more
opposing camps, each of whom agree about many different beliefs. We can see
factionalization as a process in which the populations beliefs become more orderly
or predictable, as correlations develop or strengthen between the different agents’
beliefs.

In the second sense, factionalization can be understood as a form of multi-belief
polarization. The key is whether we consider the joint probability distributions
or marginal probabilities products more relevant to the task at hand. If we are
primarily concerned with the beliefs about the individual hypotheses themselves,
then factionalization may represent a particularly severe kind of polarization. After
all, factionalization indicates that the agents have grown further apart in their beliefs
about each distinct hypotheses, even as their conditional probabilities may have
grown closer together. Recall our original example, a population factionalizing over
the issues of anthropogenic climate change and Covid-19 vaccines, perhaps driven
by an underlying belief in the trustworthiness of scientists. If the agents grow apart
on both of these issues, and their beliefs become more correlated, then this seems
to correspond to a severe kind of polarization, even as the agents’ joint probabilities
grow closer together.

Perhaps one way to put this is that a purely formal epistemologist might feel
reassured by factionalization. After all, it is the factionalization process that allows
a population’s overall beliefs (as represented by the joint probability distributions)
to converge, even when individual beliefs are polarizing. By contrast, a social epis-
temologist or social scientist might find factionalization more concerning. After all,
factionalization indicates that the population’s beliefs about each individual hy-
potheses are moving further apart; in such a way that the population is dividing
into factions that disagree about not just one belief, but many.

Moreover, no matter how rational the process, this kind of regimentation of
beliefs into distinct factions might often be problematic for real populations. For in-
stance, it is well-known that trust tends to decrease between people with very differ-
ent beliefs (Kitcher, 1995; Rogers, 1983). It is plausible that factionalization across
many different beliefs might exacerbate the general problems with social epistemic
polarization (Kawakatsu et al., 2021; Levin et al., 2021). In a real world population,
processes mechanically similar to this might plausibly contribute towards popula-
tions dividing into distinct worldviews, ideologies or paradigms. The fact that the
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beliefs of agents in each such faction might be internally consistent may discourage
convergence or learning from agents in other factions.

Ultimately, the model presented here explains only one kind of factionalization.
A more complete model of social factionalization would need to include many other
factors, not limited to cognitive biases of agents, differential access to information
between agents, and biased sources of information. However, the type of model
studied here suggests that, even fixing all such biases would not, in itself, be sufficient
to eradicate factionalization.

As Freeborn (2024b) points out, this type of rational polarization could po-
tentially be resolved with the right kind of evidence. If rational agents are able
to acquire the same sufficient evidence to settle all their beliefs, then such agents
should expect their beliefs to merge. However, in practice, we do not generally have
such complete evidence. Bridging the gap between such ideological factions could be
challenging. The beliefs of each opposing faction are rationally held, and mutually
self-supporting, on the basis of the same evidence. As a result, the epistemic factions
that so form could be difficult to remove through a process of convergence. Simply
acquiring more evidence pertaining to just one belief could plausibly drive further
factionalization.
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I(X | Y )
=

I(Y | X)
H(X | Y ) H(Y | X)

H(X) H(Y )

H(X,Y )

Figure 8: A Venn diagram relating various quantities of information for two variables,
X and Y in a joint probability distribution.

Appendix A Information-theoretic Quantities for Discrete Vari-
ables

Here, I outline some of the key information-theoretic quantities that I use (see Cover
and Thomas, 2006 for a more detailed overview). For simplicity, I define these only
for discrete variables. These concepts can all apply to joint probability distributions
of many variables; however, for clarity I will present them as probability distributions
over just one variable here unless the multi-variable case is of particular importance.
I leave the logarithmic bases unspecified.21 Figure 8 gives a visualization of some of
the quantities of information and their relations.

