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Abstract

Dennis Dieks addressed some criticisms of the so-called Received View
(RV) of non-individual quantum objects in a series of papers. His main con-
cern is that the RV doesn’t fit the practice of physics since in some situations
the physicist assumes that quantum objects can be treated individually, im-
itating standard objects (individuals) in classical physics. In this paper, we
revise his argumentation, showing that it involves some misunderstand-
ings regarding the objectives of the RV.

Dieks also proposes an Alternative View (AV) which he thinks is more
in accordance with the way physicists proceed. We argue that the AV is
not conflating the RV, but is complementary to it, namely, substitutes it
when quantum objects are sufficiently apart and can be treated as obeying
classical logic. Thus, from the point of view of the practice of physics, in
most cases, we can opt for the Alternative View, but the RV is more adequate
when we are looking for logical and foundational analyses.

Keywords: identity, individuality, non-individuality, quantum objects,
Received View, Alternative View, Dennis Dieks

If you wish to converse with me, define
your terms.

Voltaire

1 Introduction

Dennis Dieks is one of the top philosophers of physics of the moment. His
positions and opinions are always centred on fundamental topics and are led
with care and competency. In particular, he advanced a series of papers, alone
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or with collaborators, against the so-called Received View (RV) of quantum
non-individuality which sees quantum objects as non-individuals, this being
understood as entities to which the standard theory of identity (STI) of classical
logic should not apply [FK06]. Dieks is not clear about the meaning of the term
‘identity’ he uses in his works, even when he speaks about the RV. Surely this
causes some misunderstandings about the precise claim of the RV that it is a
specific notion of identity ascribed by STI which is supposed not to hold in the
quantum domain. The reasons will be recalled soon.1

In this paper, we revise his main points and try to make clear what is
going on with the RV, showing that his view (termed the ‘Alternative View’,
AV) is not against the RV but can be considered as complementary to it, being
applied in certain situations more in accordance, as he says, with the practice
of physics while, in contrast, the RV would hold in general from the logical
and foundational point of view. In going to a view adapted to the ‘practice of
physics’, we argue that supposing that it is possible to attribute identities to
the considered particles requires a move that falls in the same logical mistake
someone does when ‘dispenses with’ infinitesimals in some application of the
earlier calculus (‘the move’ being to neglect the interference terms).

To start, let us say what we understand by identity. We say that an object
has identity, or that it is an individual if it obeys STI (see below and our informal
definition of an individual in the next section). This implies at least the follow-
ing things that are important for the discussion: (i) any two or more objects
obeying STI are different and this entails that (ii) being different, the objects
can be distinguished by some monadic property, for instance their ‘identities’
summed up by the following definition; the identity of the object a is given by
the predicate Ia(x) B x ∈ {a}. When objects can be distinguished by a monadic
property, we call them absolutely discernible according to the usual literature;
when they cannot be discerned in any way, we say that they are completely
indiscernible. Notice that we are in a set theory such as the ZFC system which
encompasses STI. Soon we shall discuss why some philosophers don’t accept
this predicate as providing the identity of a; (iii) fundamentally, if in a context
we exchange an object by another, even quite ‘similar’ to it (in some sense of
this word), the context changes.

Of course, when speaking of the identity (or of the lack of) of some objects,
someone would explain what she understands by such a concept. The informal
dictum that ‘identity is something an object has which distinguishes it from
something else’ is vague and redundant to be used in logical analyses. We need
a theory of identity, and here we assume STI.

STI is formalized in first-order languages with a primitive binary relation
‘=’ by two postulates, namely, reflexivity (∀x(x = x)) and substitutivity, that is,
for any formula α, ∀x∀y(x = y → (α(x) ↔ α(y))), with the usual restrictions

1Anyway, is there some ‘other identity’? The informal characterisation that identity would be
that thing an individual has that makes it what it is in distinction to any other thing, or that it shares
just with itself is quite vague. Furthermore, we repute attempts such as Geach’s relative identity
[Gec67] and Quine’s ‘definition’(borrowed from Hilbert and Bernays [HB34, §5] as nothing more
than indiscernibility relative to the predicates of the language [Qui86, Chap.6].
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(see [Men97, p.95]). If our theory is some ‘standard’ set theory such as the ZFC
system, we add an axiom of extensionality ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y),
and a further axiom ∀x∀y(∀z(x ∈ z ↔ y ∈ z) → x = y) if there are atoms
involved (the ZFA set theory — see [Sup72]).

In higher-order languages, identity can be defined in the Whitehead-Russell’s
style, here done for second-order languages. This is Leibniz Law: x = y B
∀F(F(x)↔ F(y)), where x and y are individual variables and F is a variable for
properties of individuals. Notice that none form of haecceity is assumed, that
is, all we have are the individual’s properties and relations.

