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Abstract
This paper ties together three threads of discussion about the following question: in
accepting a system of axioms S, what else are we thereby warranted in accepting,
on the basis of accepting S? First, certain foundational positions in the philosophy of
mathematics are said to be epistemically stable, in that there exists a coherent rationale
for accepting a corresponding system of axioms of arithmetic, which does not entail or
otherwise rationally oblige the foundationalist to accept statements beyond the logical
consequences of those axioms. Second, epistemic stability is said to be incompatible
with the implicit commitment thesis, according to which accepting a system of axioms
implicitly commits the foundationalist to accept additional statements not immediately
available in that theory. Third, epistemic stability stands in tension with the idea that
in accepting a system of axioms S, one thereby also accepts soundness principles for
S. We offer a framework for analysis of sets of implicit commitment which reconciles
epistemic stability with the latter two notions, and argue that all three ideas are in fact
compatible.

Keywords Theory acceptance · Arithmetic · Implicit commitment · Epistemic
stability · Semantic · Schematic

1 Introduction

Our overall goal in this paper is a philosophical investigation of the following question:
in accepting a system of axioms S, what else are we thereby warranted in accepting,
on the basis of accepting S? Three areas of discourse form the background to our
investigation. (1) The implicit commitment thesis, which roughly states that accepting
a system of axioms S implicitly commits one to accept additional statements beyond
the logical consequences of S. (2) The idea, central to various foundational positions
in the philosophy of mathematics, each with an associated system S, that it is ratio-

B Thomas M. Colclough
tcolclou@uci.edu

1 University of California, Irvine, Irvine, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-023-04465-z&domain=pdf
http://orcid.org/0000-0002-9228-4404


   32 Page 2 of 31 Synthese           (2024) 203:32 

nally permissible to accept S and not thereby accept statements beyond the logical
consequences of S. (3) The idea that we should like to accept various soundness asser-
tions involving a notion of truth for a system S, on the basis of accepting S itself. The
motivation for our investigation stems from the claims that (1) is incompatible with
(2), and that (2) sits in tension with (3). Let us flesh out these claims.

First, the incompatibility between (1) and (2). The implicit commitment thesis
(ICT) is introduced in Dean (2015), and states: anyone who accepts the axioms of a
mathematical theory S is thereby also implicitly committed to accepting various addi-
tional statements � which are expressible in the language of S but which are formally
independent of its axioms (Dean, 2015, p. 32). Dean argues the ICT is untenable for
certain foundational positions and their corresponding philosophies of mathematics,
specifically finitism, as articulated in Tait (1981), and first-orderism, as articulated in
Isaacson (1996). The idea is that these foundational positions, along with their asso-
ciated systems, are said to enjoy a kind of rational stability. In particular: a theory S
is epistemically stable if there exists a coherent rationale for accepting S that does not
entail or otherwise rationally oblige a theorist to accept statements which cannot be
derived from the axioms of S (Dean, 2015, p. 53).1 For our purposes, first-orderism
is the more interesting of these two positions, and will be our central case of interest
moving forward. To see why first-orderism is an epistemically stable foundational
position, let us introduce its tenets.2

First-orderism is the foundational standpoint that takes Peano Arithmetic (PA) to
fully capture the notion of finitary mathematics, phrased as the claim that first-order
PA “may be seen as complete for finite mathematics” (Isaacson, 1996, p. 204).3 Here,
PA is formulated in a first-order way, consisting of finitely many axioms together
with the infinitely many axioms that comprise the first-order induction schema. In
particular, first-orderism takes PA itself to be justified on the basis of a Dedekindian
categorical conception of the natural numbers (Isaacson, 1996, p. 205). Consequently,
the theorems of PA “consist of those truths that can be perceived as true directly from
the purely arithmetical content of a categorical conceptual analysis of the notion of
natural number” (Isaacson, 1996, p. 203). In this way, PA captures a conceptually
well-defined region of arithmetical truth, justified by our grasp of the structure of the
natural numbers. This is phrased as the claim that PA is “complete with respect to
purely arithmetical truth” (Isaacson, 1996, p. 222).

The theorems of PA, then, form a subset of the class ofmathematical truths. Accord-
ing to first-orderism, it is a proper subset. Since first-orderism holds that first-order
PA is complete with respect to finitary, purely arithmetical truth, sentences that we

1 We equivocate between using the term epistemic stability as a property of both foundational positions
and associated base theories.
2 Other characterizing theses of foundational positions said to be epistemically stable include: Dedekind’s
thesis (Dedekind, 1888); the Feferman-Schütte thesis (Feferman, 1964;Kreisel, 1960; Schütte, 1965, 1964);
and Nelson’s thesis (Nelson, 1986). For discussion of these various theses in the context of epistemic
stability, see: Madison and Waxman (2021) (for Dedekind’s thesis, Isaacson’s thesis, Tait’s thesis, and the
Feferman-Schütte thesis); Dean (2015) (for Isaacson’s thesis and Tait’s thesis); Nicolai and Piazza (2019)
(for Isaacson’s thesis, Tait’s thesis, and Nelson’s thesis).
3 In case it is not clear, do not confuse “the first-orderist” with Isaacson himself. We are concerned with
the idea of the epistemic stability of the position, and do not intend to claim that the author of this idea
occupies this position.
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perceive to be true that lie beyond the provable reach of PA are called either not
first-order, not finitary, or not purely arithmetical. Accordingly, to perceive the truth
of such sentences, we require higher-order, infinitary, or non-arithmetical concepts.
Examples of such sentences are discussed, including: the canonical Gödel sentence for
PA (G(PA)), for which the justification is non-arithmetical (Isaacson, 1996, p. 214);
Goodstein’s theorem, and Friedman’s finitization of Kruskal’s theorem, for which the
justifications are infinitary (Isaacson, 1996, pp. 216, 219); and the Paris-Harrington
sentence, for which the justification is higher-order (Isaacson, 1996, pp. 218–219).

So: the completeness of PA with respect to purely arithmetical truth marks the
boundary of precisely which mathematical sentences ϕ receive first-order, finitary, or
purely arithmetical justification. A consequence of the first-orderist’s acceptance of
PA is that sentences ϕ such that PA � ϕ are those truths one can perceive as directly
true from the purely arithmetical content of the notion of natural number. Since PA
is said to be complete with respect to purely arithmetical truth, such ϕ are the only
truths one can perceive as directly true from the purely arithmetical content of the
notion of natural number. Thus, acceptance of truths beyond the theorems of PA is not
(even implicitly) justified by the first-orderist’s acceptance of PA. Rather, any such
(higher-order, infinitary, or non-arithmetical) justificationmust come from somewhere
else. In this sense, there exists a coherent rationale for accepting PA that does not
entail or otherwise rationally oblige the first-orderist to accept statements beyond the
logical consequences of PA itself. That is: first-orderism is an epistemically stable
foundational position.

Dean’s (2015) claim is that the epistemic stability of PA makes first-orderism
straightforwardly incompatible with the ICT, when the ICT is understood to include
(for example) either of the following sentences among the resources �: G(PA), or the
canonical consistency statement for PA (Con(PA)). On one hand, epistemic stability
decrees that accepting PA does not entail or otherwise thereby rationally oblige the
first-orderist to accept G(PA) or Con(PA), since both lie beyond the provable reach of
PA. On the other hand, the ICT decrees that the first-orderist is rationally obliged to
count bothG(PA) and Con(PA) among their implicit commitments on the basis of their
acceptance of PA.4 Thus, the corresponding version of the ICT is incompatible with
the epistemic stability of first-orderism, and a generalized line of reasoning serves to
show that the ICT is incompatible with the idea of epistemic stability, period.

This incompatibility motivates one specific goal of this paper. We propose nuanced
understandings of epistemic stability and the implicit commitment thesis, and argue
that on these understandings, the two notions are compatible after all.

Second, the tension between ideas (2) and (3) above. There are at least two obstacles
inherent in (3), the idea that we should like to accept various soundness assertions
involving a notion of truth for a system of axioms S, on the basis of accepting S itself.
One: soundness assertions involving the notion of truth are not typically expressible in
the language of S. Two:most truth-free surrogates of soundness assertions for S are not
provable in S. Accounts attempting to overcome these problems typically appeal to the

4 To be clear, it does not follow from this incompatibility that the first-orderist does not accept the sentences
G(PA) or Con(PA). Rather, the first-orderist does not accept these sentences purely on the basis of their
acceptance of PA. Rather, if the first-orderist does accept G(PA) or Con(PA), then the justification for that
acceptance is grounded in higher-order/infinitary/non-arithmetical concepts.
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notion that in accepting S, one is thereby warranted in accepting reflection principles
for S (Cieśliński, 2010, 2017; Feferman, 1962, 1991; Fischer, 2021; Fischer et al.,
2021; Franzén, 2004; Horsten & Leigh, 2016; Ketland, 2005, 2010; Shapiro, 1998;
Tennant, 2002, 2005; Turing, 1939).56 But then the idea in (3) sits in tension with
the idea of epistemic stability. For on one hand, a natural way to cash out the idea in
(3) is to say that we should like to accept reflection principles involving a notion of
truth for a theory S, on the basis of accepting S itself. But on the other hand, for a
foundationalist who subscribes to the idea of epistemic stability, accepting S provides
no epistemic obligation to accept corresponding reflection principles for S.

This tension motivates a second specific goal of this paper. We leverage our pro-
posed understandings of epistemic stability and the implicit commitment thesis to
formulate an account of arithmetic theory acceptance which accommodates certain
reflection principles for an arithmetic base theory, and the epistemic stability of suit-
able foundational positions (thus dissolving the tension between (2) and (3) above).
This account of theory acceptance draws on the account in Nicolai and Piazza (2019),
and is comprised of two components, semantic and schematic. Our components of
arithmetic theory acceptance reveal exactly the sets of principles such that, if accep-
tance of those sets of principles is warranted purely on the basis of accepting S, then
the resulting picture is compatible with both a version of epistemic stability, and the
implicit commitment thesis. Thus, overall, we aim to provide a conception of arith-
metic theory acceptance according to which all three motivating ideas in existing
discourse are compatible after all.

