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Abstract

Recently, Dunajski and Gundry (2016) have developed an extension of
twistor theory to the non-relativistic domain. Unlike relativistic twistor
theory, their approach is able to reproduce the entire space of mod-
els of Newton-Cartan theory. I critically assess the significance of non-
relativistic twistors, in particular with respect to proposals by Dunajski
and Penrose (2023) that using non-relativistic twistors to describe grav-
itationally induced collapse could play a part in solving the quantum
measurement problem.
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1 Introduction

Twistor theory, originally developed by Roger Penrose (1967), has been pursued
for many decades now both as a reformulation of general relativity (GR), and for
its applications outside of that field e.g. in Yang-Mills theories and string theory
(see Atiyah et al. (2017) for a recent review article on the subject). The twistor
programme has precipitated a number of technical advances, for example, in the
classification of manifolds with exotic holonomy groups (see e.g. Merkulov and
Schwachhofer (1999) and Merkulov (1995)), and in the computation of scatter-
ing amplitudes in particle physics (see e.g. Adamo et al. (2011), Cachazo et al.
(2015), and Mason and Skinner (2014)). Despite this by now well-established
history, twistor theory remains relatively underexplored in the philosophy liter-
ature (Bain (2006), Gajic et al. (2023) are notable exceptions).

Meanwhile, recent years have seen a resurgence of interest in Newton-Cartan
theory (NCT) from both physicists and philosophers. On the physics side, NCT
has found inter alia applications to condensed matter phenomena (especially
the fractional quantum Hall effect, see Geracie et al. (2016), Son (2013), and
Wolf, Read, and Teh (2022)), Hořava-Lifshitz gravity (Hartong and Obers 2015),
non-relativistic holography (Christensen et al. 2014), and non-relativistic string
theory (Harmark et al. 2017); moreover, work on NCT has motivated exploring
other non-relativistic theories of gravity such as the off-shell (‘type-II NCT’)
non-relativistic limit presented in Hansen et al. (2019a,b, 2020) which are able
to reproduce many of the strong-field gravitational effects previously held to
be the purview of relativistic physics. On the philosophy side, NCT has been
explored in connection with the question of the ‘correct’ spacetime setting for
Newtonian gravitation (see e.g. Dewar (2018), Knox (2014), Saunders (2013),
and Weatherall (2016)), and most recently has been understood as just one node
of a non-relativistic geometric trinity of gravity (March et al. 2023; Read and Teh
2018; Wolf and Read 2023), in which gravitational effects can be equivalently
understood as a manifestation of either curvature, torsion, or non-metricity.

In a recent paper, Dunajski and Gundry (2016) have brought these two
physics traditions into contact with one another by developing a non-relativistic
twistor theory. Even more recently, Dunajski and Penrose (2023) have pro-
posed to use non-relativistic twistor theory in the description of gravitationally-
induced ‘collapse’ of the quantum state, thereby making contact with another
well-established philosophy literature—namely, on the quantum measurement
problem. As with previous work on twistor theory (and given the recentness
of the Dunajski-Penrose proposal) , these developments have thus far attracted
little-to-no attention within the philosophical literature.

The aim of this paper is to discuss these proposals, and thereby contribute
somewhat to filling this gap. Accordingly, the paper will be structured as follows.
In §2, we briefly review the details of non-relativistic twistor theory, before
in §3 clarifying some of the conceptual background specific to non-relativistic
twistor theory. We then turn, in §4, to Dunajski and Penrose’s recent arguments
about non-relativistic twistors and gravitational collapse, and discuss some of
the issues facing their proposal. We close in §5.
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2 Newton-Cartan twistor theory

In this section, we present the basic mathematics of NCT, as well as a brief
introduction to twistors and the non-relativistic twistor theory of Dunajski and
Gundry (2016). Further details on relativistic twistor theory can be found in
Huggett and Tod (1994), Penrose and Rindler (1984, 1986), and Ward and Wells
(1990) as well as the review article Atiyah et al. (2017); see also Bain (2006)
and Gajic et al. (2023) for a philosophically-oriented presentation. Appendix
A contains some details on the construction of line bundles; see also appendix
B for details on Kodaira deformation theory and cohomology, and we refer the
reader to these where appropriate.

Beginning with Newton-Cartan theory (NCT), this theory has kinematical
possibilities of the form ⟨M, ta, h

ab,∇,Φ⟩, where M is a differentiable four-
manifold,1 ta and hab are orthogonal temporal and spatial metrics i.e. such that
tah

ab = 0, Φ represents material fields, and∇ is a torsion-free and compatible (in
the sense that ∇atb = ∇ah

bc = 0) derivative operator on M . Note in particular
that the metrics ta and hab are degenerate: see e.g. Malament (2012, §4.1).
The dynamical possibilities for NCT are encoded in the geometrised Poisson
equation:

Rab = 4πρtatb, (1)

where Rab is the Ricci curvature of the NCT connection ∇, along with the
curvature conditions:2

Ra c
b d = Rc a

d b, (2)

Rab
cd = 0. (3)

Turning now to twistor theory, whilst there are several routes to defining
twistors (see, e.g. Penrose and Rindler (1986) and Ward and Wells (1990)), here
we will discuss just two. The basic idea behind twistor theory is that conformally
invariant dynamics on some spacetime M can be equivalently represented via
putatively geometrical statements about some (complex) twistor space. With
this in mind, let M be a (pseudo)-Riemannian four-manifold. Locally, there
exists a canonical bundle isomorphism (the Klein correspondence, see e.g. Ward
and Wells (1990)) C ⊗ TM ∼= S ⊗ S′, where S, S′ are complex rank-2 vector
bundles overM with symplectic structures ε, ε′. Sections of S, S′ are spinors λA,
µA′

. If xAA′
is the coordinate of a point in M , then points in the complexified

spacetime MC
3 can be identified with pairs of spinors under this isomorphism

via the ‘incidence relation’
λA = ixAA′

µ′
A. (4)

This takes us immediately to our two definitions of twistors. For the first,
we can fix a pair of spinors (λA, µA′

) and ask: what is the locus of points xAA′

1Assumed connected, Hausdorff, and paracompact.
2See e.g. Malament (2012, §4.3) for further discussion of these conditions.
3That is, a (four complex dimensional) spacetime whose tangent space TMC is locally

isomorphic to the product bundle C⊗ TM .
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(in some such region OC of MC) satisfying the incidence relation? This locus is
a totally null two-plane with self-dual tangent bivector, known as an α-plane.
Secondly, given a pair of spinors (λA, µA′

) satisfying the incidence relation for
some xAA′

, one can show that these spinors arise as the solutions of the twistor
equation4

∇A′
(AωB) = 0. (5)

Since the incidence relation is invariant under rescalings of the pair (λA, µA′
),

this motivates the definition of projective twistor space: we take it to be the
space PT = CP3−CP1 of pairs (λA, µA′

), µA′ ̸= 0 satisfying the incidence rela-
tion coordinatised by homogeneous coordinates λ1 : λ2 : µ1 : µ2.5 Equivalently,
we can take PT to be the space of α-planes in OC—thus, the projective twistor
space encodes the conformal structure of O.

