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In an often invoked setup used to illustrate the Aharonov-Bohm (AB)
effect, charged particles passing on opposite sides of an idealized in-
finitely long solenoid, with no flux leaks and protected from penetra-
tion of the charged particles by an infinitely high potential barrier,
experience differential phase changes that result in an observable in-
terference pattern dependent on the magnetic flux in the solenoid,
despite the fact that the configuration space of the charged particles
is disjoint from regions where the magnetic field B is non-zero. The
philosophical literature on the AB effect focuses largely on issues of
non-locality, the “reality”of electromagnetic potentials, and the like.
While a thorough discussion of the effect must confront these issues,
making them the focus risks underappreciating the prior and more fun-
damental issues about the derivation/explanation of the effect. The
mainline explanation is dynamical, relying on Schrödinger evolution
using a Hamiltonian operator ĤA universally cited in standard texts.
This operator is derived by following the canonical quantization pro-
cedure, starting from a classical Hamiltonian and then substituting for
the classical position and momentum variables Hilbert space operators
that give a representation of the Heisenberg canonical commutation
relations. But ĤA is not the unambiguous result of canonical quan-
tization since there are representations unitarily inequivalent to the
familiar Schrödinger representation used to derive ĤA. This opera-
tor contains a gauge variable, the vector potential A of the magnetic
field, and the mainline explanation relies on the gauge equivalence of
Schrödinger evolution under ĤA with free evolution multiplied by a
phase factor. This equivalence is broken, and the mainline explana-
tion is undermined by an attempt to overcome the apparent nonlocal
dependence of the inference pattern on the magnetic field by regard-
ing the vector potential A as a real physical variable. The main-
line explanation can be criticized on the grounds that it attempts to
explain a gauge-independent effect using gauge-dependent variables.
This concern can be answered by showing that the AB phase can be
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obtained without using the vector potential A but only the gauge-
invariant magnetic field B. The extant version of this explanation
uses the path integral approach rather than canonical quantization,
and it makes manifest the non-local dependence of the interference
pattern on the magnetic field over all space. There are also attempts
at non-dynamical (a.k.a. “topological”) explanations that do not de-
pend on the details of the Hamiltonian operator. While intriguing it
is not clear that they address the relevant explanandum. In working
through the thicket of issues surrounding the explanation of the AB
effect it is natural to look for help from the philosophical literature
on scientific explanation. But, with the exception of interventionist
accounts of causal explanation, one looks in vain.

1 Introduction

There is a substantial philosophical literature on the Aharonov-Bohm (AB)
effect, much of it focused on issues of non-locality, the “reality”of electromag-
netic potentials, and the like. But there is a surprising lack of discussion and
understanding of the prior issue of how QM explains the AB effect. Standard
QM does explain how this surprising and counterintuitive effect is possible,
although there seems to be an underappreciation of the subtleties involved.
When these subtleties are taken into account one sees that while QM explains
how the AB effect is possible, insofar as explanation implies prediction, QM
does not explain the occurrence of the AB effect in nature. What it does
furnish is a conditional dynamical explanation of the effect, where the ex-
planation is conditioned on the quantum Hamiltonian taking a certain form.
That form, however, is not the unequivocal outcome of canonical quantiza-
tion. Alternative non-dynamical explanations, not dependent on the form of
the Hamiltonian, have been offered. While intriguing, these alternatives are
underdeveloped and appear to fall short of the mark for various reasons.
It might seem then that the AB effect would serve as a fruitful test bed

for various competing accounts of scientific explanation, which include the
deductive-nomological model, the statistical relevance model, causal mechan-
ical models, unificationist models, and pragmatic theories (see Woodward
and Ross 2021). While aspects of these accounts are marginally helpful,
none of them are a good fit for the AB effect. The one exception is the inter-
ventionist account of causal explanation which is helpful in focusing a crucial
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aspect of the AB effect. Given the variety of physical phenomena nature
presents it would be surprising if one, or even a small handful, of “models
of explanation”suffi ce to cover the variety of means of comprehending the
phenomena found in scientific theorizing about the phenomena.1

2 Sketch of the AB set up: idealizations and
more idealizations

The magnetic AB effect involves situations where the configuration space of
a charged particle is strictly disjoint from regions where the magnetic field
is non-zero.2 Physical realizations of such a scenario would seem to involve
severe idealizations; a commonly used one invokes an infinitely long solenoid
which does not leak magnetic flux and which is surrounded by an infinitely
high potential barrier preventing charged particles from penetrating into the
interior of the solenoid. A beam of charged particles emitted from a source
is split into two parts, “each going on opposite sides of the solenoid, but
avoiding it. (The solenoid can be shielded from the electron beam by a thin
plate which casts a shadow.)”(Aharonov and Bohm 1959, p. 486; see Fig.
1).
In the treatment given below an additional idealization, shrinking the

radius of the solenoid to a point while the total flux remains the same, is
imposed for technical reasons. For a charged particle confined to move in
the x-y plane (shown in Fig. 1), the configuration space of the particle is
ΩR := R2\DR where DR := {(x, y) : x2 + y2 ≤ R} is a disk of radius R ≥ 0
centered at the origin (0, 0) of orthogonal coordinates x, y for R2, and the
Hilbert space is L2C(ΩR). (The non-simple connectedness of the configuration
space ΩR will play an important role in what follows.) Recalling that the ele-
ments of a Hilbert space L2C(X) are not square integrable complex functions
onX but equivalence classes of such functions, where the equivalence relation
is equality up to a set of Lebesque measure 0, there is a natural identification
of L2C(ΩR=0) and L2C(R2). And the identification can be used to prove that

1This sentiment resonates with that of Kitcher, “The Theory of Scientific Explanation:
An Obituary”(2021).

2There is also an electric AB effect whose theoretical analysis and experimental verifi-
cation remain controversial. It will not be discussed here. Henceforth, I will speak simply
of the AB effect with the understanding that there is a silent “magnetic”modifier.
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the Schrödinger momentum operators3 −i d
dx
, −i d

dy
acting on L2C(ΩR=0) are

essentially selfadjoint on a common dense domain4 and that their unique
selfadjoint extensions together with position operators acting by multiplica-
tion give an irreducible representation of the Heisenberg canonical commu-
tation relations. However, when the solenoid has a radius greater than 0 the
Schrödinger momentum operators are not essentially selfadjoint on L2C(ΩR>0)
and, further, among the selfadjoint extensions none satisfy the Weyl form of
the canonical commutation relations (Hirokowa 1997, 2000).5 These prob-
lems can be addressed by using non-orthogonal coordinates adapted to the
streamlines of an incompressible fluid flowing around the solenoid (Hirokowa
1997, 2000). But unless otherwise specified, attention will focus mainly on
the R = 0 idealization.
Given the need for such severe idealizations and the need for a deep dive

into functional analysis required for a rigorous mathematical treatment of the
idealizations, a working physicist could be forgiven for thinking that AB effect
is a useless plaything of mathematical physicists who have nothing better to
do. While there is some validity to such an attitude it would be a mistake to
ignore the AB effect. Because of the insights it gives into the nature of the
quantization of classical systems and the conceptual differences between the
classical and the quantum that result from quantization, it deserves serious
study.

