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coordinate-based discussions of Saunders (2013) and Wallace (2020).
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1 Introduction

In recent years, philosophers of physics have considered afresh the question
of the appropriate spacetime setting for Newtonian gravitation theory. At the
centre of this debate have been two apparently conflicting proposals for what one
should take this geometry to be: on the one hand, Saunders’s (2013) proposal
that Corollary VI to the Laws of Motion in Newton’s Principia reveals that
Maxwellian spacetime is the correct setting for Newtonian physics, and on the
other hand, Knox’s (2014) proposal that Corollary VI motivates a transition to
a geometrised formulation of Newtonian gravitation, known as Newton-Cartan
theory. Their claims have sparked a series of discussions of theories of Newtonian
gravitation set on Maxwellian spacetime, and their relation to Newton-Cartan
theory.1

∗Faculty of Philosophy, University of Oxford. eleanor.march@philosophy.ox.ac.uk
1. See Weatherall (2016), Teh (2018), Wallace (2020), Jacobs (2023), March, Wolf, and

Read (2024).
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One focus of these discussions has been on how Maxwellian spacetime—
which is supposed to be equipped with a standard of rotation, but not a stan-
dard of absolute acceleration—should best be characterised. Earman (1989)
originally defined the standard of rotation in terms of an equivalence class of
derivative operators, and Dewar (2018) also adopted this definition. But a
number of authors have voiced concerns about this approach. For example,
Weatherall (2018, 34) notes that it “makes reference to structure that one does
not attribute to spacetime,” Jacobs (2022) argues that it is not suitably “in-
trinsic” and so fails to offer a perspicuous formalism from which we can read off
the theory’s ontology,2 and Wallace (2019, 2020) goes so far as to suggest that
the awkwardness of standard differential-geometric presentations of Maxwellian
spacetime obscures the similarity between Newton-Cartan theory and theories of
Newtonian gravitation set on Maxwellian spacetime, and (more generally) shows
that coordinate-free differential geometry is not an intuitive way of character-
ising certain spacetime structures. In response to these concerns, Weatherall
(2018) developed an ‘intrinsic’ characterisation of a standard of rotation, and
Chen (2023) and March (2023b) have recently (and independently) shown that
this object can be used to write down dynamics for Newtonian gravitation on
Maxwellian spacetime (Maxwell gravitation).

However, this new wave of (coordinate-free differential-geometric) presen-
tations of Maxwell gravitation are somewhat removed from Saunders’ original
coordinate-based ‘vector relationism’. It would be of interest to see how these
fit together. It also remains unclear how exactly Wallace’s own (2020) (also
coordinate-based) discussion of vector relationism and Newton-Cartan theory
relates to the approaches outlined above.

In this paper, I aim to fill in these remaining pieces of the puzzle, by (a)
making precise the relationship between vector relationism and Maxwell gravi-
tation, and (b) translating Wallace’s argument into the language of coordinate-
free differential geometry. I thereby (i) clarify how Wallace’s argument relates
to other arguments concerning the (in)equivalence of Maxwell gravitation and
Newton-Cartan theory in the literature, and (ii) address Wallace’s concern that
coordinate-free presentations of Maxwell gravitation obscure its similarities to
Newton-Cartan theory. Indeed, I will argue, the same similarities to which
Wallace alludes can be seen very naturally from a coordinate-free differential-
geometric standpoint. Finally, this (iii) gives us the resources to connect up
to Teh’s (2018) discussion of Wallace and vector relationism, in which he also
claims put Wallace into the language of coordinate-free differential geometry.

In more detail, the structure of this paper will be as follows. In §2, I present
some basic details of Maxwell gravitation and Newton-Cartan theory, and the re-
lationship between them. I then turn to the task of connecting these coordinate-
free approaches with the work of Saunders (2013) and Wallace (2020). In §3,
I present Saunders’ vector relationism, and make precise its relationship to
Maxwell gravitation. §4 reconstructs Wallace’s argument that vector relationism
and Newton-Cartan theory are equivalent; §5 aims to dispel the remainder of
Wallace’s concerns about coordinate-free presentations of Maxwellian spacetime
by showing that the same argument can be made in the language of coordinate-
free differential geometry. To end, in §6, I compare my approach to that of Teh
(2018). §7 concludes.

2. See also Dürr & Read (2019, 1094-1096), who raise similar concerns.
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2 Background: coordinate-free approaches to New-
tonian gravitation on Maxwellian spacetime

Let M be a smooth four-manifold (assumed connected, Hausdorff, and para-
compact). A temporal metric ta on M is a smooth, closed, non-vanishing 1-
form;3 a spatial metric hab on M is a smooth, symmetric, rank-(2, 0) tensor

field which admits, at each point in M , a set of four non-vanishing covectors
i
σa,

i = 0, 1, 2, 3, which form a basis for the cotangent space and satisfy hab i
σa

j
σb = 1

for i = j = 1, 2, 3 and 0 otherwise. A spatial and temporal metric are com-
patible iff hantn = 0. A vector field σa is spacelike iff tnσ

n = 0, and timelike
otherwise. Given the structure defined here, ta induces a foliation of M into
spacelike hypersurfaces, and relative to any such hypersurface, hab induces a
unique spatial derivative operator D such that Dah

bc = 0.4 hab is flat just in
case for any such spacelike hypersurface, D commutes on spacelike vector fields,
i.e. D[aDb]σ

c = 0 for all spacelike vector fields σ. Finally, let ∇ be a connection

on M . ∇ is compatible with the metrics just in case ∇atb = 0 and ∇ah
bc = 0.

With these structures in place, we can introduce Earman’s (1989) original
definition of a standard of rotation. Let ta, h

ab be compatible temporal and
spatial metrics on M , and let ∇, ∇′ be a pair of flat derivative operators on M ,
both compatible with the metrics. ∇ and ∇′ are rotationally equivalent just in
case for any unit timelike vector field ηa on M , ∇[aηb] = 0 ⇔ ∇′[aηb] = 0. Then
a standard of rotation compatible with ta and hab is an equivalence class [∇] of
rotationally equivalent compatible flat derivative operators.