Thus far, our construction has been entirely local. If we wish to tackle the
problem of representing the entire spacetime M twistorially, we now have a
distribution of α-planes on MC. When this distribution is integrable, we can
proceed as before, now defining PT as the three-parameter space of integral
two-surfaces of this distribution (known as α-surfaces). The crucial question is
then: under what conditions on the original spacetime M is the distribution
of α-planes integrable? In relativistic twistor theory, one central result in this
direction is the Penrose (1976) non-linear graviton theorem, which establishes
an equivalence between self-dual (SD) vacuum solutions of the Einstein field
equations,6 and twistor spaces PT with normal bundle O(1) ⊕ O(1) of PT →
CP1.7

This forms the basis for Dunajski and Gundry’s (2016) construction of the
non-relativistic twistor correspondence. Dunajski and Gundry show, by consid-
ering the patching relation on the relativistic twistor space (on the preimage of
Uλ∩Uµ in PT for patches Uλ, Uµ on CP1), that in the non-relativistic limit the
normal bundle of rational curves in the twistor space ‘jumps’ from O(1)⊕O(1)
O ⊕O(2). Their central result is then as follows:

Proposition 2.1 (Dunajski and Gundry (2016)). There is a one-to-one corre-
spondence between line bundles over O ⊕O(2) which are trivial on real twistor
lines and vacuum Newton-Cartan connections on M .

Dunajski and Gundry then show that arbitrary Newton-Cartan connections
can be constructed from non-trivial rank-two vector bundles over PT which
restrict to O ⊕O(2) on twistor lines.

4See, e.g. Penrose and Rindler (1986, ch. 6) for details.
5For further discussion on this point, see, e.g. Gajic et al. (2023) and Penrose (1967).
6Self-duality is a property of the Weyl tensor on the (complexified) spacetime: Ca

bcd is
SD iff Ca

bcd = ⋆Ca
bcd , where ⋆Ca

bcd := 1/2εnm
cdC

a
bnm is the Hodge dual of Ca

bcd .
7Here, O(n) is the holomorphic line bundle over CP1 with (first) Chern class n, see appendix

A. The normal bundle is defined as follows: if i : N → M is an immersion, then the normal
bundle of N in M is the bundle TM/N → N , where TM/N := i∗TM/TN is the quotient of
TM by TN .
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3 Relativistic vs. non-relativistic twistors

3.1 The non-relativistic twistor correspondence

One striking difference between relativistic and non-relativistic twistor theory
is the absence of restrictions in proposition 2.1 on which Newton-Cartan space-
times may be represented twistorially. By contrast, in the relativistic case there
are a number of partial results linking twistor space structures with (classes of)
relativistic spacetimes (the non-linear graviton theorem being one such exam-
ple) but as yet no recipe for constructing twistor spaces from generic relativistic
spacetimes. One crucial question about the non-relativistic twistor correspon-
dence is therefore as follows: why does this work in the non-relativistic, but not
the relativistic case?

Dunajski and Gundry (2016) do not discuss this issue. However, it turns
out that the key to understanding this is to recall that what gets encoded in
the holomorphic structure of the twistor space is the conformal structure of
the corresponding (non-)relativistic spacetime. For this, we need to say some-
thing about the relevant notion of conformal structure under consideration. For
spacetimes with a non-degenerate (pseudo-)Riemannian metric gab, conformal
structure is standardly defined as follows: it is an equivalence class [gab] of
conformally equivalent metrics, where gab, g

′
ab are conformally equivalent just

in case gab = Ω2g′ab for some Ω. In non-relativistic spacetimes, however, the
metrics are degenerate, which motivates an alternative definition of conformal
structure apposite for non-relativistic spacetime theories. Within the literature
on this topic, two such definitions have been proposed. The first is due to Ewen
and Schmidt (1989):

Conformal structure (ES): Let M = ⟨M, ta, h
ab,∇⟩ be a non-relativistic

spacetime. The Ewen-Schmidt conformal structure CES of M is the set
{σ} of unparametrised spacelike geodesics of ∇.

The second definition is due to Curiel (2015):8

Conformal structure (C): Let M be a differentiable four-manifold. A Curiel
conformal structure CC on M is an integrable rank-3 distribution on M
with leaves S, and an equivalence class of conformally equivalent spatial
metrics [hab] on M such that the following both hold: (a) there exists a
one-form ta on M , orthogonal to all the hab ∈ [hab] such that for all points
p, all S, and all tangent vectors σa to S at p, tnσ

n = 0, and (b) at least
one representative of [hab] is flat.

It follows that if hab is conformally equivalent to some flat spatial metric, then
any non-relativistic spacetime M = ⟨M, ta, h

ab,∇⟩ determines a unique CC .
Note, however, that condition (b) means that there is no well-defined notion

8Here I am departing somewhat from Curiel’s presentation, which defines separately notions
of spatial and temporal conformal structure for a non-relativistic spacetime ⟨M, ta, hab,∇⟩ and
then demands compatibility of the two. This is harmless, since in spatially flat spacetimes
(which is the case Curiel considers, see below for further discussion) the two are equivalent.
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of Curiel conformal structure for spacetimes where hab does not satisfy this
condition.9

Let us compare these two definitions. Given the Ewen-Schmidt conformal
structure of a non-relativistic spacetime M = ⟨M, ta, h

ab,∇⟩, we can define a
foliation of M into spacelike hypersurfaces (since, up to conformal factors, there
will be a unique one-form which annihilates all tangent vectors to all the σ ∈
CES). But CES gives us more than this: we can also recover a notion of spatial
projective structure—i.e. the class of spatial derivative operators D induced on
each spacelike hypersurface for which the σ ∈ CES can all be reparameterised
as geodesics.

By way of contrast, the Curiel conformal structure CC of M also gives us a
foliation of M into spacelike hypersurfaces; unlike CES , however, CC does not
fix the projective structure of the leaves of the foliation, instead, it determines
a conformal structure on each leaf. So whilst CES and CC are not orthogonal,
neither is strictly weaker than the other. Moreover, the fact that CES partially
determines the projective geometry of M suggests that it is CC , rather than
CES , which is the closer analogue of relativistic conformal structure for the
non-relativistic context.

There is one feature of Curiel’s definition which we have not yet dealt with.
As it stands, CC cannot be applied to spacetimes where hab is not conformally
equivalent to some flat spatial metric. Whilst this condition holds trivially
on-shell in Newton-Cartan theory—if Rab

cd = 0 then hab is flat (Malament
2012, proposition 4.2.4)—we will see later that assuming conformal flatness
of the spatial leaves from the outset obscures the special role which the on-
shell Newton-Cartan spatial geometry has to play in explaining why it is that
a full twistor-correspondence exists in the non-relativistic case. Given this, I
will adopt the following generalisation of Curiel’s definition, which drops the
condition (b):

Conformal structure: LetM be a differentiable four-manifold. A non-relativistic
conformal structure C onM is an integrable rank-3 distribution onM with
leaves S, and an equivalence class of conformally equivalent spatial metrics
[hab] on M such that there exists a one-form ta on M with the following
properties: ta is orthogonal to all the hab ∈ [hab], and for all points p, all
S, and all tangent vectors σa to S at p, tnσ

n = 0,

I will say that a Newtonian spacetime is spatially conformally flat iff at least
one representative of [hab] is flat. It follows that a Curiel conformal structure
on M is a spatially conformally flat non-relativistic conformal structure on M .