3 The AB effect: the usual (expurgated) story

The most common explanation of the AB effect is dynamical, tracing out
the dynamical evolution of the wave functions of the charged particles in the
beams as they pass by the solenoid on the way to the registration screen. In
order to implement the dynamics we need the quantum Hamiltonian for the
AB set up. Standard text books tell us that it is

ĤA =
(−i∇− q Â)2

2m
(1)

3Units are chosen so that } = c = 1.
4A suitable domain is C∞0 (ΩR=0), infinitely differentiable functions of compact support

on R2\(0, 0), which is dense in L2C(R2).
5See below for a discussion of the Heisenberg and Weyl forms of the commutation

relations.

4



where q and m are respectively the charge and mass of the particle and Â
is the operator that acts by multiplication by the function A of coordinates
where B = ∇ x A (i.e. A is the vector potential of the magnetic field B).
To justify (1) appeal is made to the process of canonical quantization. The

first step is to find the classical Hamiltonian for a charged particle moving
in a magnetic field. Newton’s F = mẍ law and the Lorentz force law
F = qν × B yield the classical equation of motion

mẍ = qν × B. (2)

Next we find the Lagrangian that yields (2) as the Euler-Lagrange equations.
An appropriate Lagrangian is

L =
1

2
mν2 + qA · ν. (3)

The momenta conjugate to the position variables are given by

px :=
∂L

∂νx
= mνx + qAx, py :=

∂L

∂νy
= mνy + qAy. (4)

Substituting (3) and (4) into the definition of the classical Hamiltonian

H := ν · p− L (5)

results in

HA =
(p− qA)2

2m
. (6)

The final step in canonical quantization is to replace the classical p and
A by Hilbert space operators that give a representation of the Heisenberg
CCR (HCCR)6

p̂jx̂k − x̂kp̂j = −iÎδjk, j, k = x, y, z (7a)

p̂jp̂k − p̂kp̂j = 0, x̂jx̂k − x̂kx̂j = 0. (7b)

6The mathematically minded will want to know precisely what is meant by a repre-
sentation of (HCCR) especially since some of the operators involved must be unbounded
and, thus, are defined at most on a dense domain of the Hilbert space. The common
answer is that a representation of (HCCR) consists of operators p̂j , x̂k that are essentially
selfadjoint on a common invariant and dense domain on which (7a)-(7b) hold.
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The conventional choice is to use the Schrödinger representation whereby p
is replaced by p̂ = −i∇ and functions of x, y, z are replaced by operators
that act on elements of L2C(R2) by multiplication. This choice is supposedly
justified by the Stone-von Neumann’s uniqueness theorem which is often
glossed as showing that, for systems with a finite number of degrees of free-
dom (which is certainly the case here), any irreducible representation of the
CCR is unitarily equivalent to the Schrödinger representation, implying that
any other choice of representation would yield physically equivalent results.
With (1) in hand the dynamical explanation can be implemented by solv-

ing the Schrödinger equation for (1) and showing that the wave packets of
charged particles passing the solenoid on opposite sides suffer a differential
phase change that accounts for the dependency on the magnitude of the flux
in the solenoid of the interference pattern on the detection screen.7 In fact,
this is never actually done; rather one uses an Ansätz of Aharonov and Bohm
that provides a short cut to an approximate solution exhibiting the appropri-
ate phase change (see Sec. 5 below). Amazingly, despite all the controversy
generated by the AB effect, the validity of this approximation was not rigor-
ously studied until comparatively recently (fifty years after the publication of
the seminal Aharonov-Bohm paper). Before turning to an analysis of the dy-
namical explanation I will remark on some dubious moves used in the above
attempt to justify ĤA.

4 Exposing some dubious methodology and a
misunderstanding: the unexpurgated story
of canonical quantization

The dubious methodology, which is rarely remarked, should be obvious.
There seems to be some flimflam in the initial move of starting from the
classical equations of motion (2) of a particle moving in a magnetic field be-
cause in the AB effect the particle is not moving in a magnetic field since,
by definition of the effect, the configuration space of the charged particle is
disjoint from regions where B 6= 0. Thus, the Lorentz force on the classical
charged particle is everywhere 0, the Newtonian equation of motion is

7Typically, Dirichlet boundary conditions are assumed, by which wavefunctions vanish
on the boundary ∂ΩR. More on this below.
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mẍ = 0 (2′)

and the corresponding classical Hamiltonian is the free Hamiltonian

H0 =
p2

2m
. (6′)

If the Schrödinger p̂ = −i∇ replaces p in (6′) the resulting quantum Hamil-
tonian is

Ĥ0 = −∇
2

2m
, (1′)

and the motion of the quantum particle shows no dependence on the amount
of magnetic flux in the solenoid.
An interesting argument for using (6) and (1) is found in the results of

de Oliveira and Pereira (2008). Start with a non-idealized solenoid of length
` < ∞ and radius R > 0, shielded by a finite potential barrier of height
h < ∞. Since in this scenario the charged particle assuredly is moving in
a magnetic field there is no dispute about the correct form of the classical
Hamiltonian H`,h. Replace the classical momentum and position variables
in H`,h by their Schrödinger operators to obtain the non-idealized quantum
Hamiltonian Ĥ`,h. Then take the limit Ĥ∞ := lim`,h→∞ Ĥ`,h. Show that
the limits ` → ∞ and h → ∞ exist (in the resolvent sense) and that they
commute so that it doesn’t matter in which order they are taken. Finally
show that Ĥ∞ is the Hamiltonian ĤA of (1).8 A very pretty result indeed!
But how does the result apply to a situation where we imagine being

presented with an idealized infinitely long solenoid shielded by an infinitely
high barrier? What should we expect when we turn on the beam of charged
particles? If we suppose that the idealized solenoid has been constructed
by superhero engineers who start small but manage to achieve the ` → ∞
and h→∞ limits at some finite time at which we perform our experiments
then, presumably, our expectations should be governed by the Hamiltonian
(1). But if we suppose that the idealized infinitely long and perfectly shielded
solenoid has existed since time immemorial then the Hamiltonian (1′) remains
a plausible candidate for guiding our expectations. And in any case the