Within this framework, Dewar (2018) shows that one can formulate New-
tonian gravitation theory as follows. Let ta, h

ab be compatible temporal and
spatial metrics onM , [∇] an equivalence class of rotationally equivalent compat-
ible flat derivative operators, and T ab the Newtonian mass-momentum tensor
for whichever matter fields are present. Let ρ := tatbT

ab be the scalar mass
density field. Then ⟨M, ta, h

ab, [∇], T ab⟩ is a model of Maxwell-Dewar gravita-
tion5 just in case for all points p ∈ M where ρ ̸= 0, the following equations hold
at p:

ta∇nT
na = 0 (1a)

∇m(ρ−1∇nT
nm) = −4πρ (1b)

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = 0, (1c)

where ∇ is an arbitrary member of [∇].
Recently, however, Weatherall (2018, 34) has queried this definition of a

standard of rotation, noting that it “makes reference to structure that one does
not attribute to spacetime.” Weatherall points to two criticisms of this approach.
First, if a standard of rotation is defined as an equivalence class of derivative
operators, then we must select an arbitrary member of this class to perform
calculations. But some of the terms in these calculations may depend on the
choice of derivative operator, and it is not clear how these should be interpreted.
Secondly, one might worry that the appeal to derivative operators somehow
obscures the structure of Maxwellian spacetime.

3. Here and throughout, abstract indices are written in Latin script; component indices
are written in Greek script, with the exception of i, j, k, which are reserved for the spatial
components of tensor fields in some coordinate basis; and the Einstein summation convention
is used. Round brackets denote symmetrisation, square brackets antisymmetrisation.

4. See Weatherall (2018, 37–38) and Malament (2012, §4.1) for further details.
5. Note that Dewar (2018) calls this theory Maxwell gravitation; here, I reserve that name

for presentations of the theory which do not make reference to any structure which is not
definable from that of Maxwellian spacetime, such as the theory presented in section 3.
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In response, Weatherall offers an alternative definition: if ta, h
ab are com-

patible temporal and spatial metrics on M , a standard of rotation ⟳ compatible
with ta and hab is a map from smooth vector fields ξa on M to smooth, anti-
symmetric rank-(2, 0) tensor fields ⟳b ξa on M , such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =
α ⟳a ξb + ξ[bda]α;

3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb].

One can then define a Maxwellian spacetime as a structure ⟨M, ta, h
ab,⟳⟩, where

⟳ is compatible with ta and hab.
Now fix a spacetime ⟨M, ta, h

ab⟩, and let ∇ and ⟳ be a connection and
standard of rotation on M , both compatible with the metrics. In what follows,
we will often want to consider connections and standards of rotation which
‘agree’ with one another in the following sense: for any vector field ηa on M ,
∇[aηb] = ⟳a ηb. In this case, I will say that the connection and standard
of rotation are compatible.6 Likewise, a connection ∇ is compatible with a
spacetime ⟨M, ta, h

ab,⟳⟩ just in case it is compatible with the metrics and ⟳.
Finally, I will say that a spacetime ⟨M, ta, h

ab,⟳⟩ is rotationally flat just in
case hab is flat and there exists a unit timelike vector field ξa on M such that
⟳a ξb = 0 and £ξh

ab = 0,7 or equivalently, just in case some flat derivative
operator is compatible with ⟨M, ta, h

ab,⟳⟩ (Weatherall 2018, Proposition 1).
Where there is no ambiguity over the temporal and spatial metrics in question,
I will sometimes drop talk of the metrics and simply refer to ⟳ instead.

Finally, we need to say something about the Newtonian mass-momentum
tensor T ab. We have already seen that we can extract the scalar mass density
field ρ from T ab using the temporal metric. But in Maxwell-Dewar gravitation,
we also used derivative operators to extract vector fields from T ab. In what
follows, we will likewise want to extract vector fields from T ab, but without
the use of derivative operators. To do this, we first impose the ‘Newtonian
mass condition’: whenever T ab ̸= 0, Tnmtntm > 0. This captures the idea that
the matter fields we are interested in are massive, in the sense that there can
only be non-zero mass-momentum in spacetime regions where the mass density
is strictly positive.8 Since T ab is symmetric, the Newtonian mass condition
guarantees that whenever T ab ̸= 0, we can uniquely decompose T ab as

T ab = ρξaξb + σab (2)

where ξa = ρ−1tnT
na is a smooth unit timelike future-directed vector field

(interpretable as the net four-velocity of the matter fields F ), and σab is a
smooth symmetric rank-(2, 0) tensor field which is spacelike in both indices
(interpretable as the stress tensor for F ).

6. This idea is made precise by Weatherall (2018, Proposition 1); the basic fact is that any
connection determines a unique compatible standard of rotation, but a standard of rotation
does not similarly determine a unique compatible connection.

7. Here and throughout, £ denotes the Lie derivative.
8. For example, Weatherall (2012, 211) suggests that “[one] might take [the Newtonian

mass condition] to be a benign and unsurprising characterisation of what we mean by “massive
particle” in Newtonian gravitation.”
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We are now in a position to formulate Newtonian gravitation theory in terms
of Weatherall’s standard of rotation. Let ⟨M, ta, h

ab,⟳⟩ be a Maxwellian space-
time, and let T ab be the Newtonian mass-momentum tensor for whichever mat-
ter fields are present. Then ⟨M, ta, h

ab,⟳, T ab⟩ is a model of Maxwell gravitation
just in case

(i) ⟨M, ta, h
ab,⟳⟩ is rotationally flat; and

(ii) For all points p ∈ M such that ρ ̸= 0, the following equations hold at p:

£ξρ−
1

2
ρĥmn£ξh

mn = 0 (MG1)

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) = −4

3
πρ− 1

3
Dm(ρ−1Dnσ

nm) (MG2)

£ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m+ ⟳c (ρ−1Dnσ
na) = 0, (MG3)

where ĥab is the spatial metric relative to ξa,9 the
i

λa are three orthonormal
connecting fields for ξa, and ∆ is the ‘restricted derivative operator’ defined in
Weatherall (2018). This acts on arbitrary spacelike vector fields σa at a point
p according to

ηn∆nσ
a := £ησ

a + σn ⟳n ηa − 1

2
σn£ηh

an (5)

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect
to any extension of ηa off of p). It also has the property that ηn∆nσ

a =
ηn∇nσ

a for any derivative operator ∇ compatible with ⟳ (Weatherall 2018).
The relationship between Maxwell gravitation and Maxwell-Dewar gravitation
is summarised by the following pair of propositions (March 2023b; Chen 2023):

Proposition 1. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation.