To see how the non-relativistic conformal structure can be encoded in the
twistor space structure, it is helpful to begin by considering the complexified
spacetime MC. We can define (via holomorphic extension of ta) a canonical
closed one-form Ta on MC, which induces a fibration π : MC → C. We can also
define (via holomorphic extension of hab) a spatial metric Hab on MC, which

9As far as Curiel’s motivation for introducing condition (b) goes, it seems to be just that
(b) holds on-shell in NCT.
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induces a holomorphic Riemannian metric on the fibres π−1(T ). Now say that
a vector σa ∈ TpMC at a point p ∈ MC is totally null iff σa is null with respect
to both Ta and Hab. Thus totally null vectors lie in the fibres π−1(T ), and are
null with respect to the induced metric on those fibres.10 It follows that the
conformal structure C of ⟨M, ta, h

ab,∇⟩ can be completely characterised by the
totally null vector sub-bundle of TMC.

11

Note that this gives us something close to Ewen and Schmidt’s definition,
but crucially, M must first be complexified for this to work; specification of
the spacelike vectors (or even the spacelike geodesics) at each point does not
carry enough information to fix orthogonality relations between pairs of space-
like vectors in the foliation. It also gives us something close to the relativis-
tic case, where the conformal structure of a Lorentzian manifold ⟨M, gab⟩ can
equivalently be defined as the null vector sub-bundle of TM .12 So whilst it is
less straightforward to define conformal structure for real non-relativistic space-
times, there is a natural analogue of relativistic conformal structure available
for complex non-relativistic spacetimes.

This suggests an alternative, ‘horizontal’ path to constructing the non-
relativistic twistor space. Recall that in the relativistic case, the twistor space
could be defined as the space of α-surfaces in MC—2-surfaces all of whose tan-
gent planes are null with respect to Gab and whose tangent bivectors are self-
dual. So rather than taking the c → ∞ limit of the relativistic twistor space,
we might instead try to define the non-relativistic twistor space, in analogy to
the relativistic case, as the space of totally null 2-surfaces with self-dual tan-
gent bivector in MC—where the relevant notion of totally null is now as defined
above.13 The relationship between these two approaches is summarised in Fig-
ure 1. Constructing the bottom edge of Figure 1 will be what is needed to
illuminate the fact that there exists a full non-relativistic, but not a full rela-
tivistic twistor correspondence.

For this, note first that since non-relativistic α-surfaces are null with respect
to the closed one-form Ta, they can be parameterised by the (complex) time
coordinate T . Moreover, since the conformal geometry is the same on each of
the spatial leaves (since Hab is flat),14 this furnishes the space of non-relativistic

10Recall that Riemannian metrics on a complex manifold admit non-vanishing null vectors.
11Why? Because the conformal structure associated to a holomorphic Riemannian metric

is completely characterised by a specification of its (possibly complex) null vectors at each
point; moreover, up to conformal factors there will be a unique one-form which annihilates
all totally null vectors on MC. The latter fixes the fibration π : MC → C, the former fixes the
conformal geometry on each of the fibres π−1(T ).

12See e.g. Linnemann and Read (2021) for discussion of the relationship between this ap-
proach and the definition of conformal structure as an equivalence class of conformally equiv-
alent metrics.

13In fact, one might prefer this approach over that of Dunajski and Gundry (2016) since the
equations involved remain finite throughout, whereas the relativistic incidence relation blows
up in the non-relativistic limit. At the very least, the horizontal construction should provide
reassurance that this is not a pathological feature of Dunajski and Gundry’s approach.

14This is connected with the fact that the dynamics of NCT are time-translation invariant.
In particular, for M ∼= R4 we can equivalently obtain the spatial leaves S of MC by quotienting
the space MC under the action of C.

7



NCT

GR

Non-relativistic twistors

Relativistic twistors

twistors as α-planes?

twistors as α-planes

Figure 1: ‘Horizontal’ vs. ‘vertical’ approaches to the non-relativistic twistor
correspondence. Vertical arrows represent the non-relativistic limit.

α-surfaces with a Cartesian product structure: we take it to be C×NS , where
NS is the space of null two-surfaces associated to the spatial leaves S of MC
(which, recall, are complex Riemannian three-spaces).

Understanding the space of null two-surfaces associated to complex Rieman-
nian three-spaces is therefore our remaining task. Under what conditions does
there exist a (two-parameter) family of null two-surfaces in such a space? This
problem has been studied extensively in the twistor literature (originally in re-
lation to the twistorial description of non-Abelian monopoles, see e.g. Hitchin
(1982b, 1983)); the central result here is due to Hitchin (1982a):

Proposition 3.1 (Hitchin 1982). Let ⟨M, gab⟩ be a Riemannian three-manifold.
Then there exists an integrable distribution of null two-planes on MC with respect
to the holomorphic extension of gab iff Rab = Λgab for some constant Λ. The
two-parameter space of integral surfaces of this distibution is a family of rational
curves with normal bundle O(2).

Such a distribution of null two-planes is called a mini-twistor distribution,
and the associated space of integral surfaces of the distribution a mini-twistor
space.

This completes our inventory of tools needed to construct the bottom edge
of Figure 1. On-shell in Newton-Cartan theory, Rab = 0. It follows from the
foregoing discussion and proposition 3.1 that the Newtonian twistor space has
normal bundle C × O(2) = O ⊕ O(2). This brings out the reason why a full
twistor correspondence exists in the non-relativistic case: it is a consequence of
the fact that (a) the non-relativistic totally null vectors lie in the spatial leaves
of MC, and (b) the on-shell Newton-Cartan geometry is spatially conformally
flat. This guarantees that the distribution of non-relativistic α-planes in MC
is integrable, regardless of which particular model of Newton-Cartan theory we
are interested in. By way of contrast, the conditions coming from Fröbenius’
theorem for the distribution of null two-planes of a Lorentzian metric to be
integrable are not in general satisfied on-shell in GR. One can understand the
non-linear graviton theorem of Penrose (1976) as saying that precisely in the
case of SD vacuum spacetimes, these integrability conditions are in fact satisfied.

This is in agreement with the analysis of Dunajski and Gundry (2016), who
show, by considering the behaviour of the twistor equation in the c → ∞ limit,
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that the relativistic α-surfaces become spacelike and are the integral surfaces of
the mini-twistor distribution on the fibres of MC → C. However, our current
path has given us a much deeper understanding of this result: it is precisely this
distribution of α-planes which encodes the non-relativistic conformal structure.
The fact that this conformal structure is invariant on-shell, and moreover is
spatially conformally flat, is what explains the existence of a full non-relativistic
twistor correspondence.

