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Abstract

A recent flurry of work has addressed the question whether Maxwell
gravitation and Newton-Cartan theory are theoretically equivalent.
This paper defends the view that there are plausible interpretations
of Newton-Cartan theory on which the answer to the above question
is ‘yes’. Along the way, I seek to clarify what is at issue in this debate.
In particular, I argue that whether Maxwell gravitation and Newton-
Cartan theory are equivalent has nothing to do with counterfactuals
about unactualised matter, contra the appearance of previous discus-
sions in the literature. Nor does it have anything to do with spacetime
and dynamical symmetries, contra recent claims by Jacobs (2023). In-
stead, it depends on some rather subtle questions concerning how facts
about the geodesics of a connection acquire physical significance, and
the distinction between dynamical and kinematic possibility.
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1 Introduction

It is well known that Newtonian gravitation admits, in addition to its usual
static and kinematic shift symmetries, a symmetry known as Trautman gauge
symmetry, in which the connection and gravitational potential are altered.
Moreover, it is often claimed that just as kinematic shift symmetry moti-
vates the transition from Newtonian to Galilean spacetime, so does Traut-
man gauge symmetry motivate the transition to a geometrised formulation
of Newtonian gravitation, known as Newton-Cartan theory (NCT).1

Recently however, Saunders (2013) and Dewar (2018) have challenged
this orthodoxy—arguing that Maxwellian spacetime is the appropriate set-
ting which encapsulates the lessons of Trautman gauge symmetry. But whilst
the relationship between NCT and Galilean gravitation has been widely dis-
cussed, aspects of the relationship between NCT and Maxwell gravitation
(MG) remain unclear. In particular, there is little consensus on the extent to
which MG has less structure than NCT, or whether the two should be viewed
as competitors at all.2 Moreover, such questions have important implications
for wider debates about theoretical equivalence, theoretical underdetermina-
tion, and how symmetries bear on the interpretation of theories.

Here, I aim to address these issues. First, I review some details of MG
and NCT, as well as some preliminary results concerning the relationship
between them. I then turn to the interpretation of these results. In §3, I
discuss the fact that the models of these two theories are not in one-to-one
correspondence, and clarify how this relates to the issue of test particles and
counterfactuals about unactualised matter. §4 aims to diffuse Jacobs’ (2023)
recent argument that MG and NCT have different spacetime and dynamical
symmetry groups. Finally, in §5 and §6, I use the resources of category
theory to discuss how this relates to the question of theoretical equivalence.

1. See e.g. Stachel (2007), Knox (2014), and Read and Møller-Nielsen (2020).
2. A recent selection of competing views on the subject: Saunders (2013), Knox (2014),

Weatherall (2016b), Dewar (2018), Wallace (2020), and Jacobs (2023).
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§7 concludes.

2 MG and NCT

Let M be a differentiable four-manifold (assumed connected, Hausdorff, and
paracompact). A temporal metric ta onM is a smooth, closed, non-vanishing
1-form;3 a spatial metric hab onM is a smooth, symmetric, rank-(2, 0) tensor
field which admits, at each point in M , a set of four non-vanishing covectors
i
σa, i = 0, 1, 2, 3, which form a basis for the cotangent space and satisfy

hab
i
σa

j
σb = 1 for i = j = 1, 2, 3 and 0 otherwise. A spatial and temporal metric

are compatible iff hantn = 0. A vector field σa is spacelike iff tnσ
n = 0, and

timelike otherwise. Given the structure defined here, ta induces a foliation
of M into spacelike hypersurfaces, and relative to any such hypersurface, hab

induces a unique spatial derivative operator D such that Dah
bc = 0.4 hab is

flat just in case for any such spacelike hypersurface, D commutes on spacelike
vector fields i.e. D[aDb]σ

c = 0 for all spacelike vector fields σa. Finally, let
∇ be a connection on M . ∇ is compatible with the metrics just in case
∇atb = 0 and ∇ah

bc = 0.
The first theory of Newtonian gravitation we will consider is Galilean

gravitation. This theory has kinematically possible models (KPMs) of the
form ⟨M, ta, h

ab,∇, T ab, ϕ⟩, where ∇ is a flat, compatible connection, T ab the
mass-momentum tensor for the matter fields F , and ϕ a scalar field (which
represents the gravitational potential). ⟨M, ta, h

ab,∇, T ab, ϕ⟩ is a dynamically
possible model (DPM) of Galilean gravitation just in case

∇nT
na = −ρ∇aϕ (1a)

∇n∇nϕ = 4πρ (1b)

where ρ := T nmtntm is the scalar mass density field. In what follows, we
will be interested in the following transformation one can make on models of
Galilean gravitation, known as Trautman gauge symmetry :

∇ → (∇, tbtc∇aψ) (2a)

ϕ→ ϕ+ ψ (2b)

3. Here and throughout, abstract indices are written in Latin script; component indices
are written in Greek script; and the Einstein summation convention is used. Round
brackets denote symmetrisation, square brackets antisymmetrisation.

4. See Weatherall (2018, 37–38), Malament (2012, §4.1) for details.
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where ∇a∇bψ = 0.5 This is a symmetry of Galilean gravitation, in the sense
that M is a model of Galilean gravitation just in case all its Trautman gauge
symmetry-related cousins are. Trautman gauge symmetry-related models
agree on T ab, so at least appear to be empirically indistinguishable.6 One
might therefore wonder if there are theories which collapse the distinction
between Trautman gauge symmetry-related models of Galilean gravitation.
As is well known, the answer to this question is ‘yes’, and there are in fact
two such theories—NCT and MG.

I will begin by introducing NCT. KPMs of this theory have the form
⟨M, ta, h

ab,∇, T ab⟩, where ∇ is a compatible connection, and T ab the mass-
momentum tensor for F . ⟨M, ta, h

ab,∇, T ab⟩ is a DPM of NCT just in case

∇nT
na = 0 (NCT1)

Rab = 4πρtatb (NCT2)

Ra c
b d = Rc a

d b (NCT3)

Rab
cd = 0. (NCT4)

MG requires some further groundwork. This theory is set on Maxwellian
spacetime, which is supposed to be equipped with a standard of rotation, but
not a standard of absolute acceleration. But whilst the metrics and connec-
tion are by now standard notions, the rotation standard is not, and stands in
need of further comment. This was introduced by Weatherall (2018): if ta,
hab are compatible temporal and spatial metrics onM , a standard of rotation
⟳ compatible with ta and hab is a map from smooth vector fields ξa on M to
smooth, antisymmetric rank-(2, 0) tensor fields ⟳b ξa on M , such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =
α ⟳a ξb + ξ[bda]α;

5. For details, see Malament (2012, §4). The notation here follows Malament (2012,
proposition 1.7.3): ∇′ = (∇, Ca

bc ) iff for all smooth tensor fields αa1...ar

b1...bs
on M ,

(∇′
n −∇n)α

a1...ar

b1...bs
= αa1...ar

mb2...bs
Cm

nb1 + ...+ αa1...ar

b1...bs−1m
Cm

nbs

− αma2...ar

b1...bs
Ca1

nm − ...− α
a1...ar−1m

b1...bs
Car

nm .