Then there exists a unique equivalence class of rotationally equivalent flat deriva-
tive operators [∇] such that all the ∇ ∈ [∇] are compatible with ⟳ and ⟨M, ta, h

ab, [∇], T ab⟩
is a model of Maxwell-Dewar gravitation.

Proposition 2. Let ⟨M, ta, h
ab, [∇], T ab⟩ be a model of Maxwell-Dewar grav-

itation. Then there exists a unique standard of rotation ⟳ such that all the
∇ ∈ [∇] are compatible with ⟳ and ⟨M, ta, h

ab,⟳, T ab⟩ is a model of Maxwell
gravitation.

Finally, we can extend our discussion to Newton-Cartan theory. Let ⟨M, ta, h
ab⟩

be a non-relativistic spacetime, ∇ a metric-compatible derivative operator on
M , and T ab the mass-momentum tensor for whichever matter fields are present.
Then ⟨M, ta, h

ab,∇, T ab⟩ is a model of Newton-Cartan theory just in case

∇nT
na = 0 (NCT1)

Rab = 4πρtatb (NCT2)

Ra c
b d = Rc a

d b (NCT3)

Rab
cd = 0. (NCT4)

The relation between Maxwell gravitation and Newton-Cartan theory is sum-
marised by the following pair of propositions:

9. That is, the unique symmetric tensor field on M such that ĥanξn = 0 and hanĥnb =
δab − tbξ

a.
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Proposition 3. Let ⟨M, ta, h
ab,∇, T ab⟩ be a model of Newton-Cartan theory.

Then there exists a unique standard of rotation ⟳ such that ∇ is compatible with
⟳ and ⟨M, ta, h

ab,⟳, T ab⟩ is a model of Maxwell gravitation.

Proposition 4. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation.

Then there exists a derivative operator ∇ such that ⟨M, ta, h
ab,∇, T ab⟩ is a

model of Newton-Cartan theory. Moreover, the derivative operator ∇ is not
unique. If ∇ is such a derivative operator, then so is (∇, tbtcσ

a), where σa is
any spacelike, twist-free, and divergence-free vector field such that ρσa = 0.

Corollary 4.1 (Chen 2023). Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell

gravitation such that ρ ̸= 0 throughout some open set O. Then there exists a
unique derivative operator ∇ such that ⟨M, ta, h

ab,∇, T ab⟩ is a model of Newton-
Cartan theory.

3 Maxwell gravitation and vector relationism

In §2, I have reviewed the recent literature on coordinate-free approaches to
MG, and their relationship to NCT. But as noted in §1, these presentations of
MG are rather distant from Saunders’ original (2013) discussion of Newtonian
gravitation on Maxwellian spacetime. This distance has three sources, which
will occupy us for the rest of this section:

• Saunders’ preferred characterisation of the appropriate setting for his
vector relationist dynamics is as an affine space which he calls Newton-
Huygens spacetime, rather than a differentiable manifold with differential-
geometric objects defined thereon;

• Saunders’ dynamics are presented in the coordinate-based framework; and

• Saunders’ theory concerns only the dynamics of point particles, rather
than continua.

Now, the first of these is easily dealt with—as Saunders himself notes, the idea
of Newton-Huygens spacetime is just that Maxwellian spacetime á la Earman
can be redescribed as an affine space, albeit one in which affine structure is ap-
propriately restricted to spacelike hypersurfaces. And we have already seen that
Earman’s Maxwellian spacetime is equivalent to Weatherall’s characterisation
using a primitive rotation standard, along with the extra condition of rotational
flatness. However, it is worth probing a little more deeply into the motivation
for this spacetime structure. Saunders is not completely explicit on this, but
the issue is addressed by Wallace (2020). First, we need to recall the details of
Saunders’ theory. Saunders presents vector relationism as a theory of the dis-
placement vectors between point particles, formulated with reference to some
Maxwellian coordinate system. The dynamics are specified by the following pair
of equations:

rij = Xi −Xj (VR1)

d2rij
dt2

=
1

mi

∑
k ̸=i

Fik − 1

mj

∑
k ̸=j

Fjk, (VR2)

where Xi(t) denotes the position of particle i at time t with respect to such a
coordinate system, mi its mass, and the Fij denote interparticle forces. These
are taken to be antisymmetric in i and j (this is the import of Newton’s third
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law) and functions of rij only. The equations (VR) are invariant under the
Maxwell group (Pooley 2013)—transformations of the form

t → t+ τ (13a)

xi(t) → Ri
jx

j(t) + ai(t), (13b)

where Ri
j is an arbitrary 3D rotation matrix, ai(t) an arbitrary vector-valued

function of time, and τ an arbitrary scalar.
To argue that Maxwellian spacetime is the appropriate setting for vector

relationism, Wallace makes tacit appeal to Earman’s (1989) “adequacy condi-
tions” on the construction of spacetime theories.10 These demand that there be
a match between the spacetime and dynamical symmetries of a theory, in the
following sense:

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .

SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

It is straightforward to show that if a Maxwellian spacetime is rotationally flat,
its automorphism group is the Maxwell group (one can simply make use of the
argument given in e.g. Earman (1989, ch. 2.3) or Jacobs (2023, Proposition 5),
noting that diffeomorphisms preserve flatness of any compatible connection).
This justifies the claim that Maxwellian spacetime is the appropriate setting for
vector relationism.

With this in hand, I will now address the second two bullet points by exam-
ining the relationship between the equations (MG) and (VR). First, following
Wallace (2020, 11), we can decompose the forces in (VR2) into ‘universal’ and
‘non-universal’ components—characterised, respectively by whether the ratio
qi/mi is constant for that force, where mi is the inertial mass of a particle and
qi its charge. For the case of only potential forces, (VR) may then be written
as

d2Xi

dt2
− d2Xj

dt2
= −

∑
k ̸=i

∇ϕ(Xi −Xk) +
∑
k ̸=j

∇ϕ(Xj −Xk)

− qi
mi

∑
k ̸=i

∇V (Xi −Xk) +
qj
mj

∑
k ̸=j

∇V (Xj −Xk), (14)

where ϕ is the potential associated with the universal force, and V the poten-
tial for the non-universal force (there could be multiple such; I omit them for
simplicity). Now consider the continuum limit, where point-particle trajectories
are parametrised by some continuous spatial parameter x. In this limit, (14)
becomes

∂i

(
d2X(x, t)

dt2

)
δxi = −∂i

∫
d3x′∇ϕ(x− x′, t)δxi

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∇V (x− x′, t)δxi,

where ρ(x, t) is the mass density, and ρ̃(x, t) the charge density associated with
the non-universal interaction, so that

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∫
d3x′(∂jϕ(x− x′, t) + ρ̃(x, t)ρ−1(x, t)∂jV (x− x′, t)).