3.2 Kodaira instability and jumping lines

The other striking difference between the non-relativistic and relativistic twistor
correspondence is that, unlike in the relativistic case, the non-relativistic twistor
space is unstable under general Kodaira deformations (Dunajski and Gundry
2016). Whilst the details of Kodaira deformation theory are somewhat tech-
nically involved (and are contained in appendix B), the basic idea is that we
can deform the complex structure of the twistor space by replacing the patch-
ing relations F (defined on the preimage of Uλ ∩ Uµ for patches Uλ, Uµ on
CP1) with parameterised patching relations F (b1, ..., bi) with the parameters
(b1, ..., bi) taking values in some base space B (possibly a complex manifold).

Dunajski and Gundry (2016) consider a particular class of Kodaira deforma-
tions which deform the patching relations in the T -direction which parametrises
the O factor of the non-relativistic twistor space. Since for a trivial line bun-
dle with total space C × O(2) → O(2) over CP1 we can always take T = T̃ ,
this amounts to replacing the non-relativistic twistor space C × O(2) with a
non-trivial line bundle L → O(2). Under such deformations, the normal bundle
of rational curves in twistor space ‘jumps’ discontinuously from O ⊕ O(2) to
O(1)⊕O(1) (Dunajski and Gundry 2016). This corresponds to a singularity in
the conformal structure of the associated spacetime (Jones and Tod 1985); the
deformed metric structure is non-degenerate and corresponds to an SD vacuum
solution of GR (Hitchin 1982a; Penrose 1976).

Our previous discussion of Newtonian conformal structure (§3.1) gives us
the resources to understand this result in greater detail. As noted above, the
Kodaira deformations under which the normal bundle of the non-relativistic
twistor space is unstable can be realised by replacing the space C ×O(2) with
a non-trivial line bundle L → O(2). This construction manifestly does not
preserve the Cartesian product structure C×NS of the normal bundle of rational
curves in L when L → O(2) is non-trivial. However, we saw in §3.1 that it is
precisely this Cartesian product structure which encodes the fibration M →
R induced by ta. It is for this reason that Kodaira deformations in the T -
direction of the non-relativistic twistor space do not preserve the non-relativistic
conformal structure of the associated spacetime, resulting in the ‘jump’ from
degenerate Riemannian to Lorentzian geometry.

This means that the interpretation of general Kodaira deformations of the
non-relativistic and relativistic twistor spaces are importantly different. First,
consider the case of relativistic vacuum SD spacetimes. Under the twistor cor-
respondence, points in such spacetimes map to rational curves in twistor space
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with normal bundle O(1) ⊕ O(1). It follows from a theorem due to Kodaira
(1963) (see appendix B) that under ‘small’ Kodaira deformations, the twistor
space will still admit a four-parameter family of rational curves with normal
bundle O(1)⊕O(1). This allows us to interpret the Kodaira deformation as in-
ducing a map between different relativistic SD spacetimes, which in turn can be
interpreted as a change in the curvature (with respect to the unique Levi-Civita
connection induced by the metric) on the associated spacetime manifold.

But now consider what happens in the non-relativistic case. We have seen
that general Kodaira deformations of the non-relativistic twistor space do not
preserve the holomorphic structure of the normal bundle, which ‘jumps’ from
O⊕O(2) to O(1)⊕O(1). As discussed above, this means that the deformations
induce a map from non-relativistic to relativistic SD spacetimes.

Now, I claim, this map cannot be interpreted as (just) a change in curvature.
To see why, recall that curvature is strictly speaking a property of the connec-
tion. The same connection may be compatible with multiple different metric
structures—for example, a flat connection on M ∼= R4 is trivially compatible
with Lorentzian, Riemannian, and degenerate non-relativistic metric structures.
The basic point is that facts about metric signature do not supervene on facts
about the Riemann curvature of a compatible connection. But we have just seen
that metric signature is not invariant under general Kodaira deformations of the
non-relativistic twistor space. This means that Kodaira deformations which do
not preserve the patching relation for the T -direction on the non-relativistic
twistor space cannot be interpreted as just changing the curvature, since the
deformed spacetime manifestly depends on facts which are not specifiable from
the undeformed metric structure and deformed Riemann curvature.

3.3 Motivating non-relativistic twistor theory

Our final point concerns the motivation for exploring non-relativistic twistor the-
ory, particularly as a route to solving the quantum measurement problem. To
be completely clear, we have no qualms per se with the idea that non-relativistic
twistor theory should be a field of interest to either physicists or philosophers.
On the one hand, if twistor theory does end up playing a role in some eventual
theory of quantum gravity, and in light of the technical achievements of the
relativistic twistor programme (see section 1), it might be of practical interest
to explore similar constructions in the non-relativistic case. On the other hand,
the existence of a non-relativistic twistor correspondence which parallels the
relativistic one might be thought to have independent theoretical interest, inso-
far as this sheds light on and increases our understanding of the relationships
between relativistic and non-relativistic theories of gravity.

Whilst at present speculative, these reasons for exploring non-relativistic
twistor theory are interesting and legitimate. Here, however, we wish to focus
on two further motivations for non-relativistic twistor theory which are put
forward by Dunajski and Penrose (2023):

[W]hatever it is that actually goes on physically when the wave-
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function collapses, i.e. the reduction of the quantum state, or R-
process—this being taken to be an objective physical process—must
have a curious ‘retro-active’ aspect to it if taken to be a ‘classically
real’ physical process [...]. Such ontological puzzles do not present
difficulties in the Newtonian limit, so it makes sense, at our present
level of understandings (sic) to concentrate on the Newtonian situ-
ation, where such issues of the precise timing of the R-process can
be evaded.

Quantum theory is inherently non–local, and this non–locality is
likely to prevail in any modifications resulting from incorporating
gravitational fields. Newtonian twistor theory is also non–local:
space–time points correspond to extended and global objects (ra-
tional curves) in the twistor space. It is hoped [...] that combining
quantum non–locality with Newtonian twistor non–locality can shed
light on the role of gravity in quantum state reduction. (Dunajski
and Penrose 2023, p. 1)

In the above passage, Dunajski and Penrose make the following two suggestions:

• It is helpful to focus on non-relativistic twistor theory in discussions of the
quantum measurement problem because non-relativistic theories render
unproblematic questions of ‘when’ collapse of the wavefunction occurs (by
virtue of being non-relativistic).

• Twistor theory (whether relativistic or non-relativistic) is a promising
route to understanding quantum gravity’s role in the measurement prob-
lem because (a) quantum theory is non-local, and (b) twistor theory is
non-local, insofar as it represents spacetime points by extended objects.