Information entropy is a measure of the uncertainty of a random variable. If
we learn something about the value of a random variable (i.e gain information),
then its information entropy will fall. The total information entropy of a random
variable tells us how much information we would need to learn its exact state. If X
is a discrete random variable, with possible values x, . . . ∈ X , then the entropy is
defined by,

H(X) = −
∑
x∈X

P (x)logP (x), (Entropy) (11)

where P (x) is the probability of X taking value x. The entropy of a probability
distribution is always greater than or equal to zero, H(X) ≥ 0; an entropy of zero
corresponds to a variable about whose value we are certain. Likewise, if we have
a joint probability distribution over N random variables, X1, . . . XN with supports
X1 . . .XN , then the joint entropy is given by,

21Choose your favorite logarithmic base. Any will do, as long as it is used consistently.
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H(X1, . . . XN ) = −
∑

x1∈X1,
...,

xN∈XN

P (x1, . . . xN )logP (x1, . . . xN ). (Joint Entropy)

(12)

The joint entropy tells us how much uncertainty is associated with the set of random
N random variables. The conditional entropy H(Y | X) tells us what entropy we
should expect for variable Y after learning X, on average, given our current joint
probability distribution over X and Y . It is defined by,

H(Y | X) = −
∑

x∈X ,y∈Y
P (x, y)log

P (x, y)

P (x)
. (Conditional Entropy) (13)

Loosely, we can think of conditional entropy H(Y | X) as the expected posterior
entropy upon learning X, and the original entropy of X as the prior entropy. It is
not symmetric: H(Y | X) ̸= H(X | Y ); however, Bayes’ rule for entropy tells us
how to relate these quantities:

H(Y | X) = H(X | Y )−H(X) +H(Y ). (Bayes’ Rule for Entropy) (14)

This is an additive analogue for Bayes’ rule for probabilities. The conditional entropy
always greater than or equal to zero, and always less than the marginal entropy:
0 ≤ H(Y | X) ≤ H(Y ). In other words, upon learning the true value of a variable
that we did not previously know (actually, more generally, upon reducing the entropy
of one variable), the posterior entropy of our joint probability distribution should
increase (on average, according to our probability measure). One can think of this
as a cumulativity of information condition. Roughly speaking, one should expect a
net gain in information from learning something new.

Suppose that we have a joint probability, P (X1, . . . , XN ) over N random vari-
ables. Then the joint entropy is can be calculated by the conditional entropies using
the chain rule for entropy.

H(X1, . . . XN ) =

N∑
i=1

H(Xi | X1, . . . Xi−1). (Chain Rule for Entropy) (15)

This is an additive analogue to the chain rule for probability (see equation 2).
The mutual information gives us the amount of information we expect to gain

about Y upon learning X, given our current joint probability distribution over X
and Y . It equals the difference between the original entropy of Y and the conditional
entropy of Y upon learning X.

I(X | Y ) = −
∑

x∈X ,y∈Y
P (x, y)log

P (x, y)

P (x)P (y)
= H(Y )−H(Y | X). (Mutual Information)

(16)
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The mutual information is symmetric: I(X | Y ) = I(Y | X). Another way to think
of the mutual information is that it tells us about the independence of variables. If
X and Y are independent, then the mutual information is zero, I(X | Y ) = 0: in
other words, neither independent variable provides us with any information about
the other (this corresponds to H(X) and H(Y ) having no overlap in figure 8). On
the other hand, if X and Y are perfectly correlated, then I(X | Y ) = H(X) = H(Y )
(this corresponds to H(X) and H(Y ) having total overlap in figure 8) . In general,
the mutual information is bounded between these two quantities, 0 ≤ I(X | Y ) ≤
H(X), H(Y ). The mutual information gives us a more general way to measure the
dependencies between variables than the correlation or covariance (equation 5), in
particular one more suited to handling nonlinear dependencies.

One can think of the mutual information, between a joint probability distribution
P (X,Y ) and a marginal probabilities product P (X)P (Y ), as a special case of the
Kullback–Leibler divergence. The Kullback-Leibler (KL) divergence between two
joint probability distributions on the same support is given by,

DKL(P | Q) = −
∑

x1∈X1,
...,

xN∈XN

P (x1, . . . xN )log
P (x1, . . . xN )

Q(x1, . . . xN )
, (KL Divergence)

(17)

where P andQ are two joint probability distributions with supportX. The Kullback-
Leibler divergence gives a measure of the information-theoretic difference between
two distributions between two distributions, according to the probabilities of one
distribution or the other. As such, the Kullback-Leibler divergence is not generally
symmetric, unlike the mutual information: DKL(P | Q) ̸= DKL(Q | P ). Kullback-
Leibler divergences also obey an additive chain rule,

DKL(P (x, y) | Q(x, y)) = DKL(P (x) | Q(x)) +DKL(P (x | y) | Q(x | y)),
(KL Divergence Chain Rule) (18)

where the conditional Kullback-Leibler divergences are shorthands for the expec-
tations of the Kullback-Leibler divergences of the conditional probability distribu-
tions, relative to the former probability distribution, DKL(P (x | y) | Q(x | y)) =
EP [DKL(P (x | y) | Q(x | y))].