8Furthermore, Dirichlet boundary conditions show up since wavefunctions in the do-
main of Ĥ∞ vanish at the boundary of the solenoid.
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justification for (1) assumes the use of the Schrödinger representation of the
(HCCR); and it is just here that an important misunderstanding arises.
The final step in the usual argument for the AB effect involves a misun-

derstanding of the Stone-von Neumann uniqueness theorem.9 The theorem
concerns not the (HCCR) but an exponentiated form of the CCR called the
Weyl CCR (WCCR). The trouble with (7a) is that the operator on the rhs is
defined for all elements of the Hilbert space whereas the operators on the lhs
are not since either the p̂’s or the x̂’s (or both) must be unbounded and are
defined at best on a dense domain of the Hilbert space (see Reed and Simon
1980, p. 274). The problem disappears when the operators are exponentiated
to U(sj) := exp(−isjp̂j) and V (tk) := exp(−itkx̂k), sj, tk ∈ R. Assuming
that the p̂j and x̂k are selfadjoint, the U(sj) and V (tk) form unitary groups
whose elements are defined on the entire Hilbert space. The (WCCR) give
the commutation relations for the U(sj) and V (tk):

U(sj)V (tk) = exp(isjtk)V (tk)U(sj), sj, tk ∈ R (8a)

U(sj)U(sk)− U(sk)U(sj) = 0, V (tj)V (tk)− V (tk)V (tj) = 0. (8b)

What the Stone-von Neumann theorem shows is that, for a system with a
finite number of degrees of freedom, all irreducible and strongly continu-
ous unitary representations of the (WCCR) are unitarily equivalent to the
Schrödinger representation.
In many instances satisfaction of the (HCCR) entails satisfaction of the

(WCCR). Heuristically the implication seems valid: use a power series expan-
sion of the exponentials U(sj) and V (tk), while ignoring issues of convergence,
and plug in the (HCCR) at appropriate points in the expansion to arrive at
the (WCCR). But for unbounded operators issues of convergence cannot be
ignored, and failures of the entailment should not be unexpected. And, in
fact, the entailment does fail in the AB setup, making available representa-
tions of the (HCCR) unitarily inequivalent to the Schrödinger representation
when the configuration space of the charged particle is ΩR=0 = R2\(0, 0).10

Operators Â and B̂ acting on a Hilbert space H are said to weakly com-
mute iff [Â, B̂]ψ = 0 for all ψ ∈ H such that ψ ∈ dom([Â, B̂]), and are
said to strongly commute iff exp(isÂ) exp(itB̂) = exp(itB̂) exp(isÂ) for all

9For reasons given in Earman (2023) one should speak of Stone’s conjecture and von
Neumann’s theorem. But herein I will use the standard parlance.
10For more on the von Neumann uniqueness theorem see Earman (2023).
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s, t ∈ R.11 The (HCCR) require only that the p̂j weakly commute amongst
themselves as do the x̂k, whereas the (WCCR) require that they strongly
commute amongst themselves. Strong commutativity can fail in the AB
setup. For particles moving in the x-y plane, which is taken to be orthogo-

nal to the symmetry axis of the solenoid, the operators P̂x = −i d
dx
− qAx,

P̂y = −i d
dy
− qAy and the usual position operators x̂, ŷ acting by multi-

plication satisfy the (HCCR). P̂x and P̂y weakly commute but may fail to
strongly commute and, thus, fail to satisfy the (WCCR). For any rectangu-
lar closed curve with sides lying along the x- and y-axes and having lengths
respectively sx and sy we have

exp(isxP̂x) exp(isxP̂y) = exp(iqΦA
sx,sy) exp(isxP̂y) exp(isxP̂x) (9)

where ΦA
sx,sy is the line integral of A around the closed curve (Arai 2020,

Theorem 3.3). For a closed curve surrounding the solenoid ΦA
sx,sy is equal to

the amount of magnetic flux through a two-surface bounded by the curve.
Thus, P̂x and P̂y strongly commute, as required by the (WCCR) iff q x
magnetic flux in the solenoid is an integer multiple of 2π for each sx, ty ∈ R.
Otherwise we obtain an irreducible and strongly continuous non-Schrödinger
representation of the (HCCR).
Now let’s assess the implications for the AB effect of a correct understand-

ing of the Stone-von Neumann theorem. We saw that there are two plausible
starting points for canonical quantization: the classical Hamiltonian HA of
(6) and the classical Hamiltonian H0 of (6′). Suppose we start with (6).
Quantum Nature might produce the quantum Hamiltonian ĤA of (1) by
spurning the Schrödinger-inequivalent representations of the (HCCR) and
choosing the standard Schrödinger representation. But there is nothing in
standard QM to say that Nature will or must make this choice, so there is
nothing in the theory as it stands that allows us to predict that the AB
effect will be realized. Alternatively suppose we start instead with the clas-
sical Hamiltonian H0 of (6′). Quantum Nature can still produce a quantum
Hamiltonian of the form ĤA by availing herself of Schrödinger-inequivalent
representations and, in particular, by choosing the one in which (per usual)
the position operators act by multiplication but the momentum operators

11For selfadjoint Â and B̂ strong commutativity is equivalent to requiring that the
spectral projections of Â and B̂ commute (see Simon and Reed 1980, Theorem VIII.3).
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are P̂x = −i d
dx
− qAx, P̂y = −i d

dy
− qAy. But if this choice means that She

chooses a particular Schrödinger-inequivalent representation, namely, the one
in which

∮
A · dx is the actual amount of flux now in the solenoid, then an

important aspect of the AB effect remains unexplained. The experimenter
running the AB setup can control the amount of flux in the solenoid by
controlling the current fed to the solenoid, and changing the flux changes
the Schrödinger-inequivalent representation unless the flux values differ by
an integer multiple of 2π/q. To accommodate this aspect of the AB effect
either Nature must anticipate what flux value will be dialed up and change
her choice of Schrödinger-inequivalent representation accordingly, or else her
choice has to be understood as a choice of a generic Schrödinger-inequivalent
representation where the value of the path integral

∮
A · dx around a closed

loop encircling the solenoid is a variable whose value is equal to whatever
the value the flux takes in contingently variable circumstances. This might
seem artificial. But the A in the ĤA of eq. (1) has to be interpreted in
this generic manner if ĤA is to serve as the basis of a dynamical explanation
of the AB effect in contingently variable circumstances; and, as the proverb
goes, what’s sauce for the goose is sauce for the gander. But again there is
nothing in standard QM to say that Nature will or must act in this way.
In sum, if “QM”denotes predictions obtained via canonical quantization

of classical systems then QM does not predict the AB effect, although it cer-
tainly does accommodate the effect. There are, however, non-canonical quan-
tization schemes that appear to yield an unequivocal prediction of the AB
effect, one of which will be examined below. There are also non-dynamical
(a.k.a. “topological”) treatments of the AB effect that are independent of the
details of the Hamiltonian and that appear to yield an unequivocal prediction
of the AB effect; again one of them will be discussed below.