We are sceptical of both. On the first, consider the ‘retro-active’ aspect of
‘collapse’ to which Dunajski and Penrose refer. Although Dunajski and Pen-
rose (2023) are not explicit about what this is supposed to involve, Penrose’s
earlier (Penrose 1988) writings on the topic suggest that they have in mind
the disagreement between non-comoving observers about the time-ordering of
‘collapse’ for measurements made on spacelike separated subsystems of a joint
system.15 But note that this only presents a puzzle if collapse of the wave-
function is taken to be a ‘real physical process’. This interpretation of the von
Neumann-style collapse postulate is not compulsory—as witness e.g. Everettian
approaches to quantum theory, in which the dynamical evolution of the wave-
function is exclusively unitary and ‘collapse’ is recovered as an approximation
to the unitary evolution of the quantum state in the presence of environment-
induced decoherence. From this perspective, Dunajski and Penrose’s argument
for moving to the non-relativistic case does not even get going.

15Compare e.g. “Perhaps most baffling is the non-local and seemingly relativity-conflicting
behaviour in EPR-type (Clausen-Aspect) experiments. Spacelike separated measurements
take place. There is a conflict between the apparent time-ordering of the ‘reductions’ due to
these two measurements. ‘When’ do these reductions ‘actually’ take place?” (Penrose 1988,
emphasis in original)

11



Even setting this aside there are worries. For one, focussing on theories with
non-relativistic spacetime structure does not by itself obviate the need to address
questions of when—if at all—‘collapse’ of the wavefunction occurs; it merely
ensures that non-comoving observers will agree on the time-ordering of spacelike-
separated collapse events, if we first fix a time for those events to take place.
And whilst it is of course legitimate to attempt solutions to the measurement
problem within the non-relativistic regime, at some point one has to reckon
with the problem of extending these solutions to relativistic quantum theory.16

The worry that focussing too much on the non-relativistic case obscures the
difficulties with finding such an extension is especially pressing in the case of
twistor theory, where a full relativistic twistor correspondence has yet to be
worked out.

Turning now to bullet point two, whilst twistor theory may have a role to
play in discussions of quantum gravity, the fact that spacetime points are rep-
resented by extended objects in twistor space (henceforth ‘twistor non-locality’)
has nothing per se to do with quantum non-locality—i.e. the failure of fac-
torisability of the joint probability distributions for measurements conducted
on (possibly spacelike separated) subsystems of a joint system when condition-
alised on the ontic state of the joint system.17 To show that twistor non-locality
and quantum non-locality can be related in some meaningful way would be a
substantive achievement; terminology aside, there is no a priori connection be-
tween the two.

4 The Dunajski-Penrose proposal

This concludes our discussion of the conceptual background to non-relativistic
twistor theory. With this in hand, we now turn to Dunajski and Penrose’s
discussion of non-relativistic twistor theory and gravitationally-induced collapse
of the quantum wavefunction. Our aim here is to (a) reconstruct their proposal
to use non-relativistic theory in the description of gravitational collapse, and
thereby (b) assess and clarify some of the issues surrounding these proposals.

Accordingly, we begin by reviewing the central ideas of the gravitational col-
lapse programme put forward by Penrose (1996, 2014). Penrose’s argument—as
I understand it—is as follows. Consider a massive particle in a superposition of
two spatial locations in a spacetime which admits global timelike Killing fields.

16There is some subtlety here, since the recently-discovered ‘type II’ Newton-Cartan theory
of Hansen et al. (2019a,b, 2020) is non-relativistic, yet is able to pass most current empirical
‘tests’ of GR (Wolf, Sanchioni, et al. 2023). Note, however, that it is the standard ‘type I’
Newton-Cartan theory with which Dunajski and Penrose (2023) are concerned; moreover, as
is clear from §3.1, there is no guarantee of a non-relativistic twistor correspondence once one
drops the condition of spatial conformal flatness, nor for (generically torsionful) type II NCT
connections. For further discussion of the prospects for relativistic extensions of different
solutions to the quantum measurement problem, see e.g. Myrvold (2022) and Wallace (2022).

17Here we are eliding to some extent the distinction between quantum non-locality and
non-separability, and between different notions of quantum non-locality; for discussion of
these differences see e.g. Cheng (2023).
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In order to describe such a superposition in a theory where spacetime is dy-
namical (in the sense that spacetime structure varies across the dynamically
possible models of the theory a la Curiel (2016)), we must first settle on a stan-
dard for identifying spacetime points across different terms in the superposition.
Penrose’s strategy here is to invoke two principles (see e.g. Adlam et al. (2022)
for further discussion on this). First, the principle of diffeomorphism invari-
ance is invoked to argue that the procedure for identifying points of different
spacetimes must proceed on the basis of coordinate-independent features of the
spacetimes in question. Secondly, the Einstein equivalence principle is invoked
to argue that we can nevertheless use coordinates to make such an identification,
since by using local inertial coordinates in (some region of) both spacetimes, we
can (locally) identify the geodesics of the two. In general, however, no global
identification of the geodesics of spacetimes in the superposition will be possible.

The next step is to recall that we are assuming that the spacetimes un-
der consideration all admit global timelike Killing fields,18 which define time-
translation operators for each term in the superposition. But the fact that
there is no global identification of the geodesics of these spacetimes blocks the
construction of global time-translation operators for the superposed state. Pen-
rose claims that this will make the superposition unstable, since without global
time-translation operators, there will be an inherent energy uncertainty in the
superposed state. Here, Penrose draws an analogy to particle decay: the en-
ergy uncertainty ∆E will result in a spontaneous collapse of the superposition
with some finite lifetime given by ℏ/∆E. He also shows (Dunajski and Penrose
2023; Penrose 2014) that the phase difference between the superposed Newton-
Cartan spacetimes will in general have a cubic time-dependence, which he claims
means that without collapse, we will be unable to extrapolate this construction
to quantum field theory (QFT), since the spacetimes will be associated with
different QFT vacua.

Now, there are a number of criticisms one might have of this proposal.
(For example, one might question Penrose’s claim that the correct identifi-
cation of spacetime points across superposed states involves identifying their
geodesics; one might question whether the resulting ill-definedness of global
time-translation operators is a problem, given that we can still construct well-
defined time-translation operators for each spacetime in the superposition (as
in Giacomini and Brukner (2022)); one might question the strength of Penrose’s
analogy between particle decay and gravitational collapse (see Gao (2013)); one
might further question Penrose’s view of cubic time-dependence in the phase
difference leading to different QFT vacua as motivation for collapse specifically,
rather than e.g. the move to a richer Hilbert space structure, or simply as
a manifestation of the fact that we are working within a non-quantum-field-
theoretic framework.) However, we will bracket these issues for the moment,
since our focus here is specifically on the relationship between Penrose’s proposal
for gravitational collapse and non-relativistic twistor theory. On this, Dunajski
and Penrose (2023) write:

18Note that this holds trivially in NCT.
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It is reasonable to assume that [the reduction of the quantum state]
happens in between two times t0, and t1, and introduces enough cur-
vature that theO⊕O(2) Newtonian twistor space is deformed. While
this may correspond to a discontinuous jump in the space–time struc-
ture we propose that the twistor space survives the reduction [...],
but the 4-parameter family of curves with O ⊕O(2) normal bundle
disappear, and needs to be replaced by a new family. (Dunajski and
Penrose 2023, p. 12)

Their proposal is then as follows. Parameterise theO factor of the non-relativistic
twistor space by T , and let T0, T1 correspond to t0, t1 respectively. At T0, in-
troduce a Kodaira deformation of the patching relation in the T -direction. The
result is a relativistic twistor space with O(1)⊕O(1) normal bundle. At T1, take
the c → ∞ limit of this twistor space as outlined in (Dunajski and Gundry 2016)
to obtain a new non-relativistic twistor space, whose rational curves correspond
to the new spacetime points. Thus, Dunajski and Penrose (2023, p. 13) claim,
“although the space time seems to bifurcate and collapse in the R-process, the
twistor space is one complex three-fold. The curves in the R-process change
their holomorphic type.”