(15)

10. For recent discussion of the status of these conditions, see Myrvold (2019). Note that
Myrvold considers these conditions to be analytically true.
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When ϕ is the familiar gravitational potential, we have

ϕ(x− x′, t) =
ρ(x′, t)

|x− x′|
,

so that

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∫
d3x′ρ(x′, t)∂j(|x− x′|)−1

− ∂i

∫
d3x′ρ̃(x, t)ρ−1(x, t)∂jV (x− x′, t). (16)

We have seen that the appropriate spacetime setting for vector relationism is
a rotationally flat Maxwellian spacetime, ⟨M, ta, h

ab,⟳⟩. Since we can always (if
M is simply connected) find a globally defined scalar field t such that dat = ta,
we can then set up an arbitrary Maxwellian coordinate system xµ on M as
follows: we take xµ = (t, xi), where t is as above and the xi are three smooth
scalar fields such that the vector fields (∂/∂xi)a are spacelike, orthonormal, and
twist-free (with respect to ⟳).11

Let xµ be such a coordinate system, and let ∇ be the coordinate derivative
operator onM canonically associated with xµ.12 ∇ is flat (since it is a coordinate
derivative operator); it is compatible with ta by construction, and is compatible
with hab since the (∂/∂xi)a are spacelike and orthonormal. Moreover, since the
(∂/∂xµ)a are all twist-free with respect to ⟳ and ⟳ is rotationally flat, ∇ is also
compatible with ⟳.13 Now consider a smooth unit timelike vector field ξa on
M . The integral curves ξ of any such field can always be parametrised by their
temporal length, which differs from t by at most an arbitrary additive constant.
Then on any such curve ξ, we have

ξa =
dxµ(ξ(t))

dt

(
∂

∂xµ

)a

so that, since ∇ is flat

ξn∇nξ
a =

d2xµ(ξ(t))

dt2

(
∂

∂xµ

)a

.

Clearly, the only non-vanishing d2xµ/dt2 are the d2xi/dt2. Moreover, if σab is
a (symmetric) tensor field which is spacelike in both indices, then we can write

Dnσ
na = ∂µσ

µν

(
∂

∂xν

)a

where the only non-vanishing ∂µσ
µν are the ∂µσ

µi. If we now take ξa to rep-
resent the four velocity field of a fluid, and σab the stress tensor for that fluid,
then these suggest the following identifications:

ξn∇nξ
m(dmxi) =

d2Xi(x, t)

dt2
(17a)

ρ−1Dnσ
nm(dmxi) =

∫
d3x′ρ̃(x, t)ρ−1(x, t)∂iV (x− x′, t). (17b)

11. If M is not simply connected then the same analysis goes through locally; I suppress it
here for reasons of brevity.
12. That is, the unique derivative operator such that all the ∇a(∂/∂xµ)b = 0.
13. Note that (∂/∂t)a is twist-free by construction, since ta is closed.

8



Why? Take (17a). We are looking for something with which to identify the
(non-zero) components of the acceleration vector field of a fluid ξn∇nξ

m(dmxi)
with respect to the coordinate derivative operator canonically associated with
some Maxwellian coordinate system xµ. Not only is this precisely what the
d2Xi(x, t)/dt2 represent, we have also seen that when ∇ is such a derivative
operator, the ξn∇nξ

m(dmxi) = d2xi(ξ(t))/dt2 take this same form. Now con-
sider (17b). The left hand side of this equation are the (non-zero) components
of a spacelike vector field which is supposed to describe the acceleration due to
non-gravitational interactions—think of (the geometrised version of) Newton’s
second law

ρξn∇nξ
a = −∇nσ

na. (NII)

And this is precisely the role of the term on the right hand side. We can then
write (16) as

∇r(ξ
n∇nξ

m)(dmxj)

(
∂

∂xi

)r

= −∂i

∫
d3x′ρ(x′, t)∂j(|x− x′|)−1

−Dr(ρ
−1Dnσ

nm)(dmxj)

(
∂

∂xi

)r

. (19)

Now consider the case where i = j. In this case, carrying out the differentiation
in the right hand side of (19) gives

∇m(ξn∇nξ
m) = −4πρ−Dm(ρ−1Dnσ

nm)

where we have used the fact that ξn∇nξ
a and ρ−1Dnσ

na are both spacelike.
This immediately yields (MG2). Meanwhile, if we take i ̸= j in (19), then
differentiating and raising indices we have

∇r(ξn∇nξ
m)(dmxj)(drx

i) =

∫
d3x′ρ(x′, t)

(
3
(xj − x′j)(xi − x′i)

|x− x′|5

)
−Dr(ρ−1Dnσ

nm)(dmxj)(drx
i),

so that, since ⟳a (ξn∇nξ
b) is spacelike in both indices,

∇a(ξn∇nξ
b)−∇b(ξn∇nξ

a) = −Da(ρ−1Dnσ
nb) +Db(ρ−1Dnσ

na),

which, given the continuity equation (MG1) and the fact that ∇ is flat by
construction, entails (MG3) (see the proof of proposition 2). For (MG1) itself,
note that in Newtonian point particle mechanics, mass is transported only by
particles along their (continuous) worldlines, and is a fortiori locally conserved.