5 Explaining the effect

5.1 How-possible

The first explanatory query that comes to mind for someone whose physi-
cal intuitions are trained on classical physics is apt to be “How is the AB
effect possible?”since the space of physical possibilities allowed by classical
physics appears to have no room for the effect. The answer takes the form
of explaining how QM expands the space of possibilities by understanding
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the process of quantizing classical systems, involving representations of the
canonical commutation relations as outlined above. However, it is doubtful
that even a detailed filling in of this outline would be accepted as a fully
satisfying how-possible explanation until it is explained how the AB is con-
sistent with relativity theory, which is widely thought to rule out or, at least,
to be in tension with non-local action. This task will not be attempted here,
although a few comments will be offered anon.
It seems pointless to try to develop a taxonomy of how-possible explana-

tions since they are theory specific, and it is a mug’s game to try to anticipate
the ways in which yet unborn future theories will expand the possibility space.

5.2 Why does the observed interference pattern emerge
in the AB setup and, in particular, why the does
the pattern exhibit a certain dependency on the
flux in the solenoid?

5.2.1 The Aharonov-Bohm dynamical explanation

The setup described in Section 2 seems to beg for a dynamical explanation.
To recapitulate: a beam of charged particles is emitted from a source; the
beam is split, and the two parts pass through the apparatus, around the
solenoid, and register on a screen. What is it about the temporal evolu-
tion of the system that results in the observed interference pattern and its
dependency on the flux in the solenoid? QM obliges with a dynamical ex-
planation. The evolution of the state ψ of the charged particle is governed
by unitary dynamics generated by the system’s Hamiltonian. Waving the
qualms expressed in Section 3, the Hamiltonian operator is the ĤA of eq.
(1); and the state ψ(t) at a time t > 0 is related to the state ψ(0) at the time
t = 0 of emission by a one-parameter group of unitary transformations whose
generator is ĤA, i.e. ψ(t) = e−itĤAψ(0), the Schrödinger equation being the
infinitesimal version. The interference pattern and its flux dependence are
features of the solutions of the dynamical equation of motion. That is the
aspirational form of the explanation; now it is high time to see the details of
how the aspiration is fulfilled.
Before leaving the station, however, the train needs to be put on the right

track. The above synopsis would be correct if the ĤA of eq. (1) were essen-
tially self adjoint, for then with a slight abuse of notation we could use ĤA
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to denote the unique selfadjoint extension, and its exponentiation e−itĤA de-
fines a one-parameter unitary group. But ĤA is not an essentially selfadjoint
operator on the Hilbert space L2C(ΩR≥0). It does have selfadjoint extensions,
the choice of which correspond to the choice of boundary conditions on the
wavefunction ψ at the solenoid boundary ∂ΩR. Often Dirichlet boundary
conditions are assumed, either explicitly or implicitly, whereby ψ = 0 at
∂ΩR. So for the nonce let ĤA denote the selfadjoint operator corresponding
to this choice. Now the train is ready to depart– all aboard.
Aharonov and Bohm write:

In singly connected regions, whereB = ∇×A = 0, we can always

obtain a solution for the above Hamiltonian [ĤA =
(−i∇− q Â)2

2m
in our notation] by taking ψ = ψ0e

−iS, where ψ0 is a solution
when A = 0 and where ∇S = qA (Aharonov and Bohm 2009, p.
486).12

The latter solution,ψ = ψ0e
−iS, is gauge equivalent to the former; indeed,

in a simply connected region any solution for the Hamiltonian ĤA can be
gauge transformed to another consisting of solution for the free Hamiltonian
Ĥ0 multiplied by an appropriate phase factor. Aharonov and Bohm do not
prove this, perhaps because they thought it too obvious.13 But is instructive
to see explicitly how it works.
In simply connected regions of the charged particle’s configuration space,

where ∇ × A = B = 0, the vector potential A can be gauge transformed
away. In such a region A is the gradient of a scalar; and the gauge freedom
allows the change A→ A′ = A+∇χ, where χ is an arbitrary smooth scalar
field, without changing the physical state of the system. So let R(L) and
R(R) be simply connected regions containing respectively the left and right
beams. By choosing χ = −

∫ x
x0
A·dx, with x0 centered at the location of

the beam splitter and x ∈ R(L) or x ∈ R(R) as the case may be, A can
be gauge transformed to 0 along the paths of the beams, in which case the

12Notation has been altered to conform to that being used here. In our notation S =∫ x
x0
A·dx.

13Nor do they emphasize the gauge equivalence of the solutions, which is a crucial
part of the derivation. And as we will see shortly, this equivalence undermines their
suggestion that the puzzling non-locality in the AB effect can be avoided by positing that
the electromagnetic potentials are physically effective.
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charged particle propagates freely under the unitary evolution generated by
the Hamiltonian Ĥ0 of (1′).
To continue, we seek a unitary operator Û(χ) to represent the Hilbert

space action of gauge transformations A → A′ = A+∇χ in simply con-
nected regions. From the requirements that the position operator is invariant
under Û(χ) and that Û(χ) acts on gauge dependent quantities such as mag-
netic momentum by Û(χ)(−i∇− q Â)Û(χ)† = −i∇− q(Â+∇χ) we can
infer that Û(χ) = eiqχ. And specifically in the case of interest where we
want to gauge away A, define χ0 := −

∫ x
x0
A·dx. Then Û(χ0)ĤAÛ

†(χ0) =

Ĥ0 where Û(χ0) = eiqχ0 . Of course we cannot gauge away A everywhere,
but we can do it in a simply connected region. So let Λ(L) (respectively,
Λ(R)) stand for

∫ x
x0
A·dx with the integral taken along a path in a sim-

ply region R(L) containing the left-hand beam (respectively, in a simply
connected region R(R) containing the right-hand beam). Then in R(L),
exp(−iqΛ(L))ĤA exp(iqΛ(L)) = Ĥ0 and similarly for R(R).
To complete the missing proof let ψL(x, t) = exp(−itĤA)ψL(x, 0) be a

solution for the Hamiltonian ĤA in the simply connected region R(L); and
let ψ0,L(x, t) = exp(−itĤ0)ψ0,L(x, 0) be a solution for the free Hamiltonian
Ĥ0 also in the simply connected region R(L). And assume that in R(L) we
can validly go from exp(iqΛ(L))Ĥ0 exp(−iqΛ(L)) = ĤA to
exp(iqΛ(L)) exp(−itĤ0) exp(−iqΛ(L)) = exp(−itĤA). Then

exp(iqΛ(L))ψ0,L(x, t) = (exp(iqΛ(L)) exp(−itĤ0) exp(−iqΛ(L)))(exp(iqΛ(L))ψ0,L(x, 0))

= exp(−itĤA)(exp(iqΛ(L))ψ0,L(x, 0)). (10)

And choosing ψ0,L(x, 0) = exp(−iqΛ(L))ψL(x, 0) we have

ψL(x, t) = exp(iqΛ(L))ψ0,L(x, t). (11)