This construction raises (at least) two immediate questions:

1. What are the reasons for thinking that the twistor space survives the
quantum state reduction?

2. How should we interpret the Kodaira deformation and non-relativistic
limit in the Dunajski-Penrose proposal; what, if anything, is their relation
to spacetime superpositions; and how, if at all, do they correspond to the
glosses given in terms of ‘introducing spacetime curvature’ and ‘spacetime
bifurcating and collapsing’?

On (1), Dunajski and Penrose do not make their reasoning explicit. However,
the same question is addressed in detail in earlier work by Penrose (1988), who
writes on quantum state reduction:

One might have thought that any such violently discontinuous change
in the state of the world—if it were a real effect—ought to be
more noticeable as to when it actually takes place! Also, since the
Schrödinger equation is such a nice smooth analytic thing, it seems
odd that Nature should choose to execute such violently discontin-
uous jumps from time to time. [...]

It is conceivable that a twistor-type viewpoint could provide some
sort of resolution of this puzzle. Suppose that reduction is a grav-
itational effect [...] and that space-time is described twistorially.
[...] Now suppose that, with some measurement, the twistor space
becomes sufficiently ‘curved’ that the original family of holomorphic
lines, representing spacetime points, peters out—and we must switch
to a new family in order to keep going. Somehow the geometry of
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space-time seems to jump—yet in the ‘actuality’ of twistor space
there is no jump—just a (necessary) shift in viewpoint. (Penrose
1988, emphasis in original)

Whilst the details of the argument in this passage are admittedly sketchy, Pen-
rose’s underlying idea seems clear: the fact the twistor space survives the state
reduction process is supposed to help make sense of the discontinuous changes
in spacetime geometry associated with state reduction, since we are to take
the twistor space as fundamental. To what extent does the Dunajski-Penrose
proposal make good on this aim?

To begin with, it is not obvious that the Dunajski-Penrose proposal helps
explain why we do not observe “when” state reduction takes place. If anything,
it makes this fact even more mysterious: if the Dunajski-Penrose proposal is
to be taken seriously, state reduction is associated with a discontinuous shift
between non-relativistic and relativistic metric structure, which prima facie one
would expect to have empirically detectable consequences. Pending a detailed
analysis of why we should not in fact expect this shift to make itself manifest to
experiment, the Dunajski-Penrose proposal does little to recommend itself on
this front.

This takes us to our second point. If one has antecedent reasons for thinking
that twistors are more fundamental than spacetime points, and if a detailed
twistor analysis of why we should not expect to detect the discontinuous changes
in spacetime geometry associated with state reduction can be given, then the
Dunajski-Penrose proposal might make these shifts more palatable. But these
are two very big ‘ifs’ ! Moreover, given our present understanding of the twistor
correspondence, there seem to be good reasons for not taking twistors to be
more fundamental than spacetime points. For example, as Gajic et al. (2023)
discuss, the fact that the twistor correspondence is bidirectional means that
twistor theory fails at least one plausible criterion for fundamentality—namely
non-derivability.19

Moving now to (2), we should note that the explicit form of the dynamics
which might underwrite the Dunajski-Penrose proposal have yet to be fleshed
out,20 so the analysis here will only be partial. However, there are still several
points worth making. Our first has to do with Dunakski and Penrose’s descrip-
tion of what goes on in their model of the state-reduction process. On this, one
can distinguish three separate issues:

• By construction, the Dunajski-Penrose proposal involves only a single non-
relativistic twistor space before the state-reduction process, and only a
single relativistic twistor space during the state-reduction process. It is

19This worry is particularly pressing in the relativistic case. Here, not only is there a
bidirectional correspondence between twistor spaces and spacetimes in those sectors of GR
where a twistor correspondence does exist; outside of those sectors, we have spacetimes but
as yet no known associated twistor spaces.

20Though note in particular that these cannot be the Newton-Cartan dynamics, which leave
the metric signature invariant; c.f. also discussions of signature change in the physics literature
(see e.g. Ellis (1992), Ellis et al. (1992), Gibbons and Hartle (1990), and Kossowski and Kriele
(1993)), initially inspired by the ‘no-boundary’ proposal of Hartle and Hawking (1983).
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therefore unclear how spacetime could be said to “bifurcate” during the
Dunajski-Penrose state-reduction process.21

• As argued in §3.2, the Kodaira deformation considered by Dunajski and
Penrose cannot be interpreted as (just) a change in spacetime curvature.
Therefore, on the Dunajski-Penrose proposal, it is not strictly speaking
correct to say that the state-reduction process “introduces enough curva-
ture that the [...] twistor space is deformed.”

• On the Dunajski-Penrose proposal, the “collapse” of spacetime at the end
of the state-reduction process is modelled by taking the non-relativistic
limit of the relativistic twistor space. It is not clear in what sense this limit
corresponds to “collapse”, unless “collapse” just means a discontinuous
change in conformal structure.

The next feature of the Dunajski-Penrose proposal we will consider is the
non-relativistic limit which is taken at the end of the state-reduction process.
Dunajski and Penrose do not say anything to motivate physically the taking of
this limit, which can be understood as essentially a formal mathematical device
for recovering a non-relativistic twistor space from the (deformed) relativistic
one.22 However, this raises an obvious worry. The Dunajski-Penrose proposal
makes essential use of the fact that the non-relativistic twistor space is unstable
under a particular class of Kodaira deformations. We have already seen that this
is not the case for relativistic twistor spaces. Some outline of how the Dunajski-
Penrose proposal is supposed to generalise to the relativistic case is therefore
needed if the proposal is to remain viable as a description of gravitationally
induced collapse outside of the non-relativistic regime.

Our final point has to do with the relationship between the Dunajski-Penrose
proposal and the quantum measurement problem. In particular, there is nothing
in the Dunajski-Penrose proposal which has to do with quantum theory or space-
time superpositions per se. Rather, what the proposal gives is a recipe for con-
structing non-relativistic twistor spaces with ‘collapse events’ from ones without
such events. Whilst the motivation behind this may be quantum-mechanical,
the construction itself is not. It is therefore not clear that the Dunajski-Penrose
proposal substantially illuminates the connections between gravity, quantum
mechanics, and ‘collapse’ of the wavefunction.