6. As such, Trautman gauge symmetry is at least an epistemic symmetry in Dasgupta’s
(2016) sense.
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3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb].

One can then define a Maxwellian spacetime as a structure ⟨M, ta, h
ab,⟳⟩,

where ⟳ is compatible with ta and hab.
Now fix a spacetime ⟨M, ta, h

ab⟩, and let ∇ and ⟳ be a connection and
standard of rotation on M , both compatible with the metrics. Following
March (2023), I will say that a standard of rotation and connection are
compatible just in case they agree with one another in the following sense:
for any vector field ηa on M , ∇[aηb] = ⟳a ηb.7 Likewise, a connection ∇
is compatible with a spacetime ⟨M, ta, h

ab,⟳⟩ just in case it is compatible
with the metrics and ⟳. Finally, a spacetime ⟨M, ta, h

ab,⟳⟩ is rotationally
flat just in case hab is flat and there exists a unit timelike vector field ξa on
M such that ⟳a ξb = 0 and £ξh

ab = 0,8 or equivalently, just in case some
flat derivative operator is compatible with ⟨M, ta, h

ab,⟳⟩ (Weatherall 2018,
proposition 1).9

We need to say something about the Newtonian mass-momentum tensor
T ab. In both Galilean gravitation and NCT, we used the connection to extract
vector fields from T ab. In MG, we will likewise want to extract vector fields
from T ab, but without a connection. To do this, we impose the ‘Newtonian
mass condition’: whenever T ab ̸= 0, T nmtntm > 0. This captures the idea
that the matter fields we are interested in are massive, in the sense that
there can only be non-zero mass-momentum in spacetime regions where the
mass density is strictly positive. Since T ab is symmetric, the Newtonian mass
condition guarantees that whenever T ab ̸= 0, we can uniquely decompose T ab

as T ab = ρξaξb + σab, where ξa = ρ−1tnT
na is a smooth unit timelike future-

directed vector field (interpretable as the net four-velocity of F ), and σab is a

7. See Weatherall (2018) for details; the basic fact is that any connection determines
a unique compatible standard of rotation, but a standard of rotation does not similarly
determine a unique compatible connection.

8. Here and throughout, £ denotes the Lie derivative.
9. My justification for this terminology comes from (Malament 2012, propositions 4.3.1,

4.3.2), see also equation (5), and is analogous to the usual notion of flatness for a connec-
tion. A standard of rotation induces a standard of parallel transport for spacelike vectors
along arbitrary (spacelike or timelike) curves, and this standard of parallel transport is
path-independent just in case the spacetime is rotationally flat.
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smooth symmetric rank-(2, 0) tensor field which is spacelike in both indices
(interpretable as the stress tensor for F ).

We can now introduce MG. This theory has KPMs ⟨M, ta, h
ab,⟳, T ab⟩,

where ⟳ is compatible with the metrics and T ab is the mass-momentum
tensor for the matter fields F . ⟨M, ta, h

ab,⟳, T ab⟩ is a DPM of MG just in
case

(i) ⟨M, ta, h
ab,⟳⟩ is rotationally flat; and

(ii) For all points p ∈ M such that ρ ̸= 0, the following equations hold at
p:

£ξρ−
1

2
ρĥmn£ξh

mn = 0 (MG1)

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) = −4

3
πρ− 1

3
Dm(ρ

−1Dnσ
nm) (MG2)

£ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m+ ⟳c (ρ−1Dnσ
na) = 0, (MG3)

where ĥab is the spatial metric relative to ξa,10 the
i

λa are three orthonormal
connecting fields for ξa, and ∆ is the “restricted derivative operator” defined
in Weatherall (2018). This acts on arbitrary spacelike vector fields σa at a
point p according to

ηn∆nσ
a := £ησ

a + σn ⟳n ηa − 1

2
σn£ηh

an (5)

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect
to any extension of ηa off of p). It also has the property that ηn∆nσ

a =
ηn∇nσ

a for any derivative operator ∇ compatible with ⟳ (Weatherall 2018,
37).11

The relationship between MG and NCT is summarised by the following
two propositions (March 2023; Chen 2023):

10. That is, the unique symmetric tensor field on M such that ĥanξ
n = 0 and hanĥnb =

δab − tbξ
a.

11. For further details on this way of presenting MG, including the interpretation of the
equations (MG) and its relation to Dewar’s (2018) theory by the same name, see March
(2023) and Chen (2023).
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Proposition 1. Let ⟨M, ta, h
ab,∇, T ab⟩ be a model of NCT. Then there ex-

ists a unique standard of rotation ⟳ such that ∇ is compatible with ⟳ and
⟨M, ta, h

ab,⟳, T ab⟩ is a model of MG.

Proposition 2. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of MG. Then there exists

a derivative operator ∇ compatible with ⟳ such that ⟨M, ta, h
ab,∇, T ab⟩ is

a model of NCT. Moreover, this derivative operator is not unique. If ∇
is such a derivative operator, then ∇′ = (∇, tbtcσa) also satisfies the above
conditions, where σa is any spacelike, twist-free, and divergence-free vector
field such that ρσa = 0.

Corollary 2.1 (Chen, 2023). Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of MG such

that ρ ̸= 0 on some open set O ⊂ M . Then there exists a unique derivative
operator ∇ such that ⟨M, ta, h

ab,∇, T ab⟩ is a model of NCT.

This concludes my presentation of MG and NCT. With this in hand, I will
now consider two features of the relationship between these theories which
have become focal points in the literature on MG and NCT. The first has
to do with the fact that the models of MG and NCT are not in one-to-one
correspondence as per proposition 2; the second has to do with the spacetime
and dynamical symmetry groups of the two theories.

3 On geodesics, counterfactuals, and distinc-

tions without differences

We begin with the fact that typically, a model of MG does not carry enough
information to fix a unique model of NCT. Now, it is worth emphasising
at the outset that corollary 2.1 substantially restricts the space of matter
distributions for which this failure of uniqueness occurs. For example, Chen
(2023, 9) has recently claimed that the models of MG and NCT are in one-
to-one correspondence over “all but the vaccuum sector.” This is technically
correct, though I would like to suggest that it does not quite do justice to
the fact that there are models of NCT which do not fall under the scope
of corollary 2.1 but which are standardly taken not to represent solutions
of NCT in which no matter is present. The obvious case of this is point-
particle matter distributions: if e.g. T µν = mδ3(x)ξµξν in some Maxwellian
coordinate system xµ on M ∼= R4\R1, it is straightforward to show that
if ∇ is a Newton-Cartan connection for this matter distribution then so is
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(∇, tbtc∇aϕ), where ϕ = 2z2 − x2 − y2.12 A similar construction works for
matter distributions involving a pair of point-particles with vanishing total
angular momentum,13 though it does not generalise much beyond this.14