With our specific goals motivated, let us describe our approach. We address our
first goal in Sect. 2. We make some observations on the notion of epistemic stability
and the implicit commitment thesis, and tease apart two weaker versions of both of
these notions.We adopt our weaker understandings of these notions going forward. To
address our second goal, in Sect. 3 we survey a recent attempt to provide an account
of arithmetic theory acceptance which accommodates certain reflection principles
for an arithmetic base theory, and the epistemic stability of suitable foundational
positions (Nicolai & Piazza, 2019). While this account has merits, we also believe it
has problems.We use this account as a sort of diagnostic tool, and interleave our survey
with our proposed framework for analyzing the idea of arithmetic theory acceptance.
Our framework helps clarify what we think the essence of the problem is with the
account in Nicolai and Piazza (2019) with respect to first-orderism, which we set
out in Sect. 4. In Sect. 5, we provide the proof of a result, which yields a plausible
alternative conception of the first-orderist’s implicit commitments to that proposed in
Nicolai and Piazza (2019). In Sect. 6, we conclude.

5 Statements which assert the truth of certain classes of logical consequences of S.
6 This aligns with the idea in Dean (2015) that G(PA) and Con(PA) are natural candidates to include among
the resources �. For instance, Con(PA) is equivalent (over a weak theory) to the theory: all �0

1-theorems of
PA are true. The latter is a weak reflection principle of just the sort we are interested in. Moreover, G(PA)

and Con(PA) are equivalent over, e.g., PA.
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2 Weak epistemic stability and the weak ICT

First, we propose weaker understandings of epistemic stability and the implicit com-
mitment thesis, and argue that on these understandings, the two notions are compatible.
To motivate our proposal, observe that the idea of epistemic stability as formulated
in Dean (2015), and the implicit commitment thesis, are very close to being logically
incompatible. Recall: a theory S is epistemically stable if there exists a coherent ratio-
nale for accepting S that does not entail or otherwise rationally oblige a theorist to
accept statements which cannot be derived from the axioms of S. If we suppose that:

(1) if there exists a coherent rationale for accepting S, then it is possible for one to
accept S;

(2) if the implicit commitment to accept featured in the ICT implies an entailment
or otherwise rational obligation to accept; and

(3) if accepting S implies accepting the axioms of S;

then epistemic stability is logically incompatible with the ICT. For if S is epistemically
stable per Dean’s definition and (1)–(3) are true, then it follows that a theory S is
epistemically stable if it is possible for one to accept the axioms of S but not be
committed to accept statements which cannot be derived from the axioms of S. But
the ICT then implies that anyone’s acceptance of the axioms of S entails or otherwise
rationally obliges one to accept statements which cannot be derived from the axioms
of S. Thus, it cannot be the case that S is both epistemically stable while the ICT holds
for S.

These observations reveal at least three ways in which the notion of epistemic
stability associated with first-orderism might be reconciled with the corresponding
version of the ICT. One might try and argue that at least one of (1)–(3) are false, or
at least that a first-orderist would think that at least one of (1)–(3) are false. However,
we anticipate that any such argument would be difficult to make, and will not attempt
to do so. Rather, the point of making these observations is to argue that the notion
of epistemic stability defined in Dean (2015) is particularly strong; so strong that in
fact it is very close to being logically incompatible with the ICT. Thus, we concede,
that all things considered, the strong version of epistemic stability probably cannot
be reconciled with this version of the ICT. However, rather than leaving things here,
what we want to do is modify both this strong version of epistemic stability, and the
articulation of the ICT, so that the modified versions are reconcilable in interesting
ways. In particular, we want to tease apart the strong version of epistemic stability
from a weaker version, offer a weaker version of the ICT, and subsequently argue that
it is the weaker version of epistemic stability which can be reconciled with the weaker
version of the ICT in interesting ways.

Wemake thesemodifications in a couple of stages. First consider epistemic stability.
Recall this notion again: a theory S is epistemically stable if there exists a coherent
rationale for accepting S that does not entail or otherwise rationally oblige a theorist
to accept statements which cannot be derived from the axioms of S. “Statements” here
is understood as any statements, and our first step in isolating the weaker notion of
epistemic stability that we are interested in, is to relax that requirement. Instead of
ruling out the availability of any statements which cannot be derived from the axioms
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of S, we require only that statements in the language of S which cannot be derived
from the axioms of S are ruled out. Denoting the language of S by LS, we therefore
propose the following, weaker notion of epistemic stability:

A theory S is epistemically stable for LS-sentences, abbreviated as LS-
epistemically stable, if there exists a coherent rationale for accepting S that
does not entail or otherwise rationally oblige a theorist to accept statements in
the language of S which cannot be derived from the axioms of S.

To isolate the weaker version of the ICTwe are interested in, wemake an analogous
move. Recall the ICT: anyone who accepts the axioms of a mathematical theory S is
thereby also implicitly committed to accepting various additional statements � which
are expressible in the language of S but which are formally independent of its axioms.
Now, we are going to broaden the class of additional statements � the acceptor is
implicitly committed to accepting to any statements, rather than merely statements
expressible in the language of S. We therefore propose the following, weaker version
of the ICT:

(Weak ICT): anyone who accepts the axioms of a mathematical theory S is
thereby also implicitly committed to accepting various additional statements �

which are formally independent of its axioms.

Weakening both the original notion of epistemic stability and the original version
of the ICT in this way, we immediately have at our disposal new possible strategies
for reconciling the notion of LS-epistemic stability for first-orderism with the cor-
responding version of the weak ICT. For example, one might now try to argue that
the first-orderist’s acceptance of PA entails or otherwise rationally obliges the first-
orderist to accept sentences not in the language of PA. On one hand, this would serve
to make the case that the first-orderist accepts the weak ICT. On the other hand, if
one could show that the extension of PA by those sentences cannot derive anything
in the language of PA that PA could not already derive – if the extension of PA by
those sentences were syntactically conservative over PA – then the first-orderist’s posi-
tion is compatible with the idea of LS-epistemic stability.7 This is the essence of the
approach in Nicolai and Piazza (2019), so let us turn now to that account, and develop
our proposed account of arithmetic theory acceptance.

3 A framework for resolution

In their (2019) paper, Nicolai and Piazza propose an account of theory acceptance
which aims to reconcile the notions of what we have called LS-epistemic stability
and the weak ICT. In Sect. 3.1 we survey this account. In Sect. 3.2 we propose our
framework for analyzing candidate theories of implicit commitments with respect to
LS-epistemic stability and the weak ICT.

7 A theory T1 is syntactically conservative over another theory T2 iff for every formula ϕ in the language
of T2, if T1 � ϕ, then T2 � ϕ. We henceforth use “conservative”, rather than “syntactically conservative.”
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3.1 The semantic core

The central thesis in Nicolai and Piazza (2019) is this:

when accepting a [mathematical] system S, we are bound to accept a fixed set
of principles extending S and expressing minimal soundness requirements for
S... there is also a variable component of implicit commitment that crucially
depends on the justification given for our acceptance of S. (Nicolai & Piazza,
2019, p. 913)

The fixed set of principles extending S and expressing minimal soundness require-
ments for S is called the semantic core of S. These principles are formulated in the
extension of the language of S by a new unary predicate T (x), intended as a truth
predicate. The goal is to ensure that the semantic core of S is a conservative extension
of S. However, whether or not the semantic core exhausts one’s implicit commitments
depends on the particular foundational standpoint that leads one to accept a given the-
ory S in the first place (Nicolai & Piazza, 2019, p. 929). In particular, in some cases,
there are non-semantic considerations that feature in the justification for certain foun-
dational standpoints. These considerations have to dowith attitudes towards schematic
reasoning, in particular, the extent to which one is implicitly committed to instances
of induction schema in which predicates occur that are not part of the language of S.
As a result, in addition to the semantic core, there is a variable component of theory
acceptance, one that can be articulated in terms of implicit schematic commitments.

Thus, the general idea is this: on one hand, a foundationalist’s acceptance of a given
base theory S implicitly commits that foundationalist to accept sentences not in the
language of S (the semantic core of S). As a result, that foundationalist accepts the
weak ICT. But for suitable theories S, the semantic core of S is conservative over S.
This is the content of the following (Leigh, 2015, Theorem 1):

Theorem 1 (Leigh) Let S interpret I�0 + exp. Then the semantic core of S is a con-
servative extension of S.

To prove Theorem 1 we formulate the semantic core of S, which we will denote by
STAxS ,

8 as a sequent calculus which includes the following cut rule for truth:

� ⇒ �, T (�ϕ�) �, T (�ϕ�) ⇒ �
(CutT )

� ⇒ �

Here, �,� denote finite sets of formulas in the language of S expanded to include the
truth predicate T .

Also, we consider a bounded version (STAxS)
∗ of STAxS , where the rule (CutT ) is

replaced by the following schema of bounded cut rules, one for each k < ω:

� ⇒ �, T (�ϕ�) �, T (�ϕ�) ⇒ � �,SentLS(ϕ) ⇒ ·d(�ϕ�) < k
(CutkT )

� ⇒ �

Here, ·d(�ϕ�) < k reads: the logical depth of the LS-sentence ϕ is < k. Derivations

in (STAxS)
∗ and STAxS are defined in the usual way. The truth rank of a derivation is the

8 We clarify this notation shortly.
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least r such that for any rule (CutkT ) occurring in the derivation, k < r . A standard
reduction argument is used to show that if the sequent � ⇒ � is derivable in (STAxS)

∗
with truth rank r + 1, then there is a derivation of the same sequent with truth rank r ,
whence (STAxS)

∗ is conservative over S. STAxS is then embedded into (STAxS)
∗ using the

notion of approximations fromKotlarski et al. (1981). Derivations in STAxS are replaced

by approximations with bounded depth, and so can be carried out in (STAxS)
∗. Since

(STAxS)
∗ is conservative over S, so is STAxS .