Unlike the mutual information, the Kullback-Leibler divergence is generally un-
bounded. For example, if one agent is certain about a variable, (say P (X = x) = 1),
in a way that contradicts another (Q(X = x) ̸= 0), then the Kullback-Leibler di-
vergence DKL(P | Q) will be infinite for probability P . In other words, no finite
quantity of information can be sufficient to shift distribution P to Q.

For these reasons, it is often more convenient to use the Jensen-Shannon (JS)
divergence to measure the information-distance between two joint probability dis-
tributions. This is given by,

DJS(P | Q) =
1

2
DKL

(
P

∣∣∣∣∣ P +Q

2

)
+

1

2
DKL

(
Q

∣∣∣∣∣ P +Q

2

)
. (JS Divergence)

(19)
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The Jensen-Shannon divergence can be understood as a smoothed and symmetrized
version of the Kullback-Leibler divergence. If the probability distributions of two
agents move generally closer together, then the JS divergence will decrease. If the
probability distributions of two agents move generally further apart, then the JS
divergence will increase. For instance, if the probability distributions are identical,
P = Q, then DJS(P | Q) = 0. On the other hand, if the probability distributions are
as different as they can be, for a set of N variables, e.g. P (Xi) = 1, Q(Xi) = 0, for
all binary variables Xi ∈ X , then the JS divergence will take its maximum possible
value, (P | Q) = N

2 log(2).
There are many other possible different measures of the similarity of joint proba-

bility distributions, known as f-divergences (see Ali and Silvey, 1966; Csisz’ar, 1964;
Morimoto, 1963; Rényi, 1961). However, the Jensen-Shannon entropy has some
desirable properties. One can think of the Jensen-Shannon entropy as giving an “in-
formation radius” between two joint probability distributions (see Nielsen, 2021). It
has many convenient properties that make it suitable to measure the information-
distance between two joint probability distributions. Furthermore, it is symmetric,
DJS(P | Q) = DJS(Q | P ). The square root of the Jensen-Shannon divergence is a
metric distance (Endres and Schindelin, 2003; Fuglede and Topsoe, 2004).

One way to think of these quantities is as follows. The correlation and covari-
ance both give a measure of the statistical linear relatedness of two variables. The
mutual information gives a way to measure the overall statistical relatedness of
two variables, regardless of the linearity of the relation. The KL divergence and
JS divergence extend this, giving a measure of the overall relatedness of two joint
probability distributions. The KL gives this measure relative to one or the other
probability distribution, whereas the JS divergence gives a way to average this for
both probability distributions.

Appendix B Contra-directional updating for Bayesian agents

Jern et al. (2014) and Freeborn (2024a) define contra-directional (or contrary) updat-
ing as updating in which one agent increases their degree of belief in some hypothesis,
whilst another agent decreases their degree of belief:

(posterior2 − prior2)× (posterior1 − prior1) < 0. (20)

Suppose that there are two agents, with an identical Bayesian belief networks,
G, with discrete variables, including at least two binary variables, D and H. Let V
be the set of all exogeneous variables. Let the two agents have identical conditional
probability distributions for all children conditional on their parents, but may differ
in the probabilities associated with each variable. Let β be a virtual node, with
no parents, whose children are the set of the exogeneous nodes V (see figure 9).
Given that the only differences between the beliefs of the agents can be traced to
differences about the exogeneous variables, we can understand the virtual node β as
encoding all of the differences between the beliefs of the two agents.

Under these assumptions, Jern et al. (2014) prove that only certain kinds of
Bayesian belief networks can exhibit contra-directional updating. Following the
terminology of Freeborn (2024a), we can express this either through an independence
condition or a structural condition.
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D
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D

Figure 9: Left: An example Bayesian network without the virtual node β included.
Right: The same network with the virtual node β included. Observe that it is parent to
the exogeneous variables, and only the exogeneous variables..