So the scope of this failure of uniqueness is limited. Nevertheless, it has
been taken to show that NCT draws its distinctions finer than MG, and
hence that the two theories are inequivalent. Saunders puts the concern as
follows:

What of possible worlds, and distinctions among them drawn
in NCT, invisible to ours? Take possible worlds each with only
a single, structureless particle. Depending on the connection,
there will be infinitely-many distinct trajectories, infinitely-many
distinct worlds of this kind. But in [Maxwellian terms], as in
Barbour-Bertotti theory, there is only one such world—a trivial
one, in which there are no meaningful predications of the motion
of the particle at all. Only for worlds with two or more parti-
cles can distinctions among motions be drawn. From the point of
view of the latter theories, the fault lies with introducing a non-
trivial connection—curvature—without any source, unrelated to
the matter distribution. At a deeper level, it is with introduc-
ing machinery—a standard of parallelism for time-like vectors,
defined even for a single particle—that from the point of view
of a relationalist conception of particle motions is unintelligible.
(Saunders 2013, 46–47)

Let’s count the steps here. There is the mathematical fact that there are mat-
ter distributions for which the correspondence between models of NCT and
MG is many-to-one. These models of NCT (for a single model of MG) dis-
agree only on the value of the Newton-Cartan connection in empty spacetime
regions. Then there is the claim that these disagreements about the value of
the Newton-Cartan connection are distinctions without differences. But just

12. ϕ is harmonic, and (−2x,−2y, 4z)δ3(x) = 0 in the sense of distributions.
13. We can always find a Maxwellian coordinate system in which such particles are

confined to the line x = y, z = 0, so can take ϕ = (x2 − y2)z.
14. The basic mathematical fact is that if ϕ is harmonic on some spacelike hypersurface

S, then either ∇aϕ = 0 on S or the zeros of ∇aϕ form a subspace of S with dimension
at most one. This is sufficient to exclude almost all point-particle distributions with three
or more particles, as well as (since ∇aϕ is twist-free) two-particle distributions with non-
vanishing angular momentum.
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what are the distinctions in question? Since the geodesics of the Newton-
Cartan connection encode facts about the trajectories of test particles, a
number of authors have suggested that they have to do with counterfactuals
about unactualised matter. Here is Dewar (2018) on the subject:

Consider a pair of such materially identical models M , M ′ of
[NCT]. [...] On the one hand, M and M ′ agree with respect to
all material structure: thus, the full collection of every piece of
observational data regardingM is identical to that regardingM ′.
On the other, it is not straightforwardly the case that M and M ′

agree on the content of all possible observations. For although
there is not (in fact) any matter in the empty regions, there could
have been, and were such matter to have been introduced, the
motions that it would have made would suffice to empirically
discriminate between M and M ′ (or to rule them both out in
favor of some third alternative). More generally, the distinction
at issue is whether unactualized dispositions may properly be
considered as empirically respectable properties. (265–266)

In a similar vein, Wallace (2020) attempts to diffuse Saunders’ concern by
arguing that:

[Insofar] as these counterfactuals [about the behaviour of unac-
tualised matter] are indeterminate (perhaps because a Humean
view of laws [...] is assumed) so is the Newton-Cartan connection.
(29)

However, this cannot be the whole story. To see this, it is helpful to lay
out explicitly the kind of reasoning which Dewar and Wallace appear to be
engaging with here:

1. Let M , M ′ be a pair of distinct (non-isomorphic) but materially iden-
tical models of NCT, which represent worlds W , W ′.

2. M and M ′ disagree about the geodesics of the Newton-Cartan connec-
tion in empty spacetime regions.

3. The geodesics of the Newton-Cartan connection in empty spacetime
regions of M , M ′ correspond to the trajectories of test particles in
empty spacetime regions of W , W ′, by the geodesic principle.
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4. Facts about test particle trajectories in empty spacetime regions of
W , W ′ represent counterfactuals about the behaviour of unactualised
matter in W , W ′.

5. Counterfactuals about unactualised matter are physical facts.

C. Therefore, W and W ′ disagree about some physical fact, so W ̸= W ′.
But this means that M and M ′ represent distinct possibilities, and
therefore NCT draws its distinctions finer than MG.

So counterfactuals are invoked to bridge the gap between the mathematical
facts 1-3 about materially identical models of NCT, and C, which is a claim
about how these models represent possible worlds. The crucial premise here
is 4, which takes us from a claim about test particle trajectories to a claim
about the behaviour of unactualised matter. 4 certainly seems plausible, and
is very much in line with physics practice.

But 4 should also give us pause. After all, if we introduce unactualised
matter into some empty spacetime region, then this matter will also act
as a source field for the equations (NCT). This will bring with it a new
Newton-Cartan connection, which will then give determinate predictions for
the behaviour of the matter in question. So if we wish to evaluate counterfac-
tuals about the behaviour of unactualised matter, there is another obvious
strategy—which is to modify T ab to include the unactualised matter as well
as the original background matter distribution, and then examine how this
new mass-momentum tensor evolves under the dynamics of the theory.15 In-
deed, this is precisely the strategy one must use to evaluate counterfactuals
about unactualised matter in MG, since the theory lacks a connection.

Note that this strategy for evaluating counterfactuals about unactualised
matter is strikingly similar to possible worlds analyses of counterfactuals
familiar from metaphysics. Consider e.g. Lewis’s (1973; 1973; 1979) account.
According to Lewis, the counterfactual ‘If it were the case that A, then it
would be the case that C.’ is true at some world W just in case some world
where both A and C are true is more similar toW than any world where A is

15. Note that the resulting model won’t be a DPM of NCT (or MG), since discontinuously
modifying the mass-momentum tensor to insert matter into empty spacetime regions will
violate (NCT1) (or (MG1)). The models I have in mind are those KPMs of NCT where
(a) the equations (NCT) all hold until some time t, (b) the equations (NCT) all hold after
t, but (c) we take T ab → T ab + T ′ab at t, where supp(T ab) ∩ supp(T ′ab) = ∅, so that
(NCT1) is violated, and analogously for MG. I discuss this in more detail in what follows.
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true but C is false. Similarity amongst worlds, for Lewis, is to be evaluated
using the following criteria, in order of most to least importance (Lewis 1979):

• Avoid widespread, diverse violations of law.16

• Maximise the region of perfect match of particular fact.

• Minimise small, simple violations of law.

In practice, then, Lewis’s prescription for evaluating counterfactuals about
the behaviour of unactualised matter is as follows: take a world which is a
perfect duplicate of W before some time t,17 insert a small violation of law
at t to introduce unactualised matter into the region of interest, and then
evolve the laws forward.

But now compare this to the strategy outlined above. We take the model
that we are using to represent some world of interest W . We discontinuously
modify T ab at some time t to insert unactualised matter into the region of
interest—thereby violating at least (NCT1) (or (MG1), in the case of MG).
And then we evolve the laws forward to examine how it behaves. If Lewis’s ac-
count is adequate, it is this method—and not the use of test particles—which
is the correct way to evaluate counterfactuals about unactualised matter.18

In this case, 4 is false. Counterfactuals about the behaviour of unactualised
matter are not represented by test particle trajectories, but elsewhere in the
theory (I have argued, among some subset of the KPMs—recall footnote 15).