Conversely, it is also possible to recover (VR) from (MG). Given the iden-
tifications (17), we can use (MG) to derive expressions for ∂i(d

2Xi/dt2) and
∂[i(d2Xj]/dt2) in any Maxwellian coordinate system xµ on M . These are suffi-
cient to specify (15) uniquely, providing that ∂i(d

2Xi/dt2) and ∂[i(d2Xj]/dt2)
fall off at least as 1/r2 at spatial infinity. If we then specialise to the case
of a point-particle distribution (which justifies making the above assumptions
about d2Xi/dt2), this gives ϕ(x − x′, t) → ϕ(x − x′, t)

∑
i δ

3(x′ − Xi(t)) and
analogously for V . Hence,

∂i

(
d2Xj(x, t)

dt2

)
= −∂i

∑
k

∂jϕ(x−Xk, t)− ∂i
∑
k

ρ̃ρ−1∂jV (x−Xk, t). (20)

Since ρ̃ρ−1 =
∑

i qi/miδ
3(x −Xi(t)), (14) then follows from integrating along

any path between Xi(t) and Xj(t).
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So for all their surface-level differences, there is a close relationship between
Maxwell gravitation and vector relationism. Both are set on rotationally flat
Maxwellian spacetime. Moreover, the equations of Maxwell gravitation emerge
naturally in the continuum limit of vector relationism, whilst vector relation-
ism is precisely what results from restricting Maxwell gravitation to the point
particle sector. In turn, this appears to support Dewar’s (2018) claim that
“Maxwell gravitation [...] represents the natural extension of Saunders’ remarks
to the field-theoretic context.” Dewar argues for this on the basis that Maxwell
gravitation, like vector relationism, collapses the distinction between materi-
ally identical models of Newton-Cartan theory. However, the fact that Maxwell
gravitation can be recovered in the continuum limit of vector relationism, and
vice versa, provides a more direct route to this conclusion.

4 Wallace on vector relationism and Newton-
Cartan theory

With the relationship between vector relationism and Maxwell gravitation on
a firmer footing, I will now turn to Wallace’s (2020) discussion of vector rela-
tionism and Newton-Cartan theory. Here, Wallace claims to show that “math-
ematically speaking, there is no real distinction between Newton-Cartan theory
[...] and vector relationism” (24), and suggests that any differences between the
two theories are partly an artefact of the awkwardness of standard differential-
geometric presentations of Maxwellian spacetime (28). As a result, Wallace
adheres to a coordinate-based presentation of both theories in setting out his
argument.

Wallace’s discussion of vector relationism and Newton-Cartan theory centres
on the behaviour of dynamically isolated subsystems of particles embedded in
a larger universe—showing that within vector relationism, such systems exhibit
emergent inertial behaviour which can be idealised in terms of test particles.
This forms the basis of his argument that vector relationism and Newton-Cartan
theory are equivalent. When non-gravitational interactions vanish, the equa-
tions governing the relative acceleration vectors of infinitesimally separated test
particles can be written to take the same form as the (coordinate-based) equa-
tion of geodesic deviation in Newton-Cartan theory, and thus, Wallace claims,
may equally well be interpreted as such (§8).

Wallace is not explicit about the standard of theoretical equivalence he is
working with here. But it is fairly straightforward to reconstruct from his re-
marks what he may have in mind. Having recovered the Newton-Cartan equa-
tion of geodesic deviation within vector relationism, Wallace claims of the two
theories that

both are built using Maxwellian spacetime as a background; both
have dynamics that can be expressed as a set of inertial trajecto-
ries defined by the matter distribution and in turn constraining the
matter distribution via a matter dynamics according to which ma-
terial particles follow those trajectories except when acted on by
non-gravitational forces. (Wallace 2020, 24)

Similarly, in his concluding remarks, Wallace argues that

there is essentially no difference between Newton-Cartan theory [...] and
Saunders’s relational version of Newtonian dynamics: at the formal
level, the latter can be reformulated as the former; at the substan-
tive level, the inertial structure of Saunders’s theory is well defined

10



and coincides with that defined by the Newton–Cartan connection.
(Wallace 2020, 28)

From these remarks, one can isolate three points which Wallace takes to bear
on whether Maxwell gravitation and Newton-Cartan theory are equivalent:

1. They have the same background spacetime structure.

2. Their central dynamical equations can be (re)written so as to appear
mathematically identical.

3. They have the same inertial structure.

For our purposes, we can elevate this to a criterion of theoretical equivalence,
though it should be borne in mind both that Wallace does not explicitly endorse
this, and that such a criterion may be more or less well-suited to theories other
than vector relationism and Newton-Cartan theory. I will now make several
comments on this criterion, all of which will indicate refinements of the points
1-3 above.

First, on point 1, what does the ‘background spacetime structure’ of a theory
consist in? In the literature, there are various competing schools of thought
about how this is to be identified. For example, one might take ‘spacetime
structure’ to be objects of a certain object-type that appear between the angle
brackets of a theory’s models á la e.g. Earman (1989) or Friedman (1983), or
one might invoke a criterion such as Knox’s (2013) spacetime functionalism,
according to which ‘spacetime structure’ is just whatever it is that encodes the
local structure of inertial frames.14 Again, Wallace’s remarks give some hint as
to what he may have in mind here:

[In] Newton–Cartan theory, the connection does double duty, impos-
ing both the rotation standard (a piece of absolute structure) and the
inertial structure (something dynamical and contingent). One pur-
pose of my somewhat idiosyncratic presentation of Newton–Cartan
theory is to emphasize the fact that the Newton–Cartan connection
is naturally understood as an additional piece of structure added
to Maxwellian spacetime; indeed, as the Maxwellian version of the
affine connection. (Wallace 2020, 29)

This suggests, for the purposes of point 1, that we should take the ‘background
spacetime structure’ of a theory to be its absolute objects. The absolute objects
of a theory are those which are the same in all its DPMs, where ‘sameness’ is
sameness up to isomorphism (see e.g. Earman (1989, 45)). If this is the right
precisification of 1, then Maxwell gravitation and Newton-Cartan theory do
indeed have the same background spacetime structure as Wallace claims—see
March (2023a).

Second, on 2, one might worry about the restriction to the ‘central’ dynam-
ical equations of a theory. Whilst I won’t attempt to address the question of
what it means for some equation or other to be ‘central’ to a theory here, note
that this restriction is needed because Wallace does not explicitly consider all
the equations of Newton-Cartan theory in his analysis (and as we will see in
section 5, not all the equations of Maxwell gravitation and Newton-Cartan the-
ory (or vector relationism and Newton-Cartan theory, for that matter) can be
written so as to appear mathematically identical).