Independence Condition
Contra-directional updating and transvergent updating with regards to H as a result
of updating D is only possible if the belief network satisfies these criteria:

1. D and β are conditionally dependent given H.

2. D and H are conditionally dependent given β.

The independence condition states that contra-directional updating and transver-
gent updating with regards to node H as a result of updating node D can only occur
if two requirements are met: 1) D and the virtual node β are conditionally depen-
dent given H and 2) D and H are conditionally dependent given β. β represents
the differing beliefs of two agents with the same Bayesian network structure, G, and
variables that can only take on values of 1 or 0.

The structural condition expresses this in terms of d-separation, a graphical or
structural property of Bayesian networks (i.e. one pertaining to the nodes and edges
only, rather than the numerical values of variables). Loosely, d-separation tests the
connectedness of the two variables (Pearl, 2009, pages 16-19). Roughly, speaking,
two sets of nodes are conditionally dependent if they are d-connected given a third
set of nodes and conditionally independent if they are d-separated given a third set
of nodes.

Structural Condition
Then contra-directional updating and transvergent updating with regards to H as
a result of updating D cannot occur for almost all distributions compatible with G
unless both of these two requirements is satisfied:

1. D and β are d-connected given H.

2. D and H are d-connected given β.

The structural condition states that almost all distributions compatible with
G, contra-directional updating and transvergent updating with regards to H can
only occur if 1) D and β are d-connected given H and 2) D and H are d-connected
given β. The first requirement means that the initial beliefs of the agents can provide
additional information aboutH once D is known, and the second requirement means
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that the data node D can give additional information about the hypothesis node H
given the initial beliefs of the agents.

These independence conditions demonstrate that the polarization of one variable
leads to changes in the correlations of other variables. To see this, observe that the
independence condition implies the following relations (see Jern et al., 2014):

1. P (β | D) ̸= P (β | HD),

2. P (H | D) ̸= P (H | βD).

Recall that, under these assumptions, all of the differences between agents can
be summarized by the differences in the exogeneous variables, which in turn can be
entirely represented by the virtual node, β. Thus, these conditions can be under-
stood as stating that, given some data pertaining to D, there are some independent
sources of information (captured within β), which vary between agents, and which
will affect how the agents update H. In other words, the value of H, upon updating
D will vary, given different independent beliefs, β. As such, the correlations between
H and other, at least partly independent variables, will change.

Appendix C Factionalization and the Independence Conditions

.
Suppose that we have two joint probability distributions, P (X,Y, . . . Z,D) and

Q(X,Y, . . . Z,D), where there is some uncertainty about the value of D. The no
general divergence condition (section 5) shows that the Kullback-Leibler divergence
berween the two joint probability distributions must decrease if we learn the true
value of some variable, e.g. D. We can use this to gain a new understanding of the
independence conditions in section B.

Recall (see equation 15) that we can rewrite the conditional entropy of a joint
probability distribution, given some variable as follows,

H(X,Y, . . . Z | D) = H(X) +H(X | Y ) + . . . H(D|X,Y, . . .)−H(D). (21)

More generally, given some factorization, with a choice of endogenous variables A
and exogeneous variables, B, we can write,

H(X,Y, . . . Z | D) =
∑
A∈A

H(A) +
∑
B∈B

H(B | A)−H(D). (22)

=
∑
A∈A

H(A | D) +
∑
B∈B

H(B | A, D) (23)

Let us call the first term the exogeneous entropy and the second term the endoge-
neous entropy. Now, if the value of D is not certain, H(D) ≥ H(D | X) for any
variable X. If this is the case then either the exogeneous entropy or the endogeneous
entropy (or both) be expected to fall upon learning D.

Suppose that we satisfy the two independence conditions in section B,

P (β | H) ̸= P (β | DH)P (H | β) ̸= P (H | Dβ) (24)
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Thus, at least two variables must conditionally depend on D. Thus, at least
two conditional entropies must change upon learning D. Given the positivity of
entropy, these conditional entropies must fall. If P and Q both share the same
graph structure, then these same conditional entropies must change in both of these
graphs. Given that the Kullback-Leibler divergence must be expected to decrease
upon updating on D, both of these entropies must change in the same direction.

One way of understanding this is that the belief structures must carry precisely
the conditional relationships to allow for variables to become more correlated, upon
updating. In other words, polarization can arise precisely when the independencies
between the variables allow for increased dependence between the variables. This
allows for the Kullback-Leibler divergence between the joint probability distributions
to fall, even when the Kullback-Leibler divergence between the marginal probabilities
products increases.
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