Thus, for suitable S, the foundationalist’s acceptance of S does not entail or oth-
erwise rationally oblige that foundationalist to accept additional sentences in the
language of S. The resulting picture is such that the foundationalist may come to
accept a set of implicit commitments expressing minimal soundness requirements for
S in such a way that these implicit commitments are also compatible with the idea of
LS-epistemic stability. In this way, for a range of foundational positions, the notion of
LS-epistemic stability and the weak ICT are reconciled after all, in such a way that
minimal soundness requirements for S are also accommodated.

We think this account hasmerits. In particular,webroadly agree that the components
of implicit commitment are plausible components for an account of theory acceptance.
However, we think this account falls short in supposing that one component of theory
acceptance is fixed, and that one is variable. In particular, we think the idea that the
semantic core is a fixed component of theory acceptance is too strong. To say why, first
we introduce a general framework for analyzing the two components of theory under
consideration with respect to the following three goals: (1) isolating sets of implicit
commitments for suitable theories S which express minimal soundness requirements
for S, (2) isolating sets of implicit commitments for suitable theories S which meet
the criteria for LS-epistemic stability, and (3) isolating sets of implicit commitments
for suitable theories S which satisfy the weak ICT. We believe this framework offers
a clear way of analyzing how these goals are to be met, and a clear way of drawing
out what we think the problem is with the idea of a fixed semantic component and a
variable schematic component.

3.2 Components of arithmetic theory acceptance

We offer a framework for analyzing two components of theory acceptance, for various
choices of a suitable arithmetical base theory S. While we focus on the case where
S = PA later on, by “suitable,” we take S to be any one of the following theories:
Buss arithmetic S12,

9 the theory QF–IA,10 or the fragments I�n of PA (for n ∈ ω).11

For instance, we note that the framework of this paper (and the results in Sect. 5)
cannot be applied uniformly to fully general choices of S; we require S at least be

9 See Buss (1986) and Simpson (2009).
10 QF–IA is a conservative extension by first-order quantifiers ofPrimitive Recursive Arithmetic in the sense
of Skolem (1923), essentially a reconstruction of the notion of finitary reasoning put forward by Hilbert
and Bernays (1968).
11 We claim that nothing is lost by this minor restriction, since this collection of theories includes those
which typically appear in existing literature on implicit commitments.
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recursively axiomatizable, first-order schematically formulated, and contain suitable
syntactic coding resources.

For definiteness, we take the (non-logical part of the) language of the fragments I�n

of PA, and the language of PA, to be the language of arithmeticLA = {0, 1, S,+, ·,≤}.
The language of QF–IA is the quantifier-free version of LA. The language of S12 is
{0, S,+, ·, |·|, #, � ·

2�}, where |·| is the unary function such that |x | returns the number
of symbols in the binary representation of x , # is the binary function #(x, y) = 2|x |·|y|,
and � ·

2� is the unary function such that � x
2� returns the lower integer part of x

2 .
For suitable S, we fix the following preliminaries and notational conventions.

1. Wedenote the language of SbyLS.Wedenote the language obtained by expanding
LS with a new unary predicate T (x) (intended as a truth predicate) by LT .12

2. We assume a fixed Gödel coding ofLS intoLA, which extends to finite sequences
of LS-terms. In particular we have unary predicates SentLS(x) and AxS(x) repre-
senting the sets of Gödel codes of LS-sentences and LS-axioms respectively. We
extend this notation in the natural way to languages L extending LS.

3. Roman lower-case letters s, t , etc. range over (codes of) LS-terms.
4. Greek lower-case letters ϕ,ψ etc. from the end of the alphabet range over LA-

terms encoding LS-formulas.

In what follows, we denote the x th numeral by x (i.e. the closed term resulting from
x applications of the successor function). We denote the result of formally evaluating
the (code of the) term t by t◦. For readability, unless there is value in writing down
Quine corners, we generally omit them when referring to Gödel codes of syntactic
objects.

We denote the theory of a foundationalist’s implicit commitments on the basis of
their acceptance of suitable S as an LT -theory I(S) extending S. This aligns with the
idea that the foundationalist’s implicit commitments in accepting S are sentences in
the extended language.

Next, we axiomatize two components of theory acceptance. One of these compo-
nents we call the semantic component of accepting S, intended to capture implicit
commitments about (the behavior of) truth, along with minimal soundness principles
for S. The second of these components we call the schematic component of accepting
S, intended to capture implicit commitments about extending S’s induction schema
to permit the occurrence of the truth predicate. These two components of accepting
S align respectively with what Nicolai and Piazza (2019) call the fixed and variable
components of accepting S. Our choice of titles for these two components of accepting
S stems from our disagreement with the use of “fixed” and “variable” as they are used
by Nicolai and Piazza (2019) to describe the two components.

The semantic component of accepting S is axiomatized by the following four LT -
theories extending S.

Definition 1 SU is the LT theory extending S with the schema of uniform Tarski
biconditionals for LS; i.e. all sentences of the form:

∀x1, . . . , xn(T (ϕ(x1, . . . , xn)) ↔ ϕ(x1, . . . , xn))

12 We note that LT is not, strictly speaking, uniform, since LS differs for different choices of S. But this
is a technical distinction we ignore for our purposes.
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for every LS-formula ϕ(x1, . . . , xn).

Definition 2 SUAxS is theLT theory SU +∀x(AxS(x) → T (x)). We call ∀x(AxS(x) →
T (x)) the axiom soundness axiom for S.

In conjunctionwithminimal principles governing the behavior of the truth predicate
(i.e., uniform Tarski biconditionals), which are really what license the name “truth”
for the predicate T (x), the axiom soundness axiom for S says that all the axioms
of S are true. The axiom soundness axiom for S is precisely the minimal soundness
requirement for S aimed at in Nicolai and Piazza (2019).

Definition 3 ST is the LT theory extending S with the following fully compositional
truth axioms:

1. ∀x(T (x) → SentLS(x)).
2. ∀s, t(T (�s = t�) ↔ (s◦ = t◦)).
3. ∀ϕ(T (�¬ϕ�) ↔ ¬T (�ϕ�)).
4. ∀ϕ,ψ(T (�ϕ ∨ ψ�) ↔ (T (�ϕ�) ∨ T (�ψ�))).
5. ∀v∀ϕ(v)(T (�∃vϕ(v)�) ↔ ∃xT (�ϕ(x)�)).

Definition 4 STAxS is the LT theory ST + ∀x(AxS(x) → T (x)).

We note that in a general setting, the axiom soundness axiom for S is a non-trivial
addition to principles 1–5: theories that are not finitely axiomatizable cannot prove the
corresponding axiom soundness axiom in the presence of principles 1–5.13 However,
finitely axiomatizable theories can.

The theory STAxS is precisely the semantic core of S (Nicolai & Piazza, 2019, p. 928).
As we noted, the axiom soundness axiom for S captures the idea of minimal soundness
requirements for S. Fully compositional truth is motivated by the desiderata that the
semantic core ought to be able to establish that instances of modus ponens preserve
truth, and that the semantic core ought to capture a compositional notion of truth
(Nicolai & Piazza, 2019, pp. 926–927). Crucially, in each of the four theories defined
above, the predicate T (x) is not allowed to appear in instances of S’s induction schema.
For a variety of arithmetical theories S, it is well-known that the result of expanding
the language of S with a new unary predicate T (x) which is fully compositional and
allowed to occur in formulas appearing in S’s induction schema is not conservative
over S.14

For suitable fixed S, the four theories above axiomatize four degrees of the semantic
component of accepting S. They are four possible ways of capturing the founda-
tionalist’s implicit semantic commitments in accepting S. Together with the trivial
position, according to which the foundationalist has no implicit semantic commit-

13 See Nicolai and Piazza (2019, Lemma 1).
14 For the non-conservativity result where S is S12, see Nicolai and Piazza (2019, Proposition 3). Indeed,
full compositionality of the truth predicate is not necessary; we may obtain non-conservativity even in the
presence of uniform disquotational truth. The non-conservativity results where S is any of the theories I�n
for n ∈ ω, are obtained similarly. We discuss the non-conservativity result in the case where S is PA later
on.
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Fig. 1 The semantic component
of implicit commitment

ments in accepting S, we may depict five degrees of the foundationalist’s implicit
semantic commitment in accepting S in the following way.15

This picture is more fine-grained than the picture in Nicolai and Piazza (2019).
There, the semantic core STAxS of S is a fixed component of implicit semantic commit-
ment in accepting S. However, in what follows, we will be interested in what happens
when we consider implicit commitments which do not contain the full resources of
STAxS . Thus, we take this finer approach.

To axiomatize degrees of implicit schematic commitment, we consider the case
where the predicate T (x) is allowed into instances of the induction schema of each
of the theories SU , SUAxS , S

T , and STAxS . Instances of induction schema are stratified
according to the complexity of formulas appearing in them in the usual way. We say
that a formula is �0 if all quantifiers it contains are bounded. We say that a formula
is �1 (resp. �1) if it is of the form ∃xϕ (resp. ∀xϕ) where ϕ is �0. We say that a
formula is �n (resp. �n) if it is of the form ∃xϕ (resp. ∀xϕ) where ϕ is �n−1 (resp.
�n−1). We say that a formula is �n if it is both �n and �n . The theory I� is Robinson
Arithmetic Q plus induction for formulae in the class �.

Definition 5 Let S be a suitable arithmetic theory and let W be any of SU , SUAxS , S
T ,

or STAxS . Then (W)n is the LT -theory axiomatized by I�n(LT ), i.e., the LT -theory
extendingW with instantiations of the induction scheme for LT -formulas in the class
�n . (W)ω is the LT -theory axiomatized by

⋃
n∈ω I�n(LT ).

When n = 0, we write “�0(T )-induction” in place of “�0(T )-induction.” Putting
everything together, Fig. 2 below depicts the semantic and schematic components of
implicit commitment in accepting a suitable arithmetic theory S. It will turn out that
some of the theories of Fig. 2 coincide, but we address that further on.