21Dunajski and Penrose are not explicit about what they mean by ‘bifurcation’ here, though
their terminology suggests that they might have in mind something like non-Hausdorff space-
time structure. Whilst non-Hausdorff spacetimes have been explored in the GR literature (see
also Luc and Placek (2020) for philosophical discussion), there have not yet been any attempts
to extend this to non-Hausdorff NCT; moreover, there is as yet no worked-out twistor cor-
respondence for non-Hausdorff spacetimes. So although one might charitably read Dunajski
and Penrose’s talk of ‘bifurcation’ as directed at some future non-Hausdorff extension of their
proposal, the prospects for such an extension are at best unclear.

22Recall that one cannot use another (small) Kodaira deformation here, since small Kodaira
deformations of the O(1)⊕O(1) relativistic twistor space preserve the holomorphic structure
of the normal bundle; see §3.2, appendix B, and references therein.

16



5 Close

To continue with the issues raised at the end of the previous section, whilst
currently highly programmatic in nature, the Dunajski-Penrose proposal is cer-
tainly an interesting development in the gravitational collapse literature which
is worthy of study. Moreover, as noted in §3.3, there are a number of reasons
for taking an interest in non-relativistic twistor theory more generally, indepen-
dently of the Dunajski-Penrose proposal. Given the relative lack of philosoph-
ical literature on twistor theory, and the recentness of the Dunajski-Penrose
proposal, our focus in this article has been to clarify the conceptual background
to non-relativistic twistor theory, as well as to lay out in detail the issues facing
the Dunajski-Penrose proposal.

Accordingly, our conclusions here may seem to be somewhat negative. On
a more positive note, getting clear on what these issues are paves the way
both for future developments of the Dunajski-Penrose proposal to address these
issues, and for future philosophical analysis of these developments, should they
be forthcoming.
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A Line bundles

In this appendix, we briefly review the basic construction of line bundles over
projectivised vector spaces.

Definition A.1 (Projectivisation of a vector space). Let V be a vector space
over a field F . The projectivisation PV of V is the quotient space PV :=
(V \ {0})/F×, F× := F \ {0}.

PCn is denoted CPn. The complex projective line CP1 is also called the
Riemann sphere, and considered as a submanifold of some complex manifold is
a rational curve. If PV is a projectivised vector space, then each point in PV
carries the action of the multiplicative group F×. This provides a natural way
of constructing a fibre bundle over PV with fibres F :

Definition A.2 (Tautological line bundle on a projective space). Let v, [v]
denote points in V , PV respectively. The tautological line bundle on PV is the
sub-bundle {(v, [v]) ∈ V ×PV |v ∈ [v]} → PV of V ×PV → PV , and is denoted
OV (−1).

From the tautological line bundle, we can then construct further line bundles
on PV :
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Definition A.3 (OV (n)). Let OV (−1) be the tautological line bundle on PV .
The construction of OV (n) for arbitrary integers n proceeds via two steps:

• OV (1) := OV (−1)∗;

• OV (n) := OV (1)
⊗n.

If F = C, then n is the (first) Chern class of OV (n). Chern classes are
characteristic classes for complex vector bundles which arise naturally in al-
gebraic topology (see e.g. Milnor and Stasheff (1974)), algebraic geometry (see
e.g. Hartshorne (1977)), and differential geometry (see e.g. Chern (1995)). When
V = C, we write OC(n) := O(n). It is a result due to Birkhoff and Grothendiek
that any holomorphic vector bundle on CP1 can be constructed from the O(n):

Proposition A.1 (Birkhoff-Grothendiek theorem). Any rank-k vector bundle
on CP1 is isomorphic to a direct sum of line bundles O(n1) ⊕ ... ⊕ O(nk) for
integers n1, ..., nk.

B Kodaira deformation theory

In this appendix, we give a brief introduction to Kodaira deformation theory.
We also present details on some of the basic ideas from sheaf cohomology needed
for the central results in Kodaira deformation theory.

B.1 Complex analytic families

We begin with two definitions:

Definition B.1 (Complex analytic family). A complex analytic family of com-
plex manifolds is a complex fibre bundle π : M → B such that π is holomorphic
and has Jacobian whose rank is equal to the dimension of B. M is a family of
compact complex manifolds iff the fibres π−1(b) at each point b ∈ B are compact.

Definition B.2 (Stable submanifold of a complex manifold). Let N be a com-
pact complex submanifold of M . N is a stable submanifold of M iff for any
complex analytic family π : M → B such that π−1(b) = M for a point b ∈ B,
there exist a neighborhood U of b in B and a fibre submanifold π : N → U with
compact fibres of the complex fibre manifold M|U such that N ∩M = N .

Given a complex analytic family of compact complex manifolds M, and a
submanifold N of M = π−1(p), there are two natural questions which one might
be interested in:

• How does the complex structure of the fibres of M vary with respect to
points in the base space?

• Under what conditions is N a stable submanifold of M?
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B.2 Sheaf cohomology

It turns out that useful answers to the questions raised at the end of §B.1 can be
given in terms of sheaf cohomology classes associated to the topological spaces
of interest (the construction can also be done using Čech cohomology, since Čech
cohomology classes are isomorphic to sheaf cohomology classes for sheaves on
paracompact Hausdorff spaces; see Huggett and Tod (1994) for a presentation
along those lines). We begin with some preliminaries from cohomology theory,
and then go on to consider their generalisations to sheaf cohomology:

B.2.1 Cohomology

Definition B.3 (Z-graded abelian group). A Z-graded abelian group is an
abelian group C which admits a direct sum decomposition

C = ⊕
n∈Z

Cn

where the Cn are abelian groups.

All graded abelian groups will be assumed Z-graded.

Definition B.4 (Homomorphism of graded abelian groups). A homomorphism
h : C → D of graded abelian groups is a group homomorphism such that h(Cn) ⊂
Dn.

Definition B.5 (Homomorphism of degree k). A homomorphism h : C → D of
degree k of graded abelian groups is a group homomorphism such that h(Cn) ⊂
Dn+k.

This allows us to introduce the notion of a chain complex :

Definition B.6 (Chain complex). A chain complex (C, ϕ) is a graded abelian
group together with a homomorphism ϕ of degree −1 (called a boundary homo-
morphism) such that ϕ2 = 0.

A chain complex gives us a sequence of abelian groups

... → Cn+1
ϕn+1→ Cn

ϕn→ Cn−1 → ...

where ϕn+1 ◦ ϕn = 0. Note in particular that im(ϕn+1) ⊆ ker(ϕn). We define:

Definition B.7 (Boundary). An n-boundary is the image im(ϕn+1).

Definition B.8 (Cycle). An n-cycle is the kernel ker(ϕn).

