Scientific Representation

James Nguyen and Roman Frigg

Cambridge University Press (Cambridge Elements) 2022

The full manuscript is available open access on the publisher’s website:

https://www.cambridge.org/core/elements/scientific-representation/A5C2A74998C15C36D4B204E4B3E70B1C

Below you find the abstract, the table of contents, and the bibliography by way of preview.

Abstract

This Element presents a philosophical exploration of the notion of scientific representation. It does so by focussing on an important class of scientific representations, namely scientific models. Models are important in the scientific process because scientists can study a model to discover features of reality. But what does it mean for something to represent something else? This is the question we discuss in this book. We begin by disentangling different aspects of the problem of representation and then discuss the dominant accounts in the philosophical literature: the resemblance view and inferentialism. We find them both wanting and submit that our own preferred option, the so-called DEKI account, not only eschews the problems that beset these conceptions, but further provides a comprehensive answer to the question of how scientific representation works. This title is also available as Open Access on Cambridge Core.

Keywords: representation, scientific modelling, epistemology of science, model-world relation, DEKI
Table of Contents

1 Introduction
1.1 Models
1.2 Questions Concerning Scientific Representation
1.3 What Does Success Look Like?
1.4 Roadmap

2 Resemblance and Representation
2.1 Introduction
2.2 Resemblance
2.3 The Semantic Question
2.4 The Accuracy Question
2.5 The Model Question

3 The Inferential Conception
3.1 Introduction
3.2 Representational Deflationism
3.3 Why Be an Inferentialist?
3.4 Reactions and Developments

4 The DEKI Account
4.1 Introduction
4.2 Using a Ship Model
4.3 Two Kinds of Representations
4.4 Exemplification
4.5 Keys and Imputation
4.6 Putting the Pieces Together: DEKI
4.7 Non-Concrete Models
4.8 Limit Keys for Mechanical Models
4.9 Coda

References
References

Boesch, B. (2017). There is a special problem of scientific representation. Philosophy of Science, 84(5), 970-981.

Frigg, R., & Votsis, I. (2011). Everything you always wanted to know about structural realism but were afraid to ask. *European Journal for Philosophy of Science, 1*(2), 227–276.

Understanding and Representation: Modeling in the Physical Sciences (pp. TBC). TBC: Routledge.

Thomasson, A. L. (2020). If models were fictions, then what would they be? In A. Levy, & P. Godfrey-Smith (Eds.), *The scientific imagination. Philosophical and psychological perspectives* (pp. 51-74). New York: Oxford University Press.