Together, the semantic and schematic components of accepting S align respectively
with what Nicolai and Piazza (2019) call the fixed and variable components of accept-

15 We note that the ordering of ST and SUAxS
is somewhat arbitrary, since in general, ST cannot derive the

axiom soundness axiom, but can derive the uniform Tarski biconditionals for S, and SUAxS
cannot derive the

fully compositional truth axioms. However, the ordering of ST and SUAxS
in Fig. 1 does not really matter

for our purposes, so without loss of generality we opt for the above.
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Fig. 2 The semantic and schematic components of implicit commitment

ing S. According to their account, the semantic core of S is a fixed component of
implicit semantic commitment in accepting S. On the other hand, whether or not the
semantic core exhausts one’s implicit commitments depends on the particular founda-
tional standpoint that leads one to accept a given theory S in the first place (Nicolai &
Piazza, 2019, p. 929). In particular, if the S-foundationalist is implicitly committed to
instances of induction in which the truth predicate occurs, then the S-foundationalist’s
implicit commitments in accepting S may also include non-trivial schematic implicit
commitments. Thus, this type of commitment may vary from foundationalist to foun-
dationalist.

We are now in a position to draw out what we think the problem is with the idea
that of a fixed semantic component of implicit commitment, and a variable schematic
component of implicit commitment, in accepting S.

4 The problemwith a fixed semantic core

To motivate the problem, let us first consider some remarks about what Nicolai and
Piazza (2019) call the variable component of implicit commitment. The variable com-
ponent of acceptance is introduced to us by way of several examples of different
foundational standpoints which adopt different views on extending the induction
schema of the arithmetical systems associated with them (Nicolai & Piazza, 2019,
Section 4). Nicolai and Piazza argue that these views depend on the justification given
for a particular foundational theory itself. Here are three examples.

First, consider the case in which one does not allow extensions of the induction
schema to permit vocabulary beyond that of the base theory at all. A paradigmatic
example of this sort is finitism as articulated by Tait (1981). We take the associated
foundational theory to be QF–IA, a conservative extension by first-order quantifiers of
Primitive Recursive Arithmetic.16 The finitist is committed to instances of QF–IA’s

16 Strictly speaking, the associated foundational theory is Primitive Recursive Arithmetic itself, formulated
using a schema of rules in place of the schema of induction.However,QF–IA ismore suitable for our analysis.
Cf. Dean (2015) and Nicolai and Piazza (2019).
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induction schema on the basis of their acceptance of QF–IA insofar as those instances
involve predicates that are expressible by a quantifier-free version of the language of
arithmetic. By Tarski’s theorem on the undefinability of truth, a full truth predicate is
not expressible by any formula in the language of arithmetic. Thus, for the finitist, the
justification for claims about the totality of the natural numbers made via the extension
of QF–IA’s induction schema to permit a (fully compositional) truth predicate is not
implicit in the finitist’s acceptance of QF–IA. What’s more, the finitist is reluctant to
admit thatQF–IA’s induction schema even applies to predicates that are not expressible
by formulas in the language of QF–IA. This is grounded in the justification the finitist
gives forQF–IA itself. Such predicates are suspicious at best, and false atworst (Nicolai
& Piazza, 2019, p. 930).

Second, consider the case in which one accepts instances of extended induction
schema unrestrictedly, on the basis that one accepts an associated theory. The paradig-
matic example of this sort is Feferman’s reflective closure of a theory S (1991). There
are two versions of this. The first is the reflective closure Ref(S) of a theory S. Ref(S)
captures statements in the base language L of S that ought to be accepted on the basis
of accepting the basic axioms and rules of S. The second is the schematic reflective
closure Ref∗(S(P)) of a schematic version S(P) of a theory S. Ref∗(S(P)) captures
schemata in the language of S(P) that ought to be accepted on the basis of accepting the
basic schematic axioms and rules of S(P). Where S is PA, in the case of the reflective
closure of PA, one obtains the self-applicable theory of truth KF, and Ref(PA) reaches
the strength of ramified analysis up to ε0. In the case of the schematic reflective closure
of PA, one obtains a type-free theory of truth, and Ref(PA) reaches the strength of
ramified analysis up to the Feferman-Schütte ordinal �0 (Feferman, 1964; Schütte,
1964).17

Third, consider the first-orderist. The two preceding positions hold different views
about extending induction—views that roughly, are at either end of the extreme.
According to Nicolai and Piazza, the first-orderist holds a third kind of view, which
occupies what they call an intermediate position between the two preceding positions
(Nicolai & Piazza, 2019, p. 931). On one hand, in the spirit of Feferman (and unlike
the finitist), the first-orderist holds no particular reservations about the application of
PA’s induction schema to predicates that are not expressible by formulas in the lan-
guage of arithmetic. On the other hand, the first-orderist’s acceptance of instances of
PA’s induction schema that involve a truth predicate, if the first-orderist accepts such
instances at all, is essentially higher-order/infinitary/non-arithmetical.18 The thought
seems to be that this is more in keeping with the spirit of the finitist idea above: that the
justification for claims about the totality of the natural numbers made via the extension
of QF–IA’s induction schema to permit a (fully compositional) truth predicate is not
implicit in the finitist’s acceptance of QF–IA.

17 McGee also offers a reading of the position in which one extends induction unrestrictedly, arguing that
induction schema are like the laws of logic, which we expect to persist through changes in language (1997,
p. 58). Consequently acceptance of (for example) PA should commit one not only to instances of induction
applied to extensions of one’s language, but also to instances of induction corresponding to any subset of
the natural numbers. An analysis of this sort yields categorical theories. For further discussion of McGee’s
position, see Pedersen and Rossberg (2010).
18 Cf. the outline of first-orderism in Sect. 1.
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Recall Fig. 2, and let S be PA. Using our framework, let us analyze which theory
corresponds to the first-orderist’s implicit commitments I(PA) in accepting PA, based
on the account in Nicolai and Piazza (2019). First, consider the semantic compo-
nent. If the semantic core of PA is a fixed component of the first-orderist’s implicit
commitments in accepting PA, then I(PA) contains at least the theory PAT

AxPA . Sec-
ond, consider the schematic component. The theories PA, (PA)n , for each n ∈ ω, and
(PA)ω, are our formal representation of accepting various (sets of) instances of PA’s
induction schema which permit the occurrence of the truth predicate on the basis of
the first-orderist’s acceptance of PA.19 In light of the remarks above, let us consider
the following question: which of the theories PA, (PA)n , for each n ∈ ω, and (PA)ω,
correspond to what the first-orderist’s implicit commitments about extensions of PA’s
induction schema are, on the basis of their acceptance of PA?

On the account in Nicolai and Piazza (2019), the answer cannot be any of the
theories (PA)n , or the theory (PA)ω. First consider (PA)ω. If the semantic core of PA
is a fixed component of the first-orderist’s implicit commitments in accepting PA,
then I(PA) contains at least the theory PAT

AxPA . But if in addition I(PA) contains (PA)ω
we seem to be in some trouble. It is well-known that the result of extending PA by
fully compositional truth and fully extended induction is not conservative over PA.
For example, in the resulting theory, one easily derives the following global reflection
principle:20

∀ϕ(PrPA(ϕ) → T (ϕ)). (GRPPA)

Furthermore, from (GRPPA), one can derive, for instance, Con(PA) (by instantiating
the falsity 0 
= 1 in (GRPPA)). Thus, Con(PA) is also part of I(PA). So in fact, we
are faced with the issue in Dean (2015) again. In any case, we have lost sight of one
of the goals we set out to achieve: a set of implicit commitments on the basis of the
first-orderist’s acceptance of PA compatible with the idea of LPA-epistemic stability –
the idea that in accepting PA, the first-orderist is not forced by entailment or rational
obligation to accept statements in the language of PA not derivable from the axioms
of PA.

Now consider any of the theories (PA)n , for some n ∈ ω. The situation is similar.
Consider for example (PA)0, which corresponds to the very least non-trivial set of
implicit commitments about extensions of PA’s induction schema the first-orderist
may accept on the basis of their acceptance of PA. If the semantic core of PA is a
fixed component of the first-orderist’s implicit commitments in accepting PA, and
(PA)0 is also part of the first-orderist’s implicit commitments in accepting PA, then
I(PA) contains at least the theory (PAT )0. And from (PAT )0, we can again obtain

19 We acknowledge that the sense in which (for example) (PA)ω is a formal representation of accepting all
instances of PA’s induction schema in which the truth predicate occurs may be a little artificial. Without at
least the presence of the uniform disquotational principles, it doesn’t really make sense to call the predicate
T occurring in instances of PA’s induction schema a truth predicate. Ultimately this won’t be a problem,
since every interesting set of implicit commitments concerning instances of extended induction we consider
in this paper also contain at least the uniform disquotational principles for the T predicate. In any case,
artificial or not, we think the stratification of the schematic component of implicit commitment via the
theories (PA)n , for each n ∈ ω, and (PA)ω , adds at least some pedagogical value to our framework.
20 See e.g., Wcisło and Łełyk (2017).

123



Synthese           (2024) 203:32 Page 15 of 31    32 

Con(PA). The reason is that (PAT )0 plus the global reflection principle (GRPPA) above
is relatively interpretable in (PAT )0.21 This is the content of the following:22

Theorem 2 (Wcisło, Łełyk) (PAT )0+∀ϕ(PrPA(ϕ) → T (ϕ)) is interpretable in (PAT )0
relative to PA.

The strategy is to recursively define a family of partial arithmetic truth predicates
Tn(x), for n ∈ ω. This ensures that there is an arithmetical expression x = Tn(v)

representing in PA the recursive function assigning to n the code of the formula Tn(v).
For each n ∈ ω, we may then apply the truth predicate to the code of Tn(x) to obtain a
family of predicates T (�Tc(x)�), where the parameter c is possibly nonstandard. In the
presence of �0(T )-induction, the predicates T (�Tc(x)�) are like truth predicates in
the sense that they are compositional for formulas with codes less than c. The defining
formula T ′(x) satisfying the axioms of (PAT )0 + (GRPPA) is then constructed by
taking the supremum of the predicates T (�Tc(x)�). See Wcisło and Łełyk (2017) or
Cieśliński (2017, Theorem 12.3.4) for a full proof.