16. ‘Law’ here refers to the laws of the world W we are considering.
17. Lewis (1979) claims that his similarity ordering ensures that worlds which are perfect

duplicates before time t but diverge thereafter will be more similar than worlds which differ
before t but are perfect duplicates after t. Whilst this is controversial (see e.g. Elga (2001)),
I am assuming that this works as intended.
18. Doesn’t using test particles avoid the need to either violate the laws or change the

matters of particular fact? Not if the matter we are interested is massive (and note that,
given the Newtonian mass condition, this is the only matter we can meaningfully talk
about in NCT or MG). If we use test particles to evaluate counterfactuals about the
behaviour of some massive body, this amounts to neglecting its role as source matter in
the equations (NCT). So in those worlds where (a) there is unactualised matter in the
region of interest, and (b) the matter in question behaves as a test particle, the equations
(NCT1) and (NCT2) are violated at all times. I take this to be a greater violation of
law than is involved in discontinuously modifying the mass-momentum tensor on only one
spacelike hypersurface. Plausibly, using test particles also involves changing some matters
of particular fact: there is unactualised matter in the region of interest, but this fact is
just not being explicilty represented in the theory’s formalism.

10



This gives us a better handle on what is at issue in claims that NCT
draws its distinctions finer than MG. To say that NCT draws distinctions
without differences is to say that there are models of NCT which represent
distinct possible worlds, but which correspond to the same model of MG.
Proposition 2 takes us some way towards that—but it does not take us the
whole way. After all, it might still be the case that materially identical
models of NCT represent the same possible world. One way to motivate the
idea that these models do not represent the same possible world is to appeal
to the geodesic principle. This tells us that any pair of such models disagree
as to the behaviour of test particles in empty spacetime reasons.

But in virtue of what do facts about test particles in empty spacetime
regions count as physical facts? One answer would be to go via 4, and say
that they represent counterfactuals about unactualised matter. If we ac-
cept 4, then we might be led to think that MG is unable to make sense of
counterfactuals about unactualised matter (since the theory lacks a connec-
tion). We are also forced to look elsewhere for the source of disagreement
about whether NCT draws its distinctions finer than MG. Hence, Wallace
suggests that it has to do with 2, arguing that on Knox’s or Brown’s view,
the Newton-Cartan connection is indeterminate in empty spacetime regions.
Dewar, on the other hand, appears to accept 1-5, but goes on to suggest that
the disagreement has to do with a close cousin of 5—whether counterfactuals
about unactualised matter are empirical facts.

I have argued that this was a mistake: counterfactuals about unactu-
alised matter are represented among the KPMs of the theory, and show up
in precisely the same way in both NCT and MG. As such, the relevant ques-
tion for whether NCT draws its distinctions finer than MG is not whether
counterfactuals about unactualised matter are indeterminate in NCT or MG,
pace Wallace. Nor is it whether unactualised dispositions constitute empir-
ical content, pace Dewar. Rather, it is how (if at all) we are to justify the
inference from 1-3 to C.

Now, one might wonder if we can do this without 4. We might, instead,
try replacing 4 and 5 with

4′. Facts about test particle trajectories in empty spacetime regions of W ,
W ′ are physical facts.

The business of arguing that NCT draws its distinctions finer than MG then
comes down to finding some justification for 4′, without appealing to 4 and
5.
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How else might we justify 4′? Here is a thought. Model the behaviour
of a particle plus some background matter distribution, and consider what
happens when we ignore the role which that particle plays as source matter.
Facts about test particles count as physical facts in virtue of the fact that
making this idealisation preserves some (or all) of the salient features that
we get from an exact treatment—the approximate trajectory of the particle,
perhaps.

The thought is tempting—certainly. We should see whether this way
of thinking holds up to scrutiny. In NCT, the central result concerning the
behaviour of test particles is Weatherall’s (2011) Newtonian geodesic theorem
(where I have modified his statement of the theorem slightly to match the
terminology used here):

Proposition 3 (Weatherall, 2011). Let ⟨M, ta, h
ab⟩ be a non-relativistic space-

time, ∇ a compatible derivative operator on M and suppose that M is ori-
ented and simply connected. Suppose also that Rab

cd = 0. Let γ : I → M be
a smooth curve. Suppose that given any open subset O of M containing γ[I],
there exists a smooth symmetric field T ab on M such that:

• T ab satisfies the Newtonian mass condition;

• ∇nT
na = 0;

• supp(T ab) ⊂ O; and

• There is at least one point in O at which T ab ̸= 0.

Then γ is a timelike curve that can be reparametrised as a geodesic.

The interpretation of proposition 3 is as follows. Fix a Newton-Cartan
spacetime which satisfies (NCT4). Then the only curves in that spacetime
which are apposite to represent the worldlines of test particles, in the sense
that they may be traversed by an arbitrarily small, non-interacting matter
distribution, are timelike geodesics.

Note that proposition 3 is exactly the right sort of construction for mod-
elling a body when we neglect its role as source matter. Ignoring the role of
some matter T ab as a source in the equations (NCT) amounts to neglecting
T ab in (NCT1) and (NCT2) when we fix the Newton-Cartan connection, and
then allowing T ab to evolve according to (NCT1) in the resulting spacetime.
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One could also interpret proposition 3 as saying that, if we consider a se-
quence of such matter distributions which become arbitrarily small about
some curve, then that curve is a geodesic.

All this is well and good when the Newton-Cartan spacetime thus de-
termined is unique. But when it is not unique, propositions 2 and 3 tell
us that neglecting the particle’s role as source matter in this way renders
the theory viciously indeterministic. Meanwhile, a realistic treatment of the
target system does give deterministic predictions for the behaviour of such
particles. In these cases, the idealisation of bodies as test particles fails to
preserve even such basic features as the existence of unique predictions for
the motion of the body. So whilst (some analogue of) 4′ might be true of
other models of NCT, it is not obviously true of matter distributions which
admit distinct (non-isomorphic) Newton-Cartan connections.

(There is one other option which I have not yet discussed, but is perhaps
worth mentioning. One way of fixing a unique Newton-Cartan connection is
via a choice of boundary conditions. If we expect these to come endowed with
a physical interpretation—perhaps because we are modelling a subsystem
of a larger universe—then at least in practice, this might explain why it
is sometimes appropriate to interpret models which differ only as to the
Newton-Cartan connection as physically distinct. However, it is not then
clear what we are supposed to say about the fact that models of NCT can also
be used to represent complete physical histories. In view of these difficulties,
I won’t consider this option further.)

This concludes my discussion of the positive case for materially identical
models of NCT representing distinct physical states of affairs. What can be
said in favour of the opposite view—that these models represent the very
same physical state of affairs?