And of course a similar result holds for R(R).
Aharonov and Bohm continue:

[I]n the experiment discussed above, in which we have a multiply
connected region (the region outside the solenoid), ψ0e

−iS is not a
single-valued function and, therefore is not a permissible solution
of Schrödinger’s equation. Nevertheless, in our problem it is still
possible to use such solutions because the wave functions splits
into two parts ψ = ψ1 + ψ2, where ψ1 represents the beam on
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one side of the solenoid and ψ2 on the opposite side. Each of the
beams stays in a simply connected region. We can therefore write
ψ1 = ψ01e

−iS1 , ψ2 = ψ01e
−iS2 where S1 and S2 are equal to q

∫
A·dx

along the paths of the first and second beams, respectively ... The
interference between the two beams will evidently depend on the
phase difference”S1 − S2. (Aharonov and Bohm 1959, pp. 486-
487)14

In our treatment, this works out as follows. The unitary evolution
Ψ(x, t) = exp(−itĤA)Ψ(x, 0) generated by ĤA of an initial superposition
Ψ(x, 0) = ψL(x) + ψR(x) of wavepackets ψL(x) and ψR(x) centered at x0
and directed to the left and right beams respectively will be given by free
evolution in each of the regions R(L) and R(R) multiplied respectively by
the phase factors exp(iqΛ(L)) and exp(iqΛ(R)). So for a point x lying in the
overlap of R(L) and R(R) the unitary evolution of Ψ(x, 0) is given by

ΨAB(x, t) = [exp(iqΛ(L)) exp(−itĤ0)(exp(−iqΛ(L))ψL(x)]

+ exp(iqΛ(R)) exp(−itĤ0)[exp(−iqΛ(R))ψR(x)]

= [exp(iqΛ(L)) exp(−itĤ0)ψ0,L(x, 0)) (12)

+ exp(iqΛ(R)) exp(−itĤ0)ψ0,R(x, 0))]

= exp(iqΛ(R))[exp(i(qΛ(L)− qΛ(R))(ψ0,L(x, t) + ψ0,R(x, t))]

assuming that the left and right wavepackets remain in R(L) and R(R)
respectively. The interference between the two beams depends on the phase
difference qΛ(L) − qΛ(R), and when x lies on the screen qΛ(L) − qΛ(R) is
equal to q

∮
A·dx, the integral of A around a closed path starting at x0, then

going clockwise to the screen, and returning clockwise to x0 while encircling
the solenoid. And this integral is equal to q x flux in the solenoid– exactly
the result needed to explain the interference pattern’s dependency on the
magnetic flux.
But the assumption that the left and right wavepackets remain in R(L)

and R(R) respectively is false, for tails of the wave packets will quickly
extend over the entire configuration space available to the charged particles.
Thus, the analysis comes with the implicit Ansätz that ΨAB(x, t) is a good
approximation to evolution for the Hamiltonian ĤA to the extent that the

14Again notation has been altered to conform to that being used here.
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wave packets in the two beams remain localized in their respective simply
connected regions R(L) and R(R).
It is only relatively recently that the Ansätz has been rigorously shown

to provide a good approximation to the exact Schrödinger solution for high
velocity Gaussian wavepackets (see Ballesteros and Weder 2009).15 The pub-
lication occupies over fifty pages of dense argumentation in Journal of Math-
ematical Physics, which helps to explain why, despite its importance, the AB
Ansätz did not receive a rigorous justification until the lapse of fifty years
from the publication of Aharonov and Bohm’s seminal paper.
The explanation reviewed above may be seen as an instance of the DN

model, although what is important here is not the logical deduction in some
formal system of a sentence describing the explanandum events from the
laws together with sentences describing initial and boundary conditions but
rather the proof that solutions to the equations governing dynamical evo-
lution exhibit the features to be explained. The explanation may also be
deemed causal on the productive conception of causation, whereby causes
generate, engender or produce their effects,16 at least if the dynamical un-
folding of events is regarded as generating later events from their temporal
predecessors. But it does not fit comfortably with some of the leading philo-
sophical accounts of causal explanation such as Salmon’s causal mechanical
model with its emphasis on causal processes characterized as the ability to
transmit a “mark”(Salmon 1984) or Dowe’s conserved process theory of cau-
sation (Dowe 2000). However, interventionist accounts of causation whereby
interventions in a system are employed to discern causal dependencies among
the variables used to describe the behavior of the system (see, for example,
Woodward 2003) seem to be on the mark.17 In our case the experimenter can
intervene by adjusting the current supplied to the solenoid, thereby changing
the amount of flux in the solenoid which, in turn, changes the interference
pattern. These dependencies are a crucial part of the AB effect, and their
seeming nonlocal character constitutes its most puzzling and controversial
aspect.

15Ballesteros and Weder study a variant of the AB setup described above, using toroidal
magnets. Such an arrangement avoids having to use the idealization of an infinitely long
solenoid. For the experiments confirming the AB effect for such magnets see Osakabe et
al. (1986) and Tonomura et al. (1986).
16See Hall (2004) “Two Concepts of Causation.”
17Here I am indebted to Gordon Belot for emphasizing this point.
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5.2.2 Gauge-independent vs. gauge-dependent

In its present form the dynamical explanation might be deemed unsatisfac-
tory on the grounds that a proper explanation should be couched in terms of
observables.18 The explanation does use self-adjoint operators; but while ob-
servables are represented by self-adjoint operators not all such operators rep-
resent observables, as we know from the existence of superselection rules. The

magnetic momentum operators P̂x = −i d
dx
−qAx and P̂y = −i d

dy
−qAy and

the Hamiltonian ĤA represent gauge-dependent quantities, and the phases
Λ(L) and Λ(R) are gauge-dependent as well. (But, of course, the phase dif-
ference Λ(L)−Λ(R) is a gauge-invariant. And this difference is observable in
the interference effects.) Changes in the electromagnetic potentials need not
correspond to change in the physical state of the system (gauge freedom); to
hold otherwise implies an abandonment of determinism at the classical level
for the electromagnetic field since, when posed in terms of the electromag-
netic potentials, the Cauchy problem for Maxwell’s equations does not have
a unique solution.
To fulfill the demand for an explanation couched in terms of observables

it is necessary to provide a gauge-independent description of the AB effect.
That it should be possible to meet the demand is indicated by that fact that
the Schrödinger equation using ĤA is gauge-invariant (see Aitchison and Hey
2001, Sec. 2.4). Nevertheless, it takes some work to reach the goal. Li et al.
(2022) reach it by utilizing the path integral approach to QM, an example of
non-canonical quantization. In this approach the transition amplitude from
ψ(x0, 0) to ψ(x, t) is calculated by summing the contributions associated with
all the paths from x0 to x. The contribution of a path is given by exp(i

∫ t
0
Ldt)

where the action
∫ t
0
Ldt is computed from the classical Lagrangian L. For

present purposes assume that L is given by eq. (3). The contribution of the

interaction portion Lint = qA · ν of this Lagrangian is exp(i
∫ t
0
qA·dx

dt
dt) =

exp(i
∫ x
x0
qA · dx). A point x on the screen can be reached by a path that

passes the solenoid either on the left or on the right, and the interference

18As used in QM “observable”is a term of art referring not to a quantity whose value can
be ascertained by direct observation but (something like) ‘a quantity that is in principle
measurable by using (perhaps complicated) instruments where the connection between
the instrument reading and the value of said quantity may require the use of auxiliary
theories.’ It is something of a scandal that this important notion does not have a more
precise definition.
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between the two is given by exp(iq(
∫ x
x0
qA · dxL−

∫ x
x0
qA · dxR)), where dxL

and dxR indicate that integration is taken along the left and right paths
respectively (see Li et al. 2022), and this quantity is equal to exp(i

∮
qA · dx).