Thus, again, we have lost sight of one of the goals we set out to achieve: a set of
implicit commitments on the basis of the first-orderist’s acceptance of PA compatible
with the idea of LPA-epistemic stability.

So, the theories (PA)n , for each n ∈ ω, and the theory (PA)ω, are off the table, and
on the account in Nicolai and Piazza (2019), PA itself must correspond to the first-
orderist’s implicit schematic commitments, on the basis of their acceptance of PA.
But so far, so good: this looks consistent with Nicolai and Piazza’s remarks about the
first-orderist’s variable schematic stance. For they say that if the first-orderist comes
to accept instances of PA’s induction schema in which the truth predicate occurs, this
acceptance does not follow merely from their acceptance of PA. That is: the first-
orderist accepts no instances of PA’s induction schema in which the truth predicate
occurs on the basis of their acceptance of PA.

But let us pause and reflect for a moment. At first glance, this might seem at
odds with the idea that the first-orderist occupies an intermediate position between the
finitist and foundationalists à la Feferman. For as far as truth in induction is concerned,
the schematic implicit commitments of the first-orderist and the finitist are the same.
Neither foundationalist accepts instances of their respective base theory’s induction
schema in which the truth predicate occurs, on the basis of their acceptance of their
respective base theory. But of course, there are still differences between the finitist’s
and first-orderist’s attitudes towards extending induction. The finitist, for example,
refuses to permit quantifiers into QF–IA’s induction schema. The first-orderist has no
such qualms. So, if PA itself corresponds to the first-orderist’s implicit commitments
about extensions of PA’s induction schema, then perhaps it is just that our acceptance
framework fails to reveal any differences between the two foundationalists.

21 See for example Lindström (1997, Ch. 12) for a definition of relative interpretation.
22 It is well-known that (PAT )1 proves (GRPPA). See, e.g., Wcisło and Łełyk (2017, Theorem 12). A
natural question is whether one can relax the assumption of �1 T -induction, and ask whether (PAT )0
proves (GRPPA). Kotlarski (1968) originally published an alleged proof of a similar result using a theory
of satisfaction, rather than truth, before Albert Visser and Richard Heck independently identified a gap in
the proof. Theorem 2 shows that (GRPPA) is arithmetically conservative over (PAT )0. Wcisło and Łełyk
(2017) also show that slightly modifying (PAT )0 actually proves (GRPPA).
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We think this is a hasty conclusion. We will return to it in Sect. 6. For now, let
us reflect a little further. Consider the following dialogues. If one were to ask the
finitist: “on the basis of accepting QF–IA, do you thereby accept instances of QF–IA’s
induction schema in which the truth predicate occurs?” then we expect the answer to
be something along the lines of: “no, I don’t think those instances of induction are
acceptable at all.” But if one were to ask the first-orderist an analogous question, with
PA in place of QF–IA, then we expect the answer to be something along the lines of:
“no, but this is not to say that those instances of induction are unacceptable.” In other
words: based on the tenets of both foundational positions, we really ought to be able
to use attitudes towards truth in induction to distinguish the two. A natural follow up
question to the first-orderist’s response is this: “if they are not unacceptable, then what
reasons would you cite for accepting instances of PA’s induction schema in which
the truth predicate occurs?” To which the first-orderist might reply by citing some
higher-order, infinitary, or non-arithmetical justification.

Our key observation, is that one would expect to have a similar conversation with
the first-orderist, about the fully compositional truth axioms for sentences of PA. If
one were to ask the first-orderist: “on the basis of accepting PA, do you thereby accept
the fully compositional truth axioms for sentences of PA?” then we expect the answer
to be something along the lines of: “no, but this is not to say that those axioms are
unacceptable.” And if we were to follow up by asking: “if they are not unacceptable,
then what reasons would you cite for accepting those axioms?” then the first-orderist
might reply by citing some higher-order, infinitary, or non-arithmetical justification.

Indeed, we claim that the problem with the idea of a fixed semantic core, is that
it obscures the fact that one would expect to have this conversation with the first-
orderist, about the fully compositional truth axioms for sentences of PA. If the first-
orderist’s implicit commitments in accepting PA includes the theory PAT

AxPA , then the
first-orderist is forced to adopt a trivial position with regard their schematic implicit
commitments. And notice in particular that it is the presence of the fully compositional
truth axioms which forces the first-orderist into this position. (This by the observation
above that (PAT )0 is not conservative over PA. So it does the first-orderist no good
to give up on axiom soundness.) Rather than taking into account the idea that the
first-orderist’s acceptance (if any) of the fully compositional truth axioms is grounded
in higher-order/infinitary/non-arithmetical reasons, a fixed semantic core of implicit
commitments simply decrees that the first-orderist accepts the fully compositional
truth axioms by virtue of accepting PA.

To be clear, we do not think that the latter is necessarily a problem in itself: by
weakening the ICT in the way that we did, and by pursuing the strategy of isolating
a set of implicit commitments in the extended language LT , we cannot help but lose
sight of the idea that we force the first-orderist into a position whereby they accept
some statements beyond the logical reach of PA on the basis of their acceptance of
PA. But this is true no matter which set of implicit commitments we opt for on our
framework. To even attempt to articulate sets of implicit commitments on the basis of
their acceptance of PA in the way that we have – in such a way to satisfy the weak
ICT – we must go beyond the strict tenets of first-orderism.

Our complaint is that there is no reason at this stage to think that we ought to opt
for fully compositional truth axioms at the expense of instances of PA’s induction
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schema in which the truth predicate occurs. For what reason do we have to think there
is anything in the tenets of first-orderism, which would make the first-orderist prefer
accepting a fully compositional theory of truth, over truth in induction, on the basis
of their acceptance of PA? There is no evidence in the tenets of first-orderism itself
that favors one of these sets of principles to the other in this respect. For according to
the strict tenets of first-orderism, acceptance of either set of principles does not follow
from the first-orderist’s acceptance of PA itself. Thus, we claim that the idea of a fixed
semantic core is too strong. As far as first-orderism is concerned, there is no reason at
this point to think we should adopt a conception of PA-acceptance which favors fully
compositional truth over truth in induction.23

However, we are not done yet. The stakes would change, if opting instead for
instances of PA’s induction schema in which the truth predicate occurs, results in non-
conservative extensions of PA. For this would violate epistemic stability, one of the
principles we set out to respect, and so there might be reason to prefer the semantic
core of PA after all.

But this is not the case. Of course, it is well-known that each of the theories (PAU )n ,
for each n ∈ ω, and (PAU )ω, are conservative over PA.24 However, those theories are
poor candidates for the first-orderist’s implicit commitments, for in each of those
cases we lose the minimal soundness requirement we set out to retain. Of the remain-
ing theories in our framework which correspond to a non-trivial implicit schematic
commitment, that leaves the following for investigation:

• (PAUAxPA)n , for each n ∈ ω, and (PAUAxPA)ω.

• (PAU )n , for each n ∈ ω, and (PAU )ω.
• (PA)n , for each n ∈ ω, and (PA)ω.

To bolster our claim that the idea of a fixed semantic core is too strong, and draw our
argument to a close, next we show that each of the theories above are conservative
extensions of PA. Thus, in particular, the maximal theory among those above, the
theory (PAUAxPA)ω, is a perfectly plausible candidate for the first-orderist’s implicit
commitments in accepting PA.

5 Another resolution

Theorem 3 below shows that each of the theories (PAUAxPA)n , for each n ∈ ω, and

(PAUAxPA)ω, are conservative over PA. Thus, we provide a complete classification of
the theories of Fig. 2, where S is PA, with respect to conservativity over PA.

Theorem 3 states that the theory obtained by adding to PA the uniform Tarski
biconditionals, the full induction schema for LT -formulas, and the following axiom:

23 Perhaps instead all this serves to show is that first-orderism is simply an incoherent view after all. We
think this would be a hasty conclusion. The goal all along has been to reconcile the idea of LS-epistemic
stability with the weak ICT for various foundational positions said to be epistemically stable in some sense.
If all we are prepared to conclude at this stage is that one of these foundational positions was incoherent all
along, this does not seem very in keeping with our original goal.
24 See e.g., Halbach (2014). Hence, so are the theories (PA)n , for each n ∈ ω, and (PA)ω .
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∀x(D(x) → T (x)),

is conservative over PA. Here D(x) is a PA-schema, defined below. The case of interest
is where D(x) is AxPA(x), the formula expressing that x is the code of an axiom of
PA.

Definition 6 Let p be a fresh unary predicate symbol not present inLA .AnLA-formula
D is a PA-schema if

1. PA � D(�σ�) → σ for every formula σ ∈ LA, and
2. there exists a finite set U of LA ∪ {p}-formulas with at most x free such that

PA � D(x) → ∃ψ
∨

ϕ∈U
(x = �ϕ[ψ/p]�).

Theorem 3 Let D be a PA-schema. The theory (PAU )ω + ∀x(D(x) → T (x)) is a
conservative extension of PA.

Let us first sketch our route towards the proof. We extend the strategy employed in
Leigh (2015) to the theory (PAU )ω. In what follows we focus on material relevant to
our context different to that in Leigh (2015). We direct the reader to Leigh’s results
where we use them.

We formulate the theory (PAU )ω as a sequent calculus with a cut rule and an
induction rule for the truth predicate.Alongside (PAU )ω weconsider (PAU )∗ω, a version
of (PAU )ω involving only bounded cuts. The main idea is to replace terms appearing
in derivations involving cuts in (PAU )ω with new terms encoding formulas of bounded
logical complexity. This is achieved via approximations, originally from Kotlarski et
al. (1981); in particular, via a particular class of approximations, nth approximations.
Defining the notion of nth approximations is slightly long and technical. With this in
mind, but also for completeness’ sake, we include the details in Appendix A.