For this, I will make use of a result due to March (2023, 24). March shows
that the equations (NCT) are equivalent to the conjunction of the equations
(MG), the rotational flatness condition, and (the geometrised version of)
Newton’s second law

ρξn∇nξ
a = −∇nσ

na, (NII)

with ⟳ now interpreted as the unique standard of rotation compatible with
∇. This makes it apparent that only the standard of rotation, rather than the
connection, is needed for the internal dynamics of the matter distribution.
Moreover, the degrees of freedom of ∇ not fixed by ⟳ now figure only in
the equation (NII). This suggests that we should think (NII) as providing
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a (partial) fixing of these remaining degrees of freedom, rather than as a
constraint on T ab itself. Whenever ρ ̸= 0 throughout some open region
O, (NII) defines the connection uniquely, and moreover furnishes it with
a physical interpretaion—as the unique connection relative to which fluid
elements obey (NII).

But now consider what happens when there are no such regions. Given
the Newtonian mass condition, (NII) now provides non-trivial constraints on
the connection, if at all, on a set of measure zero. At those points where
ρ ̸= 0 it still makes sense to interpret the connection as the unique one (at
those points) relative to which Newton’s second law holds—but this will no
longer be sufficient to specify ∇ throughout all spacetime. So we cannot give
an analogous physical interpretation to ∇ in regions where ρ = 0.

This suggests a view on which materially identical models of NCT repre-
sent the same physical state of affairs. If the Newton-Cartan connection has
its physical significance in virtue of (NII), is not clear that the irrotational
degrees of freedom of ∇ represent anything at all in those regions where they
are underdetermined by (NII). Under this interpretation, NCT might exhibit
representational redundancy, but would draw its distinctions no finer than
MG.

4 On spacetime and dynamical symmetries

I will now turn to the second area of focus in the literature on MG and NCT,
which has to do with spacetime and dynamical symmetries, and is due to
Jacobs (2023). Jacobs begins his analysis of MG and NCT by defining an
‘active’ version of the dynamic shift—analogous to the standard kinematic
and static shifts—which produces a linear time-dependent acceleration of the
matter content of the original solution. Since these active dynamic shifts are
a dynamical symmetry but not a spacetime symmetry of Galilean gravitation,
the theory violates Earman’s (1989, 46) ‘adequacy conditions’, which demand
that there be a match between the spacetime and dynamical symmetries of
a theory, in the following sense:

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .

SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

Jacobs then argues that, although both NCT and MG restore SP1, they do
so in different ways. In moving to MG, we enlarge the spacetime symmetries
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from the Galilei to the Maxwell group. Meanwhile, in moving to NCT, we
employ the opposite strategy—restricting the dynamical symmetries to the
Galilei group. For Jacobs, this means that MG and NCT are inequivalent,
since they have different spacetime and dynamical symmetry groups.

Never mind whether theories with different spacetime and dynamical sym-
metry groups can be equivalent. Instead, I want to focus on Jacobs’ technical
claim viz. the spacetime and dynamical symmetries of NCT. I claim that this
rests on a mistake. Earman (1989, 45) defines the spacetime symmetries of a
theory as the automorphism group of its absolute objects, where the absolute
objects “are supposed to be the same in each dynamically possible model.”19

In arguing that MG and NCT have different spacetime and dynamical sym-
metry groups, Jacobs (2023, proposition 3) assumes that the Newton-Cartan
connection is an absolute object. But the Newton-Cartan connection is not
an absolute object: it is dynamical, and depends on the matter distribution
we are considering.20

What, then, are the absolute objects of NCT? The metrics are invariant
across the entire space of DPMs. But the rotation standard associated with
the Newton-Cartan connection is also invariant—up to isomorphism—across
the entire space of DPMs.21 Now we have a choice. The rotation standard
does not appear explicitly in the models of NCT, so we could say that the
absolute objects of NCT are just the metrics. But the reason that the rotation
standard does not appear explicitly in the models of NCT is that it is definable
from the Newton-Cartan connection. In other words: since we are always
free to (harmlessly) rewrite models of NCT as ⟨M, ta, h

ab,⟳,∇, T ab⟩ (where
⟳ is the unique standard of rotation associated with ∇), we should take the
absolute objects of NCT to be the metrics and the standard of rotation.

Now, the reader may be concerned whether the above rewriting is harm-
less, and a full discussion of this issue is beyond the scope of the present
paper. But in brief: it is absolutely standard to take a theory to be commit-
ted to structures which do not explicitly appear between the angle brackets
of its models, when those structures are definable from other structures in
the theory (the canonical example of this is the Levi-Civita connection of

19. Here, ‘same’ is in the sense that they are isomorphic, see Earman (1989, 45).
20. As is obvious from e.g. (NCT2). To put the point pithily, taking the Newton-Cartan

connection to be an absolute object would mean taking there to be only one nomically
possible mass density field according to the theory.
21. This is an immediate consequence of the fact that DPMs of NCT are rotationally

flat, which follows from (NCT4).
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general relativity (GR), which is—I take it uncontroversially—part of the
structure of the theory even though models of GR are standardly presented
in the form ⟨M, gab, ϕ⟩). And if we accept this, the worry that the rotation
standard doesn’t show up explicitly in the models of NCT seems to me un-
compelling. In other words: we shouldn’t be concerned that we have chosen
to present NCT in a way that makes the fact that the standard of rotation
is an absolute object ‘less visible’ than it is in e.g. MG.22

This presents a serious problem for Jacobs’ argument that MG and NCT
are inequivalent, and likewise for his claim that the two theories represent
different ways of restoring SP1. If the absolute objects of NCT are the
metrics and rotation standard, then MG and NCT share the same spacetime
and dynamical symmetry groups. That the spacetime symmetries of NCT
are the Maxwell group is immediate. And if h :M →M is a diffeomorphism
generated by an arbitrary Maxwell transformation, then the induced map
⟨M, ta, h

ab,∇, T ab⟩ → ⟨M, ta, h
ab, h∗∇, h∗T ab⟩ preserves both solutionhood of

the equations (NCT), and all the absolute objects.
Of course, this requires that we follow Earman in saying that it is preser-

vation of the absolute objects which is relevant for the definition of spacetime
symmetries. It also requires that we allow dynamical symmetry transforma-
tions to act on the connection—a piece of spacetime structure—as well as the
matter distribution. I will merely point out that this is completely standard;
it is precisely the notion of spacetime and dynamical symmetries implicit in
the claim that the spacetime and dynamical symmetries of GR are the full
diffeomorphism group.

Still, there is one part of Jacobs’ analysis which carries over intact.
Maxwell transformations of the mass-momentum tensor preserve solution-
hood of the equations (MG). But they do not preserve solutionhood of the
equations (NCT). In general, if ⟨M, ta, h

ab,∇, T ab⟩ is a solution of (NCT),
then ⟨M, ta, h

ab,∇, h∗T ab⟩ will violate at least (NII), where h : M → M is
a diffeomorphism generated by an arbitrary Maxwell transformation. Prima
facie, this reveals an important difference between MG and NCT: once we
move to consider the entire space of KPMs, there will be non-solutions of
NCT which correspond to solutions of MG. I return to this issue in §6.