14. Though note that Knox’s spacetime functionalism cannot be the right criterion if we are
looking to identify Maxwellian spacetime as the background spacetime structure of Maxwell
gravitation and Newton-Cartan theory, since Maxwellian spacetime by itself lacks a full inertial
frame structure.
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Continuing with point 2, one might also ask what it means for the central
equations of two theories to ‘be rewritten so as to appear mathematically iden-
tical’. For our purposes, we can take this mean: we can re-express the dynamics
of the theories so that they have some non-empty set of equations (the ‘central’
ones) in common, whilst preserving solutionhood.

Finally on point 3, how, according to Wallace, are we to identify the inertial
structure of a theory? Here, Wallace closely follows Knox (2013): the inertial
structure of a theory is whatever it is that encodes the local structure of inertial
frames, i.e. those with respect to which gravitating but otherwise force-free
bodies move with constant velocities, in which the equations governing non-
gravitational interactions take their simplest form, and which are universal (in
the sense that all bodies and interactions pick out this same class of frames).
Crucially, in the case of non-relativistic theories, this means that if there exists a
connection such that (NII) is satisfied, then this (amongst other things) qualifies
it as encoding the inertial structure of that theory.

5 UnderstandingWallace from a coordinate-free
perspective

Having presented Wallace’s argument, I will now show that with Maxwell grav-
itation in hand, the same argument can be made in the language of coordinate-
free differential geometry. For point 1, we have already noted that Maxwell
gravitation and Newton-Cartan theory have the same absolute object structure
(March 2023a). For point 2, following Wallace, let us compare the equations
of Maxwell gravitation with those of Newton-Cartan theory. Let ⟨M, ta, h

ab,⟳⟩
be a Maxwellian spacetime. Then for any derivative operator ∇ compatible
with ⟨M, ta, h

ab,⟳⟩, the following implications hold (illustrated in Figure 1).
Statements and proofs of these equivalences are contained in appendix A.

(NII)

(NCT3) (NCT4) (NCT2) (NCT1)

ρξn∇nξ
a = −∇nσ

na

(NII)

∇n(ρξ
n) = 0

rotational
flatness

(MG3) (MG2) (MG1)

(NII) (NII)(NII)

Figure 1: Relationships between the equations of Maxwell gravitation and
Newton-Cartan theory. Labelled arrows are to be understood as in the scope of
a conditional—so e.g. the first arrow from the left says that if (NII) holds, then
(NCT3) implies (MG3)

There are several features of Figure 1 worth noting. First, whilst (NCT4)
is equivalent to the rotational flatness condition, there is no similarly sharp
correspondence between (NCT3) and (MG3). (NCT3) and (NII) jointly imply
(MG3), but (MG3) and (NII) do not imply (NCT3). This points to the fact
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that rotational flatness plays double duty in relating the two theories. From
(MG3) and (NII) we can infer that ξnξm(Rc a

n m − Ra c
m n) = 0; the rotational

flatness condition allows us to further infer that ξnhbm(Rc a
n m − Ra c

m n) = 0,
which yields (NCT3).15

Secondly, although (NCT2) and (MG2) are not in general equivalent, they
are equivalent on assumption of (NII) and rotational flatness. Likewise, given
(NII), rotational flatness and (MG3) are equivalent to (NCT4) and (NCT3). As
such, once (NII) has been fixed, we can then move freely between the remaining
pairs of equations.

Now recall point 2 of Wallace’s argument: for an idealised congruence of
test particle trajectories, the equations (VR) can be rewritten so as to take the
same form as the equation of geodesic deviation in Newton-Cartan theory. But
we have just seen that this has an obvious analogy for Maxwell gravitation and
Newton-Cartan theory: by replacing (NCT2) with the expression for the average
radial acceleration (MG2), we can reformulate the two theories so that their
central dynamical equations appear mathematically identical. Within Newton-
Cartan theory, (MG2) encodes the relative acceleration of neighbouring fluid
elements due to both spacetime curvature and non-gravitational interactions, so
represents the natural generalisation of Wallace’s geodesic deviation equation to
non-test matter. And just as in Wallace’s example, the only difference, as far as
this pair of equations is concerned, is the interpretation of (MG2)—in Newton-
Cartan theory, the −4/3πρ term is naturally understood as a manifestation of
geodesic deviation in curved spacetime, whereas in Maxwell gravitation it is not.

Moreover, once we move from vector relationism to Maxwell gravitation, the
case for regarding this disagreement as merely verbal appears even stronger.
After all, in vector relationism, the gravitational field is explicitly represented
elsewhere in the formalism. But in Maxwell gravitation, we do not even have
that. Of course, we are always free to ascribe the −4/3πρ term in (MG2)
to ‘the gravitational field’—but without some further indication of what this
is supposed to be, the gravitational field is simply that whereby neighbouring
test particles have non-zero relative acceleration. And since this is precisely
the role of the Newton-Cartan spacetime curvature, the difference between the
two begins to look insubstantive. As such, we seem to have in the relationship
between (MG2) and (NCT2) a coordinate-free realisation of point 2 of Wallace’s
argument.

However, we can also say a little more about this reasoning. Given the re-
lationships illustrated in Figure 1, not only are we free to replace (NCT2) with
(MG2) in Newton-Cartan theory, we can also replace (NCT3) with (MG3),
(NCT4) with the rotational flatness condition, and rewrite (NCT1) as the con-
junction of (NII) and (MG1). From this perspective, the only difference between
these sets of equations is the presence of (NII) in Newton-Cartan theory, whose
role is essentially to provide a (partial) gauge fixing of the connection. This
provides a further sense in which point 2 of Wallace’s argument is strengthened
when we move from vector relationism to Maxwell gravitation—all the equa-
tions of Newton-Cartan theory, with the exception of (NII), can be written so
as to appear mathematically identical to the equations of Maxwell gravitation.

Note that this also highlights why it is that Newton-Cartan theory cannot
be the continuum limit of vector relationism. If one assumes that the dynamics
for test particles in Newton-Cartan theory are given by the geodesic equation,
then it is possible to show that in both Newton-Cartan theory and the contin-
uum limit of vector relationism, test particles satisfy the equation of geodesic
deviation. But precisely what one cannot recover in the continuum limit of

15. Recall that hdnhbm(Rc a
n m −Ra c

m n) = 0 in any classical spacetime.
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vector relationism is the geodesic equation itself—or rather its generalisation to
non-test matter (NII).