Using the notion of nth approximations, we show that (PAU )ω embeds into (PAU )∗ω.
Finally, derivations in (PAU )ω expanded by the rule

� ⇒ �, D(s)
(D)

� ⇒ �, T (s)

can be reduced to derivations in (PAU )∗ω expanded by a corresponding rule, denoted
(Dw). In fact (PAU )ω interprets (Dw), whence derivations in (PAU )ω + (D) can be
carried out in (PAU )∗ω. Since (PAU )∗ω conservatively extendsPA, so does (PAU )ω+(D).

We fix the following preliminaries and notational conventions for the proof of
Theorem 3.

1. We work with the language L+
A ⊇ LA which contains countably many new

predicate symbols

P = {pij : i, j < ω and pij is a predicate symbol with arity i},
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together with a new constant ε. (The new predicate symbols are introduced to
facilitate the reduction of complexity of formulas appearing in the scope of the
truth predicate in derivations in (PAU )ω.)

2. We assume a fixed Gödel coding ofL+
A intoLA, which extends to finite sequences

of LA-terms. In particular we have the following:

(a) Unary predicates, e.g., SentLA (x), representing the sets of Gödel codes of
arithmetical sentences, terms, closed terms, etc. We extend this notation in the
natural way to languages L extending LA.

(b) The ternary substitution function sub(x, y, z) defining the operation that
replaces each occurrence of the variable with code y in the term or formula
coded by x by the term with code z. We abbreviate sub(x, y, z) by x[z/y].

(c) A unary predicate d˙ defining the following operation on codes ofL
+
A formulas:

d˙ (�α�) = x iff the logical complexity of α ∈ L+
A is x .

3. Greek lower-case letters α, β, γ, etc. from the start of the alphabet range over
LT -formulas.

4. Greek lower-case letters ϕ, χ, etc. from the end of the alphabet range over LA-
terms encoding L+

A -formulas. Greek lower-case letters in bold font ϕ,ψ , etc.
denote finite sequences of LA-terms. If ϕ = 〈ϕ0, . . . , ϕk〉 is a sequence of LA-
terms, then T (ϕ) denotes the set {T (ϕi ) : i ≤ k}.

5. Roman lower-case letters s, t , etc. range over LA-terms.
6. Greek upper-case letters �,�,�,�, etc. denote finite sets of LT -formulas.

Next we present the axioms and rules of two sequent calculi: (PAU )ω and (PAU )∗ω.
They differ only in their cut rules. To obtain (PAU )∗ω from (PAU )ω, we replace the cut
rule for the truth predicate by a version that applies only when the formula to which
the truth predicate is being applied is provably of some bounded logical complexity.

Axioms.

1. � ⇒ �,ϕ if ϕ is an axiom of Q.
2. �, ϕ(x) ⇒ �, T (ϕ(x)) where x is arbitrary and ϕ(v) is any LA-formula.
3. �, T (ϕ(x)) ⇒ �,ϕ(x) where x is arbitrary and ϕ(v) is any LA-formula.

Basic rules.

� ⇒ �,α
(∀R)

� ⇒ �,∀viα

�, α(s/vi ) ⇒ �
(∀L)

�,∀viα ⇒ �

� ⇒ �,α, β
(∨R)

� ⇒ �,α ∨ β

�, α ⇒ � �, β ⇒ �
(∨L)

�, α ∨ β ⇒ �

�, α ⇒ �
(¬R)

� ⇒ �,¬α

� ⇒ �,α
(¬L)

�,¬α ⇒ �
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Induction rule.

�, ϕ(x) ⇒ �,ϕ(x + 1)
(IndT )

�, ϕ(0) ⇒ �,ϕ(t)

where x is not free in the lower sequent, t is an arbitrary term, and ϕ(v) is any formula
in the language LT . (PAU )ω and (PAU )∗ω each include the axioms, basic rules, and
induction rule. The cut rules for each are the following.

Cut rules for (PAU )ω.

� ⇒ �,ϕ �, ϕ ⇒ �
(CutLA)� ⇒ �

In (CutLA) the cut formula ϕ ∈ LA.

� ⇒ �, T (ϕ) �, T (ϕ) ⇒ �
(CutT )

� ⇒ �

In (CutT ) the formula under the truth predicate ϕ ∈ LA.

Cut rules for (PAU )∗ω.

� ⇒ �,ϕ �, ϕ ⇒ �
(CutLA)� ⇒ �

For each k < ω:

� ⇒ �, T (ϕ) �, T (ϕ) ⇒ � �,SentLA (ϕ) ⇒∗
˙d(ϕ) ≤ k

(CutkT )
� ⇒ �

where⇒∗ indicates that the sequent is derivable using only the axioms and arithmetical
rules.

Towards the proof of Theorem 3, first we show that (PAU )∗ω is conservative over PA.
The presence of truth in induction means that (PAU )∗ω does not, in general, admit cut
elimination.25 However, a result of Łełyk andWcisło (2017) shows that PAT interprets
(PAU )ω, whence the conservativity of (PAU )∗ω over PA follows from Theorem 1.

Lemma 1 (PAU )∗ω is a conservative extension of PA.

Proof Suppose the truth-free sequent � ⇒ � is derivable in (PAU )∗ω. Then � ⇒ � is
derivable in (PAU )ω. Let d denote this derivation. By Proposition 4.15 of Łełyk and
Wcisło (2017), there exists an LA-conservative relative interpretation of (PAU )ω in
PAT . That is, there is a translation t : LT → LT constant on arithmetical formulas
such that for all ϕ ∈ LT :

if (PAU )ω � ϕ then PAT � t(ϕ).

25 This differs from the context in Leigh (2015), since cut elimination is available for the bounded coun-
terpart to PAT .
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It follows that PAT interprets d, whence � ⇒ � is derivable in PAT , and the result
follows from Leigh (2015, Theorem 1) (i.e. Theorem 1). ��

Next, using nth approximations, derivations in (PAU )ω are replaced by approx-
imations with bounded depth. We note that the construction of nth approximations
can be formalized within PA (in fact, in a much weaker theory, e.g., I�0 + exp). We
refer the reader to Leigh (2015, §4.3). For the basic properties of nth approximations,
see Leigh (2015, Lemmata 12,13). For a given sequence ϕ of L+

A -formulas, we write
lh(ϕ) for the number of elements of ϕ. We write H for the function H(k, n) = n · 2k .
By Lemma 7 of Leigh (2015), the nth approximation of ϕ has logical depth at most
H(n, lh(ϕ)).

We require the following definitions.

Definition 7 Let d be a derivation in (PAU )ω or (PAU )∗ω.

1. The truth depth of d is the maximum number of truth rules occurring in d.
2. The truth rank of d is sup{k : (CutkT ) occurs in d} + 1.
3. The rank of d is any pair (n, r) such that n bounds the truth depth of d and r

bounds the truth rank of d.

Lemma 18 of Leigh (2015) is one key ingredient for the proof of our version of the
Bounding Lemma (Lemma 3), which we need for transforming derivations in (PAU )ω
to derivations in (PAU )∗ω. Lemma 18 of Leigh (2015) identifies a bound on the rank of
derivations involving nth approximations. The presence of rule (IndT ) in our sequent
calculus means that we need an analog of Lemma 18 for (IndT ).

Lemma 2 Let lh(ϕ) + lh(ψ) = n. If the kth approximation to:

�, T (ϕ), T (χ(x)) ⇒ �, T (ψ), T (χ(x + 1))

is derivable with rank (a, r), then the k + 1th approximation of:

�, T (ϕ), T (χ(0)) ⇒ �, T (ψ), T (χ(t))

is derivable with rank (a + 1, r + H(k + 1, n + 2)).

Proof Suppose that:

�, T (˙Fw,kϕ), T (˙Fw,kχ(x)) ⇒ �, T (˙Fw,kψ), T (˙Fw,kχ(x + 1))

is derivable with rank (a, r), where w = ϕ�ψ�(χ(x))�(χ(x + 1)). Let g(x, y, z)
be the term given by Lemma 13 of Leigh (2015) and let:

g′ = g(w, k, k + 1).

By Lemma 15 of Leigh (2015), the sequent:

�, T (˙Fw′,k+1ϕ), T (˙Fw,kχ(x))[g′] ⇒ �, T (˙Fw′,k+1ψ), T (˙Fw,kχ(x + 1))[g′]
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is derivable with rank (a, r + H(k + 1, n + 2)), where w′ = ϕ�ψ�(χ(0))�(χ(t)).
By Lemmata 12 and 13 of Leigh (2015), and using only arithmetical cuts, we obtain
a derivation of the sequent:

�, T (˙Fw′,k+1ϕ), T (˙Fw′,k+1(χ)(x)) ⇒ �, T (˙Fw′,k+1ψ), T (˙Fw′,k+1(χ)(x + 1))

with rank (a, r + H(k + 1, n + 2)). Lemma 12 of Leigh (2015) and (IndT ) then yield
a derivation of the sequent:

�, T (˙Fw′,k+1ϕ), T (˙Fw′,k+1χ(0)) ⇒ �, T (˙Fw′,k+1ψ), T (˙Fw′,k+1χ(t))

with rank (a + 1, r + H(k + 1, n + 2)). ��
The following Bounding Lemma provides a reduction of (PAU )ω to (PAU )∗ω. We

need only consider the case for the rule (IndT ); for the other cases, see Lemma 19 of
Leigh (2015).

Lemma 3 (Bounding Lemma) There are recursive functions G1 and G2 such that for
every a, n < ω, if lh(ϕ) + lh(ψ) ≤ n and the sequent:

�, T (ϕ) ⇒ �, T (ψ)

is derivable in (PAU )ω with truth depth a, then its G1(a, n)th approximation is deriv-
able in (PAU )∗ω with rank (a,G2(a, n)).

Proof Define:

G1(0, n) = 0,

G1(m + 1, n) = H(G1(m, n + 1), n + 1),

G2(m, n) = G1(m + 1,m + n).

Notice that for all a, b, n,m < ω: if m < n then G1(a,m) ≤ G1(a, n); if a < b
then G1(a, n) ≤ G1(b, n); and G1(a, n + 1) ≤ G1(a + 1, n). The proof proceeds by
induction on a.