We then have

Definition B.9 (Exact sequence). A sequence of abelian groups is exact iff all
n-boundaries and n-cycles are equal, i.e. im(ϕn+1) = ker(ϕn) for all n. An exact
sequence is short exact iff it has the form 0 → A → B → C → 0.
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Given a chain complex (C, ϕ), it follows that the quotient groups im(ϕn+1)/ker(ϕn)
encode information about the extent to which the sequence

... → Cn+1
ϕn+1→ Cn

ϕn→ Cn−1 → ...

fails to be exact at each n. This is made precise in the notion of homology :

Definition B.10 (Homology). The nth homology class Hn(C) of (C, ϕ) is the
quotient Hn(C) := im(ϕn+1)/ker(ϕn).

We have the following useful result about homology:

Proposition B.1. A short exact sequence 0 → A → B → C → 0 of abelian
groups induces a long exact sequence

H0(A) → H0(B) → H0(C) → H1(A) → ...

on homology groups.

The idea of cohomology is then just that when the action of Z on C is free
we can make an analogous construction for the dual groups and dual maps of
the chain complex (C, ϕ).

Definition B.11 (Cochain complex). Let (C, ϕ) be a chain complex such that
the action of Z on C is free. The n cochain Cn of (C, ϕ) is the dual group
Cn := hom(Cn,Z)

A cochain complex gives us a sequence of abelian groups

... → Cn−1 ϕn−1

→ Cn ϕn

→ Cn+1 → ...

where ϕn is the dual map to ϕn and ϕn ◦ ϕn−1 = 0. So this time, we have
im(ϕn) ⊆ ker(ϕn−1). We therefore define

Definition B.12 (Coboundary). An n-coboundary is the image im(ϕn).

Definition B.13 (Cocycle). An n-cocycle is the kernel ker(ϕn−1).

Definition B.14 (Cohomology). The nth homology class Hn(C) of (C, ϕ) is
the quotient Hn(C) := im(ϕn)/ker(ϕn−1).

Proposition B.2. A short exact sequence 0 → A → B → C → 0 of abelian
(dual) groups induces a long exact sequence

H0(A) → H0(B) → H0(C) → H1(A) → ...

on cohomology groups.
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B.2.2 Sheaves

Definition B.15 (Abelian sheaf). Let X be a topological space. An abelian
sheaf S over X is a topological space and a map π : S → X such that

• π is a local homomorphism;

• The stalks Sx := π−1(x) are topological abelian groups (i.e. abelian groups
whose group operations are continuous).

We record for future use the following fact about abelian sheaves:

Proposition B.3. The sections S(U) of S over any open set U ⊂ X form an
abelian group.

In fact, it is standard to use proposition B.3 as part of the definition of
abelian sheaves, but for our purposes here we can make do with the (rather
simpler) definition B.15, although it obscures somewhat the relationship to sheaf
theory more generally. In any case, all sheaves will henceforth be assumed
abelian. Our next step is to define the notion of a structure-preserving map
between sheaves:

Definition B.16 (Sheaf homomorphism). Let S, T be sheaves over X. A
continuous map ϕ : S → T is a sheaf homomorphism iff for all x ∈ X ϕ : Sx →
Tx.

One application of this idea is to define the notion of an injective resolution
of a sheaf:

Definition B.17 (Injective sheaf). An injective sheaf I is a sheaf such that for
any homomorphism f : S → I and any monomorphism g : S → T there exists
a homomorphism h : T → I such that h ◦ g = f .

Definition B.18 (Injective resolution of a sheaf). An injective resolution of a
sheaf S is an exact sequence 0 → S → I0 → I1 → I2 → ... where the Ii are
injective sheaves.

Given an injective resolution 0 → S → I0 → I1 → I2 → ... of S, it follows
from proposition B.3 that we have the cochain complex

0 → S(X) → I0(X) → I1(X) → I2(X) → ...

which immediately allows us to make contact with our discussion of cohomology
in §B.2.1. However, we first need to address the question: under what conditions
do injective resolutions of a sheaf exist? The answer is provided by the following
proposition:

Proposition B.4. Let S be an abelian sheaf. Then there exists an injective
sheaf I and a monomorphism S → I.

(This is a statement of the fact that the category of abelian sheaves has
enough injections, see e.g. Hartshorne (1977).) Thus for any sheaf we can define
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Definition B.19 (Sheaf cohomology). Consider the cochain complex

0 → S(X) → I0(X)
ϕ∗
0→ I1(X)

ϕ∗
1→ I2(X)

ϕ∗
2→ ...

where 0 → S → I0 → I1 → I2 → ... is an injective resolution of S. The ith
cohomology group Hi(X,S) := ker(ϕ∗

i )/im(ϕ∗
i−1).

This definition of sheaf cohomology classes only makes sense if the Hn(X,S)
are independent of the choice of injective resolution. Standard arguments in the
theory of abelian categories (see e.g. Hartshorne (1977)) imply that this is indeed
the case:

Proposition B.5. The cohomology classes Hn(X,S) are independent of the
choice of injective resolution 0 → S → I0 → I1 → I2 → ... of S.

We have from proposition B.2 the following useful result about sheaf coho-
mology:

Proposition B.6. A short exact sequence 0 → S → T → R → 0 of sheaves
over X induces a long exact sequence

H0(X,S) → H0(X, T ) → H0(X,R) → H1(X,S) → ...

on cohomology groups.

B.3 The Kodaira theorems

We now have the tools in place to address our two questions from §B.1. To
motivate our answer to the first (see Zykoski (2018) for a detailed discussion
of this), let π : M → B be a complex analytic family, and consider some
open U ⊂ B. Fix a covering of π−1(U) by coordinate charts φλ defined on
patches Uλ of π−1(U) which all agree on their restrictions to U ∩ Uλ, and let
Fλµ be patching relations on Uλ ∩ Uµ. We are interested in how the complex
structure of the fibres π−1(b) changes as we move between ‘neighbouring’ points
in the base space. Since this complex structure is encoded in the patching
relations on each fibre π−1(b), it makes sense to say that to first order, this is
completely characterised by the first derivatives of the Fλµ with respect to the
coordinates on U . This suggests that to answer our question we should consider
the relationship between TM|M and TbB. Since π : M → B is a complex
analytic family, we have the map

dπ : TM|M → TbB

which induces a short exact sequence of sheaves

0 → TM → TM|M → TbB ⊗OM → 0.

(Here we are abusing notation by eliding the distinction between the sheaf of
sections of a vector bundle and the bundle itself.) Since H0(M,TbB ⊗ OM ) ∼=
TbB, by proposition B.6 this gives us the following map:
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Definition B.20 (The Kodaira-Spencer map). The map TbB → H1(M,TM)
obtained by taking the long exact cohomology sequence of 0 → TM → TM|M →
TbB ⊗OM → 0. is called the Kodaira-Spencer map.

which makes precise our earlier gloss of Kodaira deformations from §3.2.
Turning now to the second question raised in §B.1, a partial answer to this
question is given by a theorem due to Kodaira:

Proposition B.7 (Kodaira 1963). Let N be a compact complex submanifold
of M , and let NN/M be the normal sheaf of N in M .23 Then N is a stable
submanifold of M if H1(V,NN/M ) = 0.
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