Note that this approach is innocent of the complications arising in canonical
quantization due to the existence of Schrödinger-inequivalent representations
of the CCR, and assuming that the classical Lagrangian (3) is the starting
point, the path integral approach gives an unequivocal prediction of the AB
effect.19

Now the trick is to show that the contribution to the action of the interac-
tion term Lint = qA · ν can be computed in terms of gauge invariants. This
is achieved by including the electromagnetic fields as part of the quantum
system and, specifically, including in the action the energy stored in the elec-
tromagnetic field generated by both the solenoid and the charged particle.20

Lint is shown to equal δLF , electromagnetic field generated by the charged
particle, and as a result the Aharonov-Bohm phase can be obtained “with-
out using a vector potential, by expressing the Lagrangian in terms of the
gauge-invariant magnetic field in all space”(Li et al. 2022). Not surprisingly,
however, the price to be paid for the gauge-invariant description is to make
manifest that the magnetic field B has non-local effects.

5.2.3 Non-locality and the status of the electromagnetic poten-
tials

There is pushback in the literature against the demand for a gauge-independent
explanation. Aharonov et al. (2016) claim that a gauge-dependent descrip-
tion is required to handle instantaneous aspects of the AB effect. A less
controversial and more widespread motivation for a gauge-dependent expla-
nation starts from the premise that relativity theory and locality are in ten-
sion if not outright contradiction; and then it concludes that if we do not
want to run afoul of relativity theory the AB effect shows that we must

19However, the ultimate goal of a quantum theory is to compute the expectation values
of observables, and this requires representing observables as linear operators acting on a
Hilbert space. The path integral approach offers little help here.
By contrast the program of geometric quantization has the goal of solving the represen-

tation problem and, moreover, it seeks to do so when the classical configuration and phase
spaces are topologically non-trivial, as in the case of the AB effect. Some brief comments
on geometric quantization in relation to our subject are found in the Appendix.
20The charged particle is assumed to be moving slowly enough that its radiation effects

can be neglected.
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recognize the electromagnetic potentials as real or as “physically effective,
even when there are no fields acting on the charged particles” (Aharonov
and Bohm 1959, p. 490).
The careless invocation of the notion that relativity theory is in conflict

with non-local action without supplying a precise specification of what “non-
locality”means and without giving a proof of the alleged inconsistency has
done untold mischief. To give one example of the problematic nature of
this notion: It might be thought that it is impossible to have non-trivial
Lorentz invariant equations of motion for particles acting instantaneously-
at-a-distance (e.g. equations that have solutions in which the particle world-
lines are not timelike geodesics of Minkowski spacetime). This is demon-
strably false. Additionally, the original platform for the AB effect is not
suited to fruitful discussion of issues of locality and relativity theory. Besides
some bits and pieces of electromagnetic theory, the mainstay of that plat-
form is ordinary non-relativistic QM. The spacetime setting for ordinary QM
is Newtonian spacetime (or more properly neo-Newtonian spacetime whose
symmetry group is the inhomogeneous Galilean group) which, of course, is
compatible with instantaneous action-at-a-distance; and, not surprisingly,
ordinary QM countenances the instantaneous spread of effects; e.g. a par-
ticle initially trapped in some small neighborhood of the origin of spatial
coordinates and released at t = 0 spreads infinitely fast– for any t > 0 and
any x > 0 no matter how far from the origin there is a non-zero probability
for the particle to be detected in some small neighborhood x. The proper
setting for treating issues of locality and compatibility of relativity theory
raised by the AB effect is relativistic quantum field theory, set in Minkowski
space, permitting the formulation both of various requirements of relativistic
invariance and of locality conditions whose satisfaction or violation can be
studied with precision. This will not be attempted here.
What can be said here– and what needs to be underscored because,

though obvious, is often overlooked– is that the quest to secure locality by
promoting the electromagnetic potentials to physically effective fields under-
mines Aharonov’s and and Bohm’s explanation of the AB effect. Recall a key
move in the explanation: the Schrödinger evolution under the Hamiltonian
ĤA in each of the regions R(L) and R(R) is replaced by free evolution mul-
tiplied by phase factors appropriate to R(L) and R(R). The replacement is
justified if the transformation A → A′ = A+∇χ, where χ is an arbitrary
smooth scalar field, is a gauge transformation in the sense that it represents
a change in the description of a physical state of affairs without changing the
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physical state itself. But this is precisely what is denied by promoting the
vector potential A to a real physical field.
Aharonov and Bohm were, of course, aware of the tension, and their

struggle with it is palpable. After presenting the AB effect they opine that

It would therefore seem natural at this point to propose that, in
quantummechanics, the fundamental physical entities are the po-
tentials, while the fields are derived from them by differentiations.
(1959, p. 490)

But then they immediately add that

The main objection that could be raised against the above sug-
gestion is grounded in the gauge invariance of the theory. In
other words, if the potentials are subject to the transformation
A → A′ = A+∇χ, then all the known physical quantities are
left unchanged. As a result, the same physical behavior is ob-
tained from any two potentials, A(x) and A′(x), related by the
above transformation. This means that insofar as the potentials
are richer in properties than the fields, there is no way to reveal
this additional richness. It was therefore concluded that the po-
tentials cannot have any meaning, except insofar as they are used
mathematically, to calculate the fields. (1959, p. 490. Notation
changed to conform to ours)

To this they add a disclaimer: “We have seen from the examples described in
this paper that the above point of view cannot be maintained for the general
case”(1959, p. 490). What is clear from the context is that what they mean
is that the electromagnetic potentials cannot be mere gauge quantities if all
interactions are to be treated as local.
Two possible options for further development are offered: The first is to

formulate a nonlocal theory in which the electron could interact with a field
that was a finite distance away. But this option, they say, entails “severe
diffi culties.” The second option is “to regard A(x) as a physical variable.
This means that we must be able to define the physical difference between
two quantum states which differ only by gauge transformation.”This they
promise to do in a future paper which, to my knowledge, never appeared
in print. What gets lost in this internal dialectic is that the second option
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is incompatible with their own derivation of the AB effect which depends
on the gauge interpretation of A(x). This tension is relieved in alternative
derivations of the effect, one of which was considered above and the other of
which is considered in the following section. But neither of them promotes
A(x) to the status of a physical variable; and, indeed, one of them– using
the path integral approach– shows that the effect can be explained in terms
of the magnetic field without invoking A(x). What I am suggesting is that
if Aharonov and Bohm had followed the logic of their own derivation of thee
AB effect they would have come to the conclusion that the resulting non-
locality is something that needs to be acknowledged and come to terms with
rather than being run away from.