22. Dewar (2016, 152) and Wallace (2020, 28) make similar points.
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5 MG, NCT, and categorical equivalence

In §3 and §4, we considered previous discussions of MG and NCT, and iso-
lated two questions which bear on whether MG and NCT are equivalent:
whether materially identical models of NCT represent the same physical state
of affairs, and whether the Newton-Cartan connection is an absolute object.

It turns out that these debates can be usefully represented in terms of
categories of models associated to MG and NCT. In recent years, there has
been a movement to represent the collection of models of the theory as a cate-
gory, and analyse the relationships between theories using category-theoretic
methods. One of the advantages of the theories-as-categories paradigm is
that it is flexible enough to distinguish between different interpretations of
the same formalism, insofar as these interpretations can be realised by differ-
ent choices of arrows for the category of models of the theory. Moreover, the
category-theoretic tools developed for analysing the relationships between
theories then naturally take account of these interpretative differences when
making comparisons such as whether two theories are equivalent, or whether
one has more structure than another.

My approach here will to be to associate a category to a theory by tak-
ing its objects to be the theory’s models, and its arrows to be inter-model
relationships which preserve physical content.23 For our purposes, we can
assume that there are two such relationships:

• Isomorphisms induced by diffeorphisms which preserve the theory’s ab-
solute objects; and

• Physical content-preserving transformations which do not fall under
the above.

For MG, this gives us the following category:

MG: Objects are models of MG. Arrows are isomorphisms χ : M → χ∗M,
where χ : M → M ′ is a diffeomorphism which preserves the metrics

23. This in the spirit of e.g. Weatherall (2016a), Barrett (2019), and Nguyen, Teh, and
Wells (2020), though note that this is not completely standard; e.g. when Barrett and
Halvorson (2022) talk about theories as categories they have in mind specifically first-
order theories, and categories whose objects are the theory’s models and whose arrows are
elementary embeddings.
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and standard of rotation.24 Composition of arrows is composition of
diffeomorphisms.

However, for NCT, the views considered here suggest four possible categories.
On the one hand, there is the question about the absolute objects of NCT—
namely, the metrics, and the standard of rotation associated to ∇. However,
we have seen that Jacobs (2023) takes the Newton-Cartan connection itself to
be an absolute object, and it is of some interest to see what happens if we do
so here. On the other hand, there is the question about whether materially
identical models of NCT represent the same physical state of affairs. I have
argued that these models are physically equivalent, but one might also take
them to be inequivalent (as e.g. Saunders does). Together, this gives us the
following categories:

NCT1: Objects are models of NCT. Arrows are isomorphisms χ : M →
χ∗M, where χ :M →M ′ is a diffeomorphism which preserves the met-
rics and Newton-Cartan connection. Composition of arrows is compo-
sition of diffeomorphisms.

NCT2: Objects are models of NCT; arrows are maps (χ, σa) : M → χ∗M
′,

M′ = ⟨M, ta, h
ab, (∇, tbtcσa), T ab⟩ consisting of a gauge transformation

and an isomorphism, where σa is a spacelike, twist-free, and divergence-
free vector field which satisfies ρσa = 0, and χ :M →M ′ is a diffeomor-
phism which preserves the metrics and (gauge-transformed) Newton-
Cartan connection (∇, tbtcσa). The composition operation on arrows is
given by (χ, σa) ◦ (ψ, τa) = (χ ◦ ψ, ψ∗σa + τa).

NCT3: Objects are models of NCT. Arrows are isomorphisms χ : M →
χ∗M, where χ : M → M ′ is a diffeomorphism which preserves the
metrics and standard of rotation associated with the Newton-Cartan
connection. Composition of arrows is composition of diffeomorphisms.

NCT4: Objects are models of NCT; arrows are maps (χ, σa) : M → χ∗M
′,

M′ = ⟨M, ta, h
ab, (∇, tbtcσa), T ab⟩ consisting of a gauge transformation

and an isomorphism, where σa is a spacelike, twist-free, and divergence-
free vector field which satisfies ρσa = 0, and χ :M →M ′ is a diffeomor-
phism which preserves the metrics and standard of rotation associated

24. If M = ⟨M,Xi⟩ for some collection of Xi on M and χ : M → M ′ is a diffomorphism,
χ∗M = ⟨M ′, χ∗(Xi)⟩. χ : M → M ′ preserves some structure X on M , X ′ on M ′ iff
χ∗(X) = X ′.
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with the (gauge-transformed) Newton-Cartan connection (∇, tbtcσa).
The composition operation on arrows is given by (χ, σa) ◦ (ψ, τa) =
(χ ◦ ψ, ψ∗σa + τa).

NCT1 and NCT2 result from taking the Newton-Cartan connection to be
an absolute object; in NCT3 andNCT4 only the metrics and standard of ro-
tation associated with ∇ are absolute objects. In NCT1 and NCT3, models
which differ only as to the connection in regions where ρ = 0 are interpreted
as physically inequivalent; in NCT2 and NCT4 they are equivalent.

I will now show that these categories allow one to capture, in a precise
sense, how the debates about the interpretation of NCT in §3 and §4 lead to
different judgements on whether MG and NCT are theoretically equivalent.
For this, I will make use of the following criterion of theoretical equivalence,
which has been brought to bear on a number of debates in recent years (see
e.g. Rosenstock, Barrett, and Weatherall (2015), Weatherall (2016a), Barrett
(2019), and Nguyen, Teh, and Wells (2020)):

Categorical equivalence: Theories T1 and T2 are equivalent just in case
there exists an equivalence functor between the categories of models of
T1 and T2 which preserves empirical content.

An equivalence functor F : T1 → T2 is one which is full, faithful, and
essentially surjective—see e.g. Weatherall (2017) and references therein. Such
a functor exists just in case there are functors F : T1 → T2, G : T2 → T1

such that FG is isomorphic to idT2 , and likewise GF is isomorphic to idT1 .
As such, categorical equivalence appears to capture the idea that we can
translate between T1 and T2, in a way that preserves empirical content, and
that these translations are—up to isomorphism—inverses of each other.

We begin with NCT1 and NCT2:

Proposition 4. Let F : NCT1 → MG be the functor which takes each
model of NCT to its corresponding Maxwell model, as given in proposition
1, and takes each arrow to an arrow generated by the same diffeomorphism.
Then F is not an equivalence functor; it is not full.

Proof. Let M = ⟨M, ta, h
ab,∇, T ab⟩ be an object in NCT1, and let χ :M →

M be any diffeomorphism which preserves the metrics and satisfies χ∗∇ =
(∇, tbtcσa), where σa is a (non-zero) spacelike vector field.25 By construction,

25. Such exist. For example, if xµ is a Maxwellian coordinate system on M , then in
general, diffeomorphisms induced by arbitrary Maxwell transformations have this property.
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χ : F (M) → χ∗F (M) is an arrow in MG which is not the image of any arrow
in NCT1 under F .