Finally, this brings us to point 3, viz. the inertial structure of Maxwell grav-
itation, such as it is. For this, it is helpful to recall proposition 4. Proposition
4 tells us that, providing there is sufficient matter in one’s spacetime, there
exists a unique Newton-Cartan connection which satisfies (NII), i.e. such that
massive test bodies follow geodesics. Moreover, providing that the test bodies
of interest are sufficiently far from other massive matter (which we can idealise
as meaning at spatial infinity), then this connection will, at least locally, be
well-approximated by a flat connection. This allows us to recover (and expand
upon) Wallace’s claims about the emergence of inertial structure in Maxwell
gravitation, in three ways.

First, suppose that we say, with Wallace, that what it is to encode the inertial
structure of a theory just is to be the unique connection such that massive
test bodies follow geodesics. Then it follows that, whenever the conditions of
corollary 4.1 are satisfied, a model of Maxwell gravitation does indeed come
equipped with an inertial structure, which coincides with the Newton-Cartan
connection. So whilst Maxwellian spacetime lacks full inertial structure by itself,
there is an emergent such structure to be had for those models in which there
is sufficient matter available.

Second, continuing with the above theme, if we have antecedent reasons for
adopting (NII) as an implicit definition of the inertial structure of a theory, then
we might as well go ahead and add this as an extra condition to those models
of Maxwell gravitation in which there are open sets throughout which the mass
density field is non-vanishing. In that case, one can also recover the dynamics of
Newton-Cartan theory from those of Maxwell gravitation. So whilst one cannot
rewrite the dynamics of Maxwell gravitation to appear mathematically identical
to those of Newton-Cartan theory by themselves, there is a natural sense in which
the dynamics of Maxwell gravitation plus definitions are sufficient to recover the
dynamics of Newton-Cartan theory, again providing there is sufficient matter
in one’s spacetime. This provides a way of making sense of Wallace’s claim
that “Saunders’s vector relational version of Newtonian dynamics [...] can be
reformulated as [Newton-Cartan theory]” (Wallace 2020, 28).

Third, corollary 4.1 clarifies just what is needed for the emergence of this
inertial structure. In particular, sufficient for this is that there exist open sets
throughout which the mass density field is non-vanishing. So providing that we
are doing non-vacuum continuum mechanics (or even for certain point particle
distributions—see March (2023a)) then the above arguments can be made; one
does not need to consider a full congruence of particle trajectories.

All this serves to blunt the force of Wallace’s (2019; 2020) recent claims that
Maxwellian spacetime is not naturally characterised in coordinate-free differ-
ential geometric terms, and that this is partly what obscures the similarities
between Maxwell gravitation and Newton-Cartan theory. Rather, we have seen
that once cast in terms of Weatherall’s standard of rotation, the formal sim-
ilarities which Wallace discusses re-emerge from a coordinate-free perspective.
As a result, one might suspect that the problem lies not with coordinate-free
differential geometry per se, but with formulating a theory in terms of geometric
objects which cannot be defined from the structure it ascribes to the world.16

But it does suggest an alternative moral. Both Maxwell and Maxwell-Dewar
gravitation are formulated in the language of coordinate-free differential geom-

16. c.f. Pitts (2012, 2022, 2006). For an extended discussion of other possible issues relating
to this in the context of the interpretation vs. motivation and reduction vs. sophistication
debates, see Jacobs (2022).
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etry. But the fact that a theory has been formulated in a coordinate-free way
does not automatically mean that this is a perspicuous way of presenting that
theory. When working with coordinate-free differential geometry, as ever, it is
important to be attentive to this possibility.

6 The link with Teh

Finally, I will consider the relationship between my discussion of Wallace and
that of Teh (2018), who adopts a rather different strategy for diffusing Wal-
lace’s concerns about the coordinate-free framework. Teh’s approach begins by
noting that compatible connections on a classical spacetime can be represented
by means of a special connection (for some unit timelike vector field ξa) and
a two-form Ωab (see Malament (2012, Propositions 4.3.4, 4.1.3). Providing the
connection of interest satisfies (NCT3), this two-form is closed, and so can (at
least locally) be specified by a one-form Aa, defined up to exact one-form shifts.
Since ξa is geodesic with respect to its special connection, one can therefore view
ξa as encoding a ‘background inertial structure’, and Ωab as encoding the forces
experienced by bodies relative to this inertial structure. Alternatively, one can
view Ωab as encoding the force differences between different idealised congru-
ences of particle trajectories, and so as realising Saunders’ vector relationist
dynamics (Teh 2018, 207).

How does this allow one to make Wallace’s argument, and in what ways does
this address Wallace’s concerns about the coordinate-free framework? On this,
one can identify three points:

• As Teh himself (2018) notes, suppose we are given an equivalence class [∇]
of rotationally equivalent (not necessarily flat) connections which satisfy
(NCT3). Any such connection will be the special connection for some unit
timelike vector field ξa. Now suppose that we are given another special
connection ∇. Then all the ξa have the same rotation tensor with respect
to ∇. This, Teh claims, furnishes the notion of rotational equivalence with
a physical interpretation in terms of representations which share the same
vorticity.

• Now suppose that the connections in this equivalence class are, in addi-
tion, flat. Then the choice of such a connection is equivalent to a choice of
inertial frame (since the ξa in question must now be rigid). So the equivo-
cation involved in defining Maxwellian spacetime á la Earman (one might
think) is no worse than that involved in equivocating between Maxwellian
coordinate systems when writing down e.g. Saunders’ vector relationist
dynamics.