5.2.4 Non-dynamical explanation?

Arai (2020) presents what is termed a “purely topological”interpretation of
the AB effect. The AB effect is most surely a topological effect in that it
derives from the topology of the configuration space of the charged particle
and, in particular it derives from the non-simple connectedness of this space
which opens the door to inequivalent representations of the CCR. But for
present purposes the important point about Arai’s interpretation is that it
is non-dynamical in the sense that it is not dependent on the details of the
Hamiltonian:

[I]n this interpretation, the AB effect in the present context is
purely topological and independent of the details of dynamics of
the system (forms of Hamiltonian). (p. 165)

The result reported in eq. (9) is suggestive of the AB effect. The sug-
gestion is parlayed into an explicit topological/non-dynamical interpretation

of the AB effect as follows. The Schrödinger momenta operators p̂x = −i d
dx

and p̂y = −i d
dy

are respectively the generators of translation of the wave

function ψ along the x- and y-axes. The “physical momenta”P̂x = p̂x− qAx
and P̂y = p̂y − qAy are interpreted as generators of translation of ψ under
the existence of a magnetic field. Hence eisyP̂yeisxP̂xψ gives the result of first
translating ψ under the influence of a magnetic field a distance sx along the
straight line (x, y)→ (x+ sx, y) and thence a distance sy along the straight
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line (x + sx, y) → (x + sx, y + sy), while exp(isxP̂x) exp(isyP̂y)ψ gives the
result of first translating ψ under the influence of a magnetic field a dis-
tance sy along the straight line (x, y) → (x, y + sy) and thence a distance
sx along the straight line (x, y + sy) → (x + sx, y + sy) (see Fig. 2). The
value of (exp(isxP̂x)ψ)(x) is equal to ψ(x+ sxex), where ex is a unit vec-
tor in the x-direction, multiplied by a phase factor of −iq

∫ sx
0
Ax(x+ sex)ds,

and similarly for the other terms (Arai 2020, Theorem 3.2). The upshot is
that exp(isxP̂x) exp(isyP̂y)ψ and exp(isyP̂y) exp(isxP̂x)ψ differ by a phase
factor exp(−iqΦA

sx,sy), where (recall) that ΦA
sx,sy is the integral of A around

the closed curve; and if the curve surrounds the solenoid ΦA
sx,sy is equal to

the amount of magnetic flux through a two-surface bounded by the curve.

Physically this means that the phase of the state function of the
charged particle starting at (x, y) and arriving at (x+ sx, y + sy)
through C− ((x, y) → (x + sx, y) → (x + sx, y + sy)) does not
coincide with that through C+ ((x, y) → (x, y + sy) → (x +
sx, y + sy)), and a phase shift occurs. This is exactly interpreted
as the AB effect in the present context. (Arai 2020, p. 165).21

And notably, the phase factor exp(−iqΦA
sx,sy) is non-trivial (6= 1) iff the

physical momenta P̂x, P̂y along with the usual position operators x̂, ŷ give a
representation of the (HCCR) inequivalent to the Schrödinger representation.
Thus, on this interpretation, the AB effect invokes inequivalent representa-
tions in the sense that it occurs in exactly the circumstances that inequivalent
representations exist.
The mathematics of the topological/non-dynamical interpretation of the

AB effect is certainly interesting, but how does it explain the behavior of
charged particles in the AB setup? It doesn’t, at least not if what is to
be explained are properties that are exhibited in a temporal process– the
transiting of charged particles through the apparatus and their registration
on the screen. It does suggest an alternative to the AB Ansätz ; namely, the
state function ψ(x, t?) at some appropriate t? > 0 of a charged particle whose
state ψ(x, 0) at t = 0 is a Gaussian wave packet ψ(x) which is centered at the
location x0 of the beam splitter and which traverses the path C− is given by

21Notation has been changed to conform to conventions used herein. The “does not
coincide with” should be read as containing the proviso that exp(−iqΦAsx,sy ) 6= 1, which
means that qΦAsx,sy is not an integer multiple of 2π.
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(exp(isyP̂y) exp(isxP̂x)ψ)(x), and is given by (exp(isxP̂x) exp(isyP̂y)ψ)(x)
for a charged particle that traverses C+. But what time is t?? The “arriving
at” phrase in the above quotation suggests that t? should be the time of
arrival of the wave packets at the location of the recombining of the two beams
at the screen. But this suggestion means that, after all, the explanation is
really a dynamical one; and the justification of the alternative Ansätz must
consist, as does the justification for the AB Ansätz, in showing that it holds
to good approximation as a result of the exact Schrödinger evolution.
The desire for an explanation of the AB effect that is independent of the

details of the Hamiltonian is understandable, but it has to be tempered by
the fact that the details of the dynamics do matter. As mentioned above
the quantum Hamiltonian operator (1) is not essentially selfadjoint when
the configuration space of the charged particle is ΩR≥0 (finite or zero radius
solenoid); it does have selfadjoint extensions, indeed, infinitely many. Until
some selfadjoint extension is singled out, dynamical explanations of the be-
havior of charged particles in the AB setup do not get off the ground. The
choice of a selfadjoint extension of the Hamiltonian amounts to a choice of
boundary conditions at the surface of the solenoid. For wave packets whose
trajectories intersect minimally with the solenoid the choice of boundary con-
ditions should not matter much if at all. (This was apparently Aharanov’s
and Bohm’s intent in their seminal (1959) as indicated by their diagram,
whose main features are reproduced in Fig. 1, showing the solenoid lying
in the shadow of a metal plate.) But for wave packets that scatter off the
solenoid the choice does matter for predicting scattering amplitudes (see de
Oliveira and Pereira 2010). The topological interpretation as it stands seems
to have no way to address this matter and other matters where the details
of the dynamics matter.