Suppose the sequent:

�, T (ϕ), T (χ(0)) ⇒ �, T (ψ), T (χ(t))

was obtained by (IndT ) applied to:

�, T (ϕ), T (χ(x)) ⇒ �, T (ψ), T (χ(x + 1))

and that this derivation has height a + 1. Let w = ϕ�ψ�χ(x)�χ(x + 1). The
induction hypothesis is that the G1(a, n + 2)th approximation to the sequent:

�, T (ϕ), T (χ(x)) ⇒ �, T (ψ), T (χ(x + 1))
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is derivable in (PAU )∗ω with rank (a,G2(a, n + 2)). By Lemma 2 there is a derivation
with height a + 1 of the G1(a, n + 2) + 1th approximation to the sequent:

�, T (ϕ), T (χ(0)) ⇒ �, T (ψ), T (χ(t))

This derivation has cut rankG2(a, n+2)+H(G1(a, n+2)+1, n+2), so it’s enough
to show that:

G2(a, n + 2) + H(G1(a, n + 2) + 1, n + 2) ≤ G2(a + 1, n).

Consider G2(a, n + 2). For all a, n < ω we have:

G2(a, n + 2) = G1(a + 1, a + n + 2)

= H(G1(a, a + n + 3), a + n + 3)

≤ H(H(G1(a, a + n + 3), a + n + 3), 1).

Now consider H(G1(a, n + 2) + 1, n + 2). Notice that for all a, n < ω we have:

G1(a, n + 2) + 1 ≤ G1(a, a + n + 3) + 1

≤ H(G1(a, a + n + 3) + 1, 1)

= H(G1(a, a + n + 3), 2)

≤ H(G1(a, a + n + 3), a + n + 3).

Thus for all a, n < ω we have:

H(G1(a, n + 2) + 1, n + 2) ≤ H(H(G1(a, a + n + 3), a + n + 3), a + n + 1),

whence adding G2(a, n + 2) and H(G1(a, n + 2) + 1, n + 2) yields the desired
inequality.26 ��

Theorem 3 now follows similarly as in Leigh (2015). We emphasize that uniform
disquotational truth is sufficient; fully compositional truth is not necessary.

Proof of Theorem 3 Let D and U be as in the statement of the theorem. Let d be a
derivation with truth depth a of the truth-free sequent � ⇒ � in the system obtained
from (PAU )ω by adding the following rule:

� ⇒ �, D(s)
(D)

� ⇒ �, T (s)

Redefine the functions G1 and G2 so that G1(0, n) bounds the logical depth of the
finitely many formulas inU for each n. Then the proof of Lemma 3 can be carried out

26 Notice that n + 2 ≤ a + n + 1 whenever a ≥ 1, so we may invoke monotonicity whenever a ≥ 1; but
the claimed inequality also holds whenever a = 0 and n < ω is arbitrary.
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to obtain a derivation with rank (a,G2(a, 0)) of � ⇒ � in the system obtained from
(PAU )∗ω by adding the following rule:

�, T (ϕ) ⇒ �, T (ψ), D(σ )
(Dw)

�, T (ϕ) ⇒ �, T (ψ), T (˙Fw,kσ)

where � and � are truth-free, k = G1(a, 0) and w = ϕ�ψ�σ . Notice that
G1(a, 0) ≥ G1(0, n) for all a, n < ω.

Call this derivation d∗. Fix n such that for each instance of (Dw) occurring in d∗,
lh(w) < n. It is enough to show that (PAU )ω interprets (Dw).

Let:

U∗ = {ϕ∗ : ∃ψ
∨

ϕ∈U
(ϕ∗ = ϕ[ψ/p]) ∧ d(ϕ∗) ≤ G2(a, n)}.

Then the sequent:

D(x), ˙d(x) < G2(a, n) ⇒ {x = �ϕ� : ϕ ∈ U∗} (∗)

is derivable in PA. Now, G1(0, n) bounds the logical depth of the schematic formulas
in D, and k = G1(a, 0) ≥ G1(0, n) for all a, n < ω. Since every occurrence of a
predicate symbol pij in the kth approximation of x has depth at least k in x , it follows
that if x is any instance of the schema D, then so is ˙Fw,k x . Moreover, this fact is
derivable in PA. Since ˙d(˙Fw,k(x)) < G2(a, n) is also derivable in PA, by (∗), the
sequent:

D(x) ⇒ ˙Fw,k x ∈ U∗.

is derivable in PA. Since the sequent D(σ ) ⇒ σ is derivable in PA for all arithmetical
sentences σ , and the sequent σ ⇒ T (σ ) is derivable in (PAU )ω for all arithmetical
sentences σ (this is where uniform disquotational truth is sufficient), the sequent:

D(x) ⇒ T (˙Fw,k x)

is derivable in (PAU )ω. Thus (PAU )ω interprets (Dw), and we obtain a derivation of
the sequent � ⇒ � in (PAU )∗ω. By Lemma 1, (PAU )∗ω is conservative over PA, so
� ⇒ � is derivable in PA. ��

From Theorem 3 we immediately obtain:

Corollary 1 For each n ∈ ω, (PAUAxPA)n is conservative over PA. ��
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6 Morals

With our points made, let us wrap things up. We understand the import of Theorem 3
to consist in revealing a different (and interesting) set of implicit commitments for
the first-orderist than the semantic core of PA. We maintain our point from Sect. 4
that the general idea of a fixed semantic core of implicit commitments in accepting a
given base theory S is too strong. In particular, the requirement that the first-orderist
be implicitly committed to fully compositional axioms for the truth predicate on the
basis of their acceptance of PA is too strong. For it is precisely the presence of fully
compositional truth principles which forces the first-orderist to give up all (sets of)
instances of extended induction to the language LT as part of I(PA). Moreover, there
is no principled reason why we should require fully compositional truth, rather than
extended induction, to form part of the first-orderist’s implicit commitments on the
basis of their acceptance of PA (or vice versa). All things considered, the theories
(PAUAxPA)ω and PAT

AxPA are equally plausible candidates for the first-orderist’s implicit
commitments on the basis of their acceptance of PA.

To anticipate an objection, one might complain that the theory (PAUAxPA)ω is not

a plausible theory of truth precisely because it lacks full compositionality,27 and
that this is a reason to prefer to cash out the first-orderist’s implicit commitments
on the basis of accepting PA as the theory PAT

AxPA , rather than the theory (PAU
AxPA

)ω.
Essentially, though, we think this misses the point. First, one still has a notion of
uniform disquotational truth at play in the theory (PAUAxPA)ω, and since one of the
underlying motivations for this project was to accommodate the assertion that all of
the axioms of PA are true among the first-orderist’s implicit commitments on the
basis of their acceptance of PA, we think uniform disquotational truth is enough to
say we have achieved this much. But second, to say that the first-orderist’s implicit
commitments on the basis of accepting PA amount to the principles of (PAU

AxPA
)ω is

not to say that the first-orderist thereby rejects a fully compositional notion of truth.
All that follows is that if the first-orderist indeed accepts the idea that truth is fully
compositional, then their acceptance of the corresponding principles is not grounded
purely in their acceptance of PA. We maintain that there is no principled reason the
first-orderist should prefer an implicit commitment to fully compositional truth at
the expense of an implicit commitment to extended induction purely on the basis of
accepting PA. If there are reasons why the first-orderist might prefer one of these
theories of implicit commitments to the other, then those reasons are independent of
the idea of the first-orderist’s acceptance of PA.

Let us also return to the hasty conclusion we pointed out in Sect. 4: that perhaps
our acceptance framework fails to reveal any differences between the finitist and the
first-orderist with respect to their attitudes towards truth in induction. On the contrary,
Theorem 3 shows that our framework does reveal a difference between these two
foundationalists in this respect.

On one hand, our acceptance framework: (1) shows that (PAUAxPA)ω and PAT
AxPA are

both plausible candidate theories of the first-orderist’s implicit commitments on the

27 For example, such a view might align with defenders of a deflationary account of truth (Field, 1986,
1999; Horwich, 1990; Tennant, 2002).
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basis of their acceptance of PA, yet (2) also has no preference about whether the fully
compositional truth axioms, or instances of PA’s induction schema in which the truth
predicate occurs, form part of the first-orderist’s implicit commitments.Moreover, this
lack of preference is not a failure on the part of our acceptance framework. Rather,
given our remarks in Sect. 4, it is exactly what we should expect of an account of
theory acceptance.

On the other hand, our framework still accommodates the idea that the semantic
core QF–IAT

AxQF–IA
of QF–IA is a plausible candidate theory of the finitist’s implicit

commitments on the basis of their acceptance of QF–IA. But since truth in induction is
off the table for finitist, the theory (QF–IAUAxQF–IA)ω is off the table as a plausible candi-

date theory for I(QF–IA). This is the difference revealed by our framework: (PAUAxPA)ω
is available to the first-orderist, but (QF–IAUAxQF–IA)ω is not available to the finitist.

The overall moral of our story is that the relevant versions of the three ideas which
formed the motivation for this project are reconcilable in different, equally interesting
ways: (1) the weak ICT, (2) LS-epistemic stability, and (3) the idea that we should
like to accept soundness assertions involving a notion of truth for S, on the basis of
accepting S itself.

We have put forward a framework for analyzing implicit commitments in accepting
a given suitable arithmetic theory S. There are two broad components of this frame-
work: semantic and schematic, and each component admits fine-grained degrees. In
general, neither component is fully fixed. If it makes sense to say that any of the
principles we have considered are fixed implicit commitments in accepting a given
theory S, we suggest that it is the common core of the theories STAxS and (SUAxS)ω;

that is, the theory SUAxS . In any case, in general, sets of implicit commitments on the
basis of accepting a given base theory S vary from foundationalist to foundationalist.
This framework provides a general understanding of just what an epistemically-stable
foundationalist’s implicit commitments can be.