• Teh’s framework emphasises the way in which the two-form Ωab used to
pick out the Newton-Cartan connection of interest can always be reinter-
preted as encoding either forces experienced by test bodies relative to the
inertial structure defined by ξa, or as encoding a connection relative to
which those same test bodies exhibit geodesic motion. Or in other words,
that there is no mathematical difference between the universal forces of
vector relationism and the geodesic motion in curved spacetime of Newton-
Cartan theory, as Wallace argues.17

Nevertheless, we have seen that we can do better. For example, the fact
that rotationally equivalent connections can be given a physical interpretation

17. For a slightly different take on this issue, see Weatherall and Manchak (2014).
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as Teh suggests does not eliminate the need to take equivalence classes—it just
amounts to insisting that it is physically meaningful to do so! So if Wallace’s
concern about the ‘awkwardness’ of Maxwellian spacetime was about the need to
invoke equivalence classes at all, Teh’s discussion does not help with this. Like-
wise, insofar as Teh’s framework highlights the fact that equivocating between
rotationally equivalent flat connections is the same as equivocating between in-
ertial frames, this might just seem like grist to Wallace’s mill: wasn’t one of
the advantages of the coordinate-free approach supposed to be that it avoids all
this need for equivocation, since we can just talk about the objects of interest
directly?

So whilst Teh’s discussion has much to recommend it, it is not clear that it is
sufficient to address Wallace’s concerns. On the other hand, we have seen that
Maxwell gravitation does address these issues. Moreover, the discussion of §5
highlights which of Teh’s constructions carry over to Maxwellian spacetime char-
acterised ‘intrinsically’ and which do not. In particular, Teh’s ‘proto-Maxwell
spacetime’—which he defines using an equivalence class of rotationally equiv-
alent connections all of which satisfy (NCT3)—cannot be defined using just
Weatherall’s standard of rotation.

7 Conclusions

In this paper, my aim has been to connect up the recent wave of ‘intrinsic’
coordinate-free approaches to Maxwellian spacetime with the coordinate-based
discussions of Saunders (2013) and Wallace (2020). By doing so, I have clar-
ified the relationship between vector relationism and Maxwell gravitation (the
latter is just the continuum limit of the former, as one would have hoped); I
have also explained why Newton-Cartan theory is not the continuum limit of
vector relationism, contra the appearance of Wallace’s discussion. Finally, I
have shown how the similarities between vector relationism and Newton-Cartan
theory which Wallace discusses can also straightforwardly be seen using the
coordinate-free approach, and used this both to assess Wallace’s argument, and
the extent to which Teh’s discussion of Wallace makes good on its aims.

In many ways, the upshot of all this is irenic. The coordinate-free frame-
work undoubtedly has its advantages: one is that it allows one to talk about
the objects of interest directly (rather than just their components in some coor-
dinate basis), it is undoubtedly necessary for a fully-rigorous treatment of cer-
tain topics, and it minimises certain opportunities for confusion (e.g. between
active and passive coordinate transformations, or coordinate transformations
and diffeomorphisms, or which properties of an object are viciously coordinate-
dependent and which are not, or...). On the other hand, Wallace (2019) has
made the case that the coordinate-based framework allows for better cohesion
with physics practice, and is better suited to discussions of Brown’s dynamical
approach to spacetime theories (among others). One might also—and some-
what more plausibly!—take Wallace’s claims about the supposed ‘awkward-
ness’ of Maxwellian spacetime as really offering an argument in favour of the
coordinate-based approach in cases where no ‘intrinsic’ coordinate-free charac-
terisation of some spacetime structure of interest is as yet available (or as an
incentive to develop one).18 In any case, I hope to have laid to rest the idea that
the example of Maxwellian spacetime provides a reason to prefer one approach
over the other.

18. c.f. Pitts (2012) on spinors.
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A Statements and proofs of equivalences

Let ⟨M, ta, h
ab,⟳⟩ be a Maxwellian spacetime, ∇ any compatible connection,

and T ab the mass-momentum tensor, which we assume to satisfy the Newtonian
mass condition. That (NCT4) holds iff ⟨M, ta, h

ab,⟳⟩ is rotationally flat is
shown by Malament (2012, Proposition 4.2.4); that (NCT1) holds iff (NII) and
(MG1) hold is shown by Malament (2012, 266), noting that ξn∇nρ = £ξρ and

∇nξ
n = −1/2ĥnm£ξh

nm.
For the remaining four implications, assume that (NII) holds. A straightfor-

ward computation shows that we can use ∇ to rewrite (MG3) as

ξn∇n(ω
ca) = 2ωn[cθn

a] −∇[c(ρ−1∇nσ
|n|a])

where ωab, θab are the rotation and expansion tensors for ξa, respectively. It
follows that, given (NII)

ξn∇n(ω
ca) = 2ωn[cθn

a] +∇[c(ξ|n|∇nξ
a]). (21)

Likewise (MG2) can be rewritten as

1

3

3∑
i=1

i

λrξ
n∇n(ξ

m∇m

i

λr) = −4

3
πρ+

1

3
∇m(ξn∇nξ

m). (22)

Now we just need to do some calculations, which follow the proofs of propositions
4.3.6, 1.8.5, and 4.3.2 of Malament (2012) closely. First

ξn∇n(ω
ca) = ∇[c(ξ|n|∇nξ

a])− (∇[cξ|n|)(∇nξ
a]) + (Ra c

n m −Rc a
m n)ξ

nξm

= 2ωn[cθn
a] +∇[c(ξ|n|∇nξ

a]) + (Ra c
n m −Rc a

m n)ξ
nξm

where we have made use of the fact that ωab is spacelike in both indices. So
if (NCT3) holds, (MG3) immediately follows. Conversely, if (MG3) holds then
comparison with (21) yields that (Ra c

n m −Rc a
m n)ξ

nξm = 0. Then to establish
(NCT3), we just need to show that (Ra c

n m−Rc a
m n)h

nbξm = 0 (since (Ra c
n m−

Rc a
m n)h

nbhmd = 0 in any classical spacetime). This, in turn, follows from
rotational flatness (using the symmetries of the Riemann tensor). Note that
rotational flatness is needed here because ξa need not be twist-free. Next,

1

3

3∑
i=1

i

λrξ
n∇n(ξ

m∇m

i

λr) =
1

3

3∑
i=1

i

λr(
i

λn∇n(ξ
m∇mξr) +Rr

nmsξ
n

i

λmξs)

=
1

3
∇n(ξ

m∇mξn)− 1

3
Rnmξnξm

so that if (NCT2) holds, so does (MG2). Conversely, if (MG2) holds, then
Rnmξnξm = 4πρ. If we then assume rotational flatness we also have that
Ra

nξ
n = Rab = 0, which gives us (NCT2).
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