6 Conclusion

How then does QM explain the AB effect? The most common explanation
is a dynamical one: The AB setup, as illustrated in Fig. 1, leads to the
quantum Hamiltonian ĤA of eq. (1) that generates unitary dynamics in
which the wavepackets of charged particles passing on opposite sides of the
solenoid experience differential phase changes that result in an observable
interference pattern that is dependent on the magnitude of magnetic flux in
the solenoid, even though the charged particles never encounter the magnetic
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field. But the explanation/justification of ĤA remains elusive. The most di-
rect route to ĤA starts from the classical Lagrangian (3) and Hamiltonian
(6) for a charged particle moving in a magnetic field and then quantizes (6)
by substituting for the classical momentum and position variables Hilbert
space operators that give a Schrödinger representation of the Heisenberg
CCR. There are two problems here. First, why start from the classical La-
grangian (3) and Hamiltonian (6) for a charged particle moving in a magnetic
field when, by construction, the charged particles in an AB setup do not en-
counter a magnetic field? Second, since representations unitarily inequivalent
to the Schrödinger representation are available in the AB setup, why use the
Schrödinger representation? There is nothing in standard QM that implies
that Nature will or must make this choice and, thus, no way to know in ad-
vance of doing the experiment that the interference pattern characteristic of
the AB effect will be detected. The upshot is that on the canonical approach
to quantization, while QM accommodates the AB effect it does not predict
it.
The path integral formulation of QM is an example of non-canonical quan-

tization that bypasses issues about inequivalent representations of the CCR
and predicts the AB phase, at least if the classical Lagrangian (3) is used to
define the action associated with a path in the charged particle’s configura-
tion space. The approach can also be used to overcome an awkwardness in
the most common explanation of the AB effect; namely, the explanans uses
gauge-dependent variable to while the explanandum is a gauge-independent
effect. By including the magnetic field as part of the quantum system the
path integral derivation of the AB phase can be couched in terms of the gauge-
independent magnetic field rather than the gauge-dependent electromagnetic
potentials. But this derivation makes manifest the non-local dependence of
the interference effect on the magnetic field. A number of commentators find
such non-locality intolerable, and propose to restore locality by recognizing
the electromagnetic potentials as real physical variables. Their motivation
is often based on the debatable premise that relativity theory is inconsistent
with non-locality, and in any case a robust sense of the physical effectiveness
of the electromagnetic potentials undermines the Aharonov-Bohm dynam-
ical explanation of the AB effect which relies on the gauge equivalence of
Schrödinger evolution under ĤA and free evolution multiplied by a phase
factor. Nor do alternative derivations support a non-gauge interpretation of
the electromagnetic potentials.
Alternative non-dynamical (a.k.a. “topological”) explanations of the AB
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effect that do not depend on the details of the Hamiltonian offer the promise
of avoiding some of these contentious issues. But the extant attempts at
a non-dynamical treatment do not provide a well motivated and coherent
explanation. And unlike a dynamical explanation they appear to remain
silent about observable effects in scenarios that differ from the original AB
setup, e.g. where the solenoid is not shielded from the beams of charged
particles which are allowed to scatter off the solenoid.
Little help on these matters can be expected from the philosophical liter-

ature on scientific explanation which seems consumed with internal disputes,
e.g. can the “mark method”distinguish between genuine and pseudo-causal
processes; can the DN model cope with perceived explanatory asymmetries,
and the like. The one exception is the interventionist account of causal expla-
nation, which substantiates the causal dependency of the observed interfer-
ence pattern on the amount of flux in the solenoid, i.e. the experimenter can
intervene by changing the current supplied to the solenoid, which changes
the flux, which results in a change in the interference pattern. Nevertheless,
I venture that it will be fruitful to spend more effort on the study of concrete
cases of explanation in physics before fashioning and debating philosophical
“models of explanation”; and I am skeptical that any one, or even any finite
number, of models of explanation will capture, in anything more than broad
brush strokes, the variety and nuances of explanations in physics.

Appendix on geometric quantization

Good general references are Woodhouse (1992) and Ali and Engliš(2005).
The ambition of the geometric quantization program is to start from an
arbitrary classical phase space in the guise of a 2n dim manifold Γ equipped
with a symplectic form ω.22 Classical observables are construed as phase
functions, real valued functions f on Γ. Quantization means finding a Hilbert
spaceH and a map f 7→ f̂ from classical observables f to selfadjoint operators
f̂ on H. The major idea of the program is encapsulated in the first axiom

(A1) For pairs f, g of classical observables the CCR are satisfied

in the sense that [f̂ , ĝ] = i{̂f, g} where {, } is the Poisson bracket
22ω is a closed non-degenerate 2-form defined on all of Γ.
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given by {f, g} = −ω(Xf , Xg) and Xf is the Hamiltonian vector
field determined by ιXfω = −df .23

In the case where Γ = R2n we can choose global coordinates qi, pi where
ω = dqi ∧ dpi, and the Poisson bracket takes the familiar form {f, g} =
n∑

i,j=1

∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.24

Some other seemingly natural restrictions on the association 7→ suggest
themselves:

(A2) The map f 7→ f̂ is linear, i.e. f̂ + g = f̂ + ĝ.

(A3) 1̂ = I, where 1 is the constant function of value unity.

It might also seem natural to demand that

(A4) For smooth φ : R→ R, φ̂ ◦ f = φ(f̂).

Unfortunately, (A1)-(A4) are inconsistent if they are supposed to hold for
arbitrary phase functions. One reaction is to restrict or abandon (A4) and
also restrict the domain of the mapping 7→ to a subset Obs of quantizable
classical observables which is small enough so as to avoid inconsistency and
but which is large enough to cover the system at issue. It is concerning
that a surprising amount of mathematical maneuvering is required to satisfy
(A1)-(A3) for an Obs that accommodates Hamiltonians as bland as that for
a harmonic oscillator.
Although (A4) may need to be restricted, it is certainly desirable to retain

special cases. For instance, when Γ may not be R2n but admits global coordi-
nates qi, pi with ω = dqi∧dpi (as in the AB setup where Q = R2\ΩR≥0 is the
configuration space and Γ is the cotangent space T ∗Q ⊆R2n), f is qi or pi,

and φ(t) = tn, we would particularly like to have (̂qi)n = (q̂i)n and (̂pi)n =
(p̂i)

n. Then in keeping with the original canonical quantization program
we know that the quantization of a classical Schrödinger type Hamiltonian

23The interior derivative ιXf
ω sends the 2-form ω to the 1-form given by ω(X1) =

ω(Xf , X1).
24To conform to standard notation for symplectic geometry I use qi rather than xi for

spatial coordiantes.
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p2

2m
+V (q) is given by

p̂2

2m
+V (q̂). A quantization scheme without some sys-

tematic connection between the quantization of the position and momentum
observables on one hand and quantization of the Hamiltonian on the other
seems incomplete.
For the AB setup does geometric quantization, with the noted provisos

on axioms (A1)-(A4), accommodate the inequivalent representations of the
CCR that arise in canonical quantization? If not, why not, and is something
amiss with the scheme? If so, then the issues discussed above about the
prediction/explanation of AB effect as a dynamical effect arise for geometrical
quantization as well.
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