By suitably modifying the original notions of epistemic stability and the implicit
commitment thesis as in Dean (2015), we hope to have offered a clear way of under-
standing which sets of implicit commitments are compatible with weaker notions of
epistemic stability and the implicit commitment thesis. In general, we do think that it is
possible for epistemic stability to be compatible with the implicit commitment thesis:
conservative extensions of S according to our framework reconcile weak epistemic
stability with non-trivial versions of the weak implicit commitment thesis. In partic-
ular, for suitable arithmetic theories S, it is possible for (1) there to exist a coherent
rationale for accepting a given arithmetical theory S that does not entail or otherwise
rationally oblige a theorist to accept statements in the language of S, which cannot
be derived from the axioms of S, and (2) anyone who accepts the axioms of S to be
implicitly committed to accepting various additional statements which are formally
independent of S. Cashing out theories of implicit commitments as theories of truth
extending S makes this possible.

Indeed, it is not only possible to reconcile the notion of LS-epistemic stability with
the weak ICT for foundational positions that the compatibility of the original notions
of epistemic stability and the ICT are said to be problematic for, but (depending upon
the foundational position) this can be achieved with respect to a variety of implicit
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commitments, all of which contain desirable minimal soundness requirements for S.
Finally, our framework is still compatiblewith the idea that one’s implicit commitments
may also include strong reflection principles. Strong reflection principles occur among
one’s implicit commitments just in case one’s implicit commitments include both the
fully compositional truth principles for S-sentences, and the fully extended S-induction
schema to the expanded language of truth. Nonetheless, the occurrence of the weak
reflective axiom soundness principle among one’s implicit commitments is compatible
with the idea of epistemic stability, in a variety of ways.
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Appendix A: Approximations

Here we define approximations, and ultimately nth approximations. Recall that we
are working with the language L+

A that extends LA by a new constant ε and the set P
of countably many new predicate symbols pij .

Definition 8 Let X ⊆ P be a finite subset consisting of the predicates pij . An assign-

ment is any function g : X → L+
A such that for every i, j , if pij ∈ X then g(pij ) is a

formula with arity i .

If g is an assignment and ϕ ∈ L+
A , then ϕ[g] denotes the result of replacing each

predicate pij (s1, . . . , si ) occurring in ϕ by g(pij )(s1, . . . , si ) if g(p
i
j ) is defined, and

by ε otherwise.
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Definition 9 Let ϕ = 〈ϕ0, . . . , ϕm〉 and ψ = 〈ψ0, . . . , ψm〉 be two sequences of
closed L+

A -formulas. We say that ϕ approximates ψ if there exists an assignment g
such that ψi = ϕi [g] for each 0 ≤ i ≤ m.

We are interested in defining a particular class of approximations; nth approxima-
tions. They are constructed in the following way. Let w, z, z1, z2, . . . be new variable
symbols.

Definition 10 Let ϕ ∈ LA. An occurrence in ϕ is any pair 〈ϕ′, t〉 such that:
1. ϕ′ ∈ LA ∪ {z} such that z occurs in ϕ′ exactly once;
2. TermLA∪{w}(t);
3. t is free for z in ϕ′;
4. ϕ = ϕ′[t/z].
We denote the set of occurences in ϕ by O(ϕ).

Definition 11 Let ϕ ∈ LA. The w-free form of ϕ is the LA ∪ {w}-formula ϕ obtained
from ϕ by:

1. replacing all free variables in ϕ by the variable w;
2. replacing all terms in the result of 1. above in which the only variable that occurs

in w, by w.

If 〈ϕ′, t〉 is an occurrence in ϕ where ϕ is in w-free form, then t = w. We say that
two LA-formulas ϕ and ψ are weakly equivalent if their w-free forms are equal; i.e.
if ϕ = ψ .

Each LA-formula ϕ is associated with a unique function tϕ : O(ϕ) → TermLA

such that replacing each occurrence of the variablew in thew-free form of ϕ by tϕ(w)

results in ϕ. We say that two LA-formulas ϕ and ψ are strongly equivalent, which
we write as ϕ ≈ ψ , if they are weakly equivalent and in addition there exists an
equivalence relation E on O(ϕ) = O(ψ) such that tϕ, tψ are well-defined on O(�)/E

and disagree on at most finitely many E-equivalence classes.
Let � be a set of pairwise weakly equivalent LA-formulas, such that each has only

a finite number of free variables. There is a canonical way of defining an equivalence
relation E on O(�) as above, since O(�) is the common value of O(ϕ) for each
ϕ ∈ �. The functions {tϕ : ϕ ∈ �} induce an equivalence relation E� on O(�) by
setting:

〈ϕ0, t0〉E�〈ϕ1, t1〉 ⇔
∧

{tϕ(〈ϕ0, t0〉) = tϕ(〈ϕ1, t1〉) : ϕ ∈ �}.

For each ϕ ∈ �, let t ′ϕ : O(�)/E� → TermLA be the map induced by tϕ . If ϕ0, ϕ1 ∈ �

then there are at most finitely many E�-equivalence classes in O(�)/E� on which t ′ϕ0
and t ′ϕ1 disagree.

We use the notion of strong equivalence to define the template of a set � of LA-
formulas. Let � be a set of pairwise strongly equivalent LA-formulas. Let C1, . . . , Cl
enumerate the finitely many E�-classes C in O(�)/E� such that there are ψ0, ψ1 ∈ �

with t ′ψ0
(C) 
= t ′ψ1

(C), or t ′ψ0
(C) is a variable. Let ϕ ∈ � and consider its w-free
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form ϕ. If o ∈ O(ϕ) is such that o ∈ Ci for some 1 ≤ i ≤ l, we replace o by the
new variable zi . Otherwise o ∈ O(ϕ) is not in any Ci , so we replace o by tϕ(o). The
resulting formula:

��(z1, . . . , zl)

is called the template of �. The template of � is unique up to permutation of the
variables z1, . . . , zl , and does not depend on the choice of ϕ. Also, for each ϕ ∈ �

there exist unique terms t1, . . . , tl such that ϕ = ��(t1, . . . , tl).
The following sequence of definitions culminates in the definition of nth approxi-

mations.

Definition 12 Let ϕ = 〈ϕ0, . . . , ϕm〉 be a non-empty sequence of LA-formulas. The
set of parts of of ϕ, denoted �(ϕ), is the set of pairs 〈ϕ′, ψ〉 such that:

1. ϕ′ ∈ LA ∪ {ε} is such that ε occurs in ϕ′ exactly once;
2. ψ ∈ LA; and
3. ϕi = ϕ′[ψ/ε] for some 0 ≤ i ≤ m.

We define an ordering � on �(ϕ) such that:

〈ϕ0, ψ0〉 � 〈ϕ1, ψ1〉

iff there exists χ ∈ LA ∪ {ε} with ϕ0 = ϕ1[χ/ε] and ψ1 = χ [ψ0/ε].
Definition 13 Let 〈ϕ,ψ〉 ∈ �(ϕ). The depth of 〈ϕ,ψ〉, denoted d(ϕ, ψ), is the num-
ber of logical operators of ϕ within whose scope ε falls under.

Using the notion of strong equivalence and the ordering �, we define the following
sets recursively on k.

�(0)(ϕ, n) = {〈ϕ,ψ〉 ∈ �(ϕ) : d(ϕ, ψ) ≤ n}
�(k+1)(ϕ, n) = {〈ϕ,ψ〉 ∈ �(ϕ) : ∃〈ϕ1, ψ1〉 ∈ �(k)(ϕ, n)∃〈ϕ0, ψ0〉 ∈ �(0)(ϕ, n)

(
ψ0 ≈ ψ1 ∧ 〈ϕ,ψ〉 � 〈ϕ1, ψ1〉
∧ d(ϕ, ψ) + d(ϕ0, ψ0) ≤ d(ϕ1, ψ1) + n

)}.

Intuitively, �(k+1)(ϕ, n) consists of the parts of ϕ that are approximated by some
〈ϕ1, ψ1 ∈ �(k)(ϕ, n), such that the template of ϕ1 occurs in ϕ with depth at most n.

For large enough k < ω, �(k)(ϕ, n) is fixed; i.e. there exists j such that
�( j)(ϕ, n) = �( j+1)(ϕ, n). Fix such a j and define:

�(ϕ, n) = {ψ ∈ LA : ∃ϕ〈ϕ,ψ〉 ∈ �( j)(ϕ, n)}
�I (ϕ, n) = {ψ ∈ LA : ∃ϕ〈ϕ,ψ〉 is � -minimal in �( j)(ϕ, n)}.

Let ≈ partition �I (ϕ, n) into the set of equivalence classes �I (ϕ, n)/≈. Let �0, . . . , �l

enumerate the elements of �I (ϕ, n)/≈. For 0 ≤ i ≤ l, let ��i (z1, . . . , zl�i
) be the
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template of �i , with arity l�i . For each ϕ ∈ �i , let t
ϕ
1 , . . . , tϕl�i

be the terms such that

ϕ = ��i (t
ϕ
1 , . . . , tϕl�i

).

Definition 14 Define a function:

Fϕ,n : �(ϕ, n) → L+
A

recursively by:

1. Fϕ,n(ψ) = ψ if ψ ∈ �I (ϕ, n)/≈ is atomic.

2. Fϕ,n(ψ) = p
l�i
i (tψ1 , . . . , tψl�i

) if ψ ∈ �i ⊆ �I (ϕ, n)/≈ (for some 0 ≤ i ≤ l) is not
atomic.

3. If ψ ∈ �(ϕ, n) \ �I (ϕ, n), define:

(a) Fϕ,n(ψ0 ∨ ψ1) = Fϕ,n(ψ0) ∨ Fϕ,n(ψ1).
(b) Fϕ,n(¬ψ) = ¬Fϕ,n(ψ).

(c) Fϕ,n(∃xψ) = ∃xFϕ,n(ψ).

Definition 15 Let ϕ = 〈ϕ0, . . . , ϕm〉 be a sequence of closed L+
A -formulas. The n-th

approximation of ϕ is the sequence:

Fϕ,n(ϕ) = 〈Fϕ,n(ϕ0), . . . , Fϕ,n(ϕm)〉.
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