Proposition 5. Let F : NCT2 → MG be the functor which takes each
model of NCT to its corresponding Maxwell model, as given in proposition 1,
and each arrow (χ, σa) → χ. Then F is not an equivalence functor; it is not
full.

Proof. This is almost identical to the proof of proposition 4. Let M =
⟨M, ta, h

ab,∇, T ab⟩ be an object in NCT2, and suppose that T ab ̸= 0. Let
χ :M →M be any diffeomorphism which preserves the metrics and satisfies
χ∗∇ = (∇, tbtcσa), where σa is a spacelike vector field such that σa ̸= 0 for
at least one point p where ρ ̸= 0 (again, such exist). Since arrows in NCT4

at least preserve the Newton-Cartan connection in regions where ρ ̸= 0,
χ : F (M) → χ∗F (M) is an arrow in MG which is not the image of any
arrow in NCT2 under F .

Propositions 4 and 5 capture Jacobs’ argument that MG and NCT are
inequivalent. In taking the Newton-Cartan connection to be an absolute
object in NCT1 and NCT2, we have taken the spacetime and dynamical
symmetries of the theory to be the Galilei group. But precisely what goes
wrong in propositions 4 and 5 is that there are non-trivial automorphisms of
Maxwellian spacetime which correspond neither to Galilean transformations,
nor gauge transformations of the Newton-Cartan connection, nor composi-
tions of the two. In both cases, this means that F is not full, and so in the
terminology of Baez et al. (2006) forgets structure.26 This might be taken
to vindicate Jacobs’ claim that theories with different symmetry groups are
inequivalent because they have “different structures” (Jacobs 2023, 13).

Next, consider NCT3:

Proposition 6. Let F : NCT3 → MG be the functor which takes each
model of NCT to its corresponding Maxwell model, as given in proposition 1,
and each arrow to an arrow generated by the same diffeomorphism. Then F
is not an equivalence functor; it is not full.

Proof. Consider the objectsM = ⟨M, ta, h
ab,∇, 0⟩,M′ = ⟨M, ta, h

ab, (∇, tbtc∇aϕ), 0⟩
in NCT3, where ϕ = exeysin(

√
2z) in some Maxwellian coordinate system

26. For more on the connection between the failure of F to be full and (amount of)
structure, see Barrett (2022).
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xµ on M and ∇ is flat.27 Now consider the arrow id : F (M) → F (M′) in
MG. I claim that this is not the image of any arrow χ : M → M′ in NCT3.
For this, note that ∇ transforms as ∇ → (∇, tbtcσa) under the action of any
Maxwell transformation on ∇, where σa is a spacelike vector field which is
twist-free and rigid (∇aσb = 0). ∇aϕ is not rigid, so there are no arrows
M → M′ in NCT.

F is not an equivalence functor. This is a result of the failure of unique
recovery we see in proposition 2. Since F is not full, one might take this
to capture Saunders’ idea that the fact that we cannot in general define a
unique Newton-Cartan connection from a model of MG means that NCT
has surplus structure over MG. However, NCT4 and MG are equivalent as
categories:

Proposition 7. There exists an equivalence of categories between NCT4

and MG which preserves empirical content.

Proof. Let F : NCT4 → MG be the functor which takes each model
of NCT to its corresponding Maxwell model, as given in proposition 1,
and each arrow (χ, σa) → χ. F preserves empirical content since it pre-
serves T ab, and by proposition 2 is essentially surjective. It remains to
show that F is full and faithful. First, let M = ⟨M, ta, h

ab,∇, T ab⟩, M′ =
⟨M ′, t′a, h

′ab,∇′, T ′ab⟩ be two objects in NCT4. Suppose that there exist dis-
tinct arrows (χ, σa), (χ′, σ′a) : M → M′, and suppose for contradiction that
χ = χ′. Then σa ̸= σ′a, since the arrows were assumed distinct. But then
(∇, tbtcσa) ̸= (∇, tbtcσ′a), so that χ∗(∇, tbtcσa) ̸= χ′

∗(∇, tbtcσ′a). But by as-
sumption (χ, σa), (χ′, σ′a) are both arrows from M to M′, i.e. χ∗(∇, tbtcσa) =
χ′
∗(∇, tbtcσ′a), so by contradiction χ ̸= χ′ and F is faithful. Finally, let
χ : F (M) → F (M′) be an arrow in MG. Since χ∗ ⟳ = ⟳′, we know that
χ∗∇ and∇′ are rotationally equivalent, so that χ∗∇ = (∇′, t′bt

′
cσ

′a), where σ′a

is a spacelike vector field on M ′ (Weatherall 2018, proposition 1). It follows
that ∇′ = χ∗(∇,−tbtcχ∗σ′a), where we have used the fact that χ preserves
the metrics. Now consider the tuple ⟨M, ta, h

ab, (∇,−tbtcχ∗σ′a), T ab⟩. This
is an object in NCT4, since it maps to M′ under χ. Moreover, it agrees
with M on the metrics and mass-momentum tensor. It follows that χ∗σ′a is
spacelike, twist-free, and satisfies ρχ∗σa = 0 and ∇nχ

∗σ′n) = 0 (see the proof
of proposition 2). So (χ,−χ∗σ′a) : M → M′ is an arrow in NCT4 which
maps to χ under F . Hence F is full.

27. I take this example from Dewar (2018, 265).
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6 Categorical equivalence and theoretical equiv-

alence

We have seen how propositions 4, 5, and 6 can be used to capture Jacobs’
and Saunders’ arguments that NCT—interpreted after NCT1, NCT2, or
NCT3—is inequivalent to MG. But the interpretation of NCT which I have
advocated for here is NCT4, which is categorically equivalent to MG. If
categorical equivalence is sufficient for theoretical equivalence—and a full
discussion of that is beyond the scope of this paper—then I take proposition
7 to have established that there is a plausible and natural interpretation of
NCT on which it is equivalent to MG. But for those unconvinced by the
antecedent of this claim (myself included!), my final aim is to say something
in support of the verdict which categorical equivalence gives us in proposition
7.

For this, I want to return to the discussion in §3, where we considered the
fact that the equations (NCT) are equivalent to the conjunction of rotational
flatness, (NII), and the equations (MG) (March 2023). On this basis, I
urged that we should think of (NII) as providing an implicit definition of the
irrotational degrees of freedom of the Newton-Cartan connection—so that
the Newton-Cartan connection has its physical significance, if at all, insofar
as it is fixed uniquely by (NII).

Should we say that NCT is equivalent to MG, in this case? I will ap-
proach this question roundaboutly, beginning with a remark made by Dewar
(2018). Dewar notes that a model of NCT where ρ ̸= 0 “carries a [...] form
of redundancy: provided we know the standard of rotation associated to ∇,
and provided we know the character of T ab, we can “fill in the blanks” to re-
construct ∇ itself” (264). He likens this feature of NCT to comments made
by Pooley (2013, §4.5) about the redundancy of standard presentations of
Newtonian spacetime: given a Newtonian spacetime ⟨M, ta, h

ab,∇, ξa⟩, we
are always free to define ∇ from the remaining structure in the theory.

However, I would like to suggest that the ‘redundancy’ we see in NCT
is much more akin to the fact that Newtonian gravitation—restricted to the
island universe sector, and coupled with the assumption that the centre of
mass of the universe is at absolute rest—also has a certain redundancy to it.
Given a Galilean spacetime and the mass-momentum tensor, we can always
define ξa as the unique vector field which results from parallel transporting
the centre of mass velocity field throughout all spacetime. ξa is irrelevant
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to the internal dynamics of the matter distribution, just as the irrotational
degrees of freedom of ∇ are in NCT. Notice also that in both cases, this
definition sometimes results in a failure of unique recovery. Just as (NII)
does not fix a unique connection when ρ = 0, so does the demand that ξa is
the centre of mass velocity field fail to fix a unique vector field outside of the
island universe sector, where the centre of mass is not well-defined. And there
is also an obvious parallel to Jacobs’ discussion of MG and NCT. Kinematic
shift symmetry in Newtonian gravitation is—via Earman’s SP1—standardly
taken as motivation for the move from Newtonian to Galilean spacetime.
But we can also restore SP1 by restricting the dynamical symmetries to the
Newtonian group. Now, it might appear that we can accomplish this by
demanding that the centre of mass of the universe is at absolute rest. But by
tying the standard of rest to facts about the matter distribution in this way,
it is no longer an absolute object. As a result, the spacetime (and dynamical)
symmetries of the theory remain the Galilei group.

Now, compare this version of Newtonian gravity theory to Galilean grav-
itation. The only difference between the two is that in the former theory,
we have promoted a particularly convenient choice of gauge—the practice of
taking the centre of mass of the universe as a reference frame—to a dynami-
cal law. Clearly this is harmless, providing that we do not then interpret the
centre of mass velocity field as ontologically subsistent spacetime structure.
Moreover, the fact that the ‘standard of rest’ so-defined is not an absolute
object guards against precisely this mistake. Rather, it suggests an interpre-
tation on which the vector field ξa is simply an additional piece of structure
introduced to represent (somewhat redundantly) the centre of mass velocity
of the universe.

The analogy to NCT and MG is immediate. From the perspective of
MG, the decision to work with a connection with respect to which (NII)
holds amounts simply to a choice of gauge. But in moving to NCT, we
promote (NII) to a dynamical law. My claim is just that to the extent that
one thinks that this modified version of Newtonian gravitation is equivalent
to Galilean gravitation, one should also think that NCT, interpreted after
NCT4, is equivalent to MG.

Finally, the view developed here also suggests a response to Jacobs’ con-
cern at the end of §4 about there being non-solutions of NCT which corre-
spond to solutions of MG. Thus far, I have described the move from MG to
NCT as a matter of fixing the Newton-Cartan connection by imposing (NII)
as a dynamical constraint. But we could go further, and interpret (NII) as
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a kinematic constraint. This would avoid the problem of non-solutions of
NCT in which the centre of mass of the universe is accelerated mapping to
solutions of MG. It would be consistent with the idea that the move from
MG to NCT simply involves a choice of gauge, this time imposed equally
across the KPMs. And it fits naturally with the suggestion that the Newton-
Cartan connection is not ontologically subsistent spacetime structure, but
rather has its physical significance in virtue of (NII). If (NII) is a dynamical
constraint, this makes it unclear how to interpret ∇ outside of the DPMs.
But if (NII) is a kinematic constraint, then ∇ can be given a consistent
physical interpretation throughout the entire space of KPMs.

If this is right, then the suggestion that (NII) should be interpreted as
an implicit definition of the Newton-Cartan connection is more radical than
it first appears. It also requires a discussion of the distinction between kine-
matic and dynamical possibility, which I do not have space to attempt here.
A proper treatment of these issues will have to wait for another time.

7 Conclusion: respecting corollary VI?

In a recent paper, Chen (2023) has raised a challenge for the idea that MG
and NCT are equivalent. Chen argues that corollary VI to the Laws of Motion
in Newton’s Principia presents a prima facie problem for NCT. Corollary
VI, recall, expresses the fact that dynamic shifts (in Jacobs’ (2023) sense)
are dynamical symmetries of Newtonian physics. So in choosing ∇ to satisfy
(NII), we are making “precisely the sort of physical judgment we had sought
to refrain from making” (Chen 2023, 11). Chen goes on to argue that NCT
can nevertheless be thought to respect corollary VI on the basis that putative
alternatives to (NII) fail to produce a connection with a different Riemann
curvature, so that there is always “a canonical distinction between that part
of the gravitational potential of any given model that is interpretable as
curvature and that which is not” (Chen 2023, 15).

Of course, Chen is absolutely correct in his technical claim here—but his
substantive claim should give us pause. It is worth taking the time to unravel
carefully why this is the case. Chen is not explicit about what he thinks it
would mean for a theory to “respect” corollary VI, but it seems clear from his
comments that this would involve collapsing the distinction between models
of Galilean gravitation related by dynamic shifts. In fact, there are a few
ways of glossing this requirement; here are two plausible options

24



• A theory respects corollary VI just in case its spacetime and dynamical
symmetry groups are the Maxwell group.

• A theory respects corollary VI just in case any pair of models related
by a Maxwell transformation of the mass-momentum tensor are iso-
morphic.

On the first option, we have already seen that the spacetime and dynami-
cal symmetries of NCT are the Maxwell group. On the second, if (NII) is
a kinematical constraint (as I have urged), then pairs of models related by
Maxwell transformations of the mass-momentum tensor are also related by
Galilean transformations of the mass-momentum tensor, and hence are iso-
morphic. This is because Maxwell transformations of the mass-momentum
tensor which are not Galilean transformations take us outside the space of
KPMs.

This brings out the reason why NCT respects corollary VI—Newton’s
second law notwithstanding. If the role of (NII) is to define the connection,
then it cannot permit the drawing of unphysical distinctions. In Newton-
Cartan terms, we cannot give sense to the idea that the centre of mass of the
universe might have had a different acceleration, any more than we can do in
MG. We can give sense to the idea that the acceleration of some subsystem
might have been different—but only insofar as this produces a corresponding
difference in the relative positions, velocities, and accelerations of material
bodies.

Other choices for the Newton-Cartan connection are possible. The exis-
tence of other choices does not mean that they correspond to distinct physical
judgements. Just as a choice of inertial frame does not amount to making
a physical judgement about absolute velocities, neither does the decision to
work with a connection with respect to which (NII) holds amount to making
a physical judgement about absolute accelerations. In the end, it is not the
naturalness of (NII) as a definition, but the very fact that it is a definition,
which makes MG and NCT theoretically equivalent.
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