This has consequences, as suggested above. Every entity described by
such a mathematical framework encompassing STI is an individual and can be
discerned from anything else by a monadic property, that is, absolutely. Thus, if
we wish to admit the existence of completely indiscernible things, that is, things
that cannot be discerned in any way, we cannot use a mathematical framework
encompassing STI (but see the subsection 7.2 for alternatives).

Let us fix some terminology and suppositions. Dieks agrees that the RV is
grounded on a non-classical mathematics termed quasi-set theory, ‘Q’ for short.
Using this theory, we can express in a more precise way what the RV claims. This
theory encompasses two kinds of ur-elements, the M-atoms, which behave as
the ur-elements of ZFA (the Zermelo-Fraenkel set theory with Atoms [Sup72]),
and the m-atoms, to which STI does not apply. This means that if either x or y
are m-atoms, then the expressions of the form x = y or x , y have no meaning;
in particular, the theory does not provide any meaning for x = x.2 There
may exist m-atoms of ‘different kinds’, which may be distinguishable among
them, x . y in symbols. The basic primitive notions are membership (‘∈’)
and indistinguishability (‘≡’) and this one has the properties of an equivalence
relation. But it is not a congruence, since x ∈ y and x ≡ z does not entail
that z ∈ y (for details, see [FK06, dBHK23]). The universe is populated by such
atoms and the quasi-sets (‘qsets’ for short) and the postulates extend those of the
theory ZFA. A concept of identity, termed ‘extensional identity’, ‘=E’, is defined
for both M-atoms, when they belong to the same qsets and to qsets when they
have the same elements. Some qsets may have a cardinal, termed its quasi-
cardinal in a way that the existence of a quasi-cardinal does not entail that the
elements of the qset are discernible (this will be considered later — see section
7.4). The Axiom of Weak Extensionality (WEA) says that if qsets A and B have
‘the same quantity’ (expressed using the quasi-cardinals) elements ‘of the same
sort’ (that is, indiscernible among them), then they are indiscernible (A ≡ B).
Extensionally identical things (or just ‘identical things’) are indiscernible, but
not the other way around. From now on we shall use these notions. For details
about this theory, see [FK06, dBHK23].

2This does not entail that we cannot define an identity for the m-atoms, as we show in subsection
7.3, but Q does not assume that.
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2 The Received View

The RV is not occupied with ‘the practice of physics’ in the same sense that
the definitions of limit and continuity in Calculus were not occupied with the
practice of the engineer or the applied mathematician when informally using
the notion of infinitesimal (say when she speaks of an ‘infinitesimal element of
volume’ for instance). Below we revise this analogy.

The RV treats some entities as individuals, and this is informally characterised
as follows: an individual is something that (i) is a unity of a kind, say a table,
a person, a pen; (ii) it has genidentity, that is, it can be re-identified as such
individual in different contexts. This second requisite is fundamental and
usually forgotten by philosophers (see for instance [Cau14]). Julius Caesar was
a man and the same man when in Rome and when in Egypt, at least we usually
accept that.3. If something obeys STI, it is an individual in this sense and can
be said to have an identity; the natural number two (once defined for instance
in the sense of von Neumann) is the same natural number two when we list it
as an element of the set of the even natural numbers and when we refer to the
set-theoretical successor of one, that is, the set 1 ∪ {1}, being 1 = {∅, {∅}}.

Quantum objects can be isolated for instance in quantum traps, but this does
not make them individuals. As David Hume has reminded us, “One single
object conveys the idea of unity, not that of identity.” [Hum88, p.200]. Really,
quantum objects lack (ii); once one has left the trap, it will never more be
identified as that entity of before. Usually, the notions of identity, individuality
and individuation (or ‘isolation’) are conflated and taken as being synonymous
while they should be discerned on each other (see below, subsection ??). For
more details about these notions and their distinctions, see [KAB22].

The RV has been accused of entering factorism, a notion to be discussed
below. Roughly speaking, this is characterised by assuming that the labels we
use in the quantum formalism name particles and not only the Hilbert spaces
which comprise their state vectors. As we shall see, in our opinion this is quite
natural, for quantum theory deals with particles, despite referring to their states;
as Sunny Auyang has claimed, “physical theories are about things” [Auy95,
p.], obviously, physical things. So, despite the initial entities may be fields or
strings, the target entities, those that enter in certain states and are accelerated
in the particle accelerators, are particles — more on this in what follows, but
it could be recalled the metamorphoses that the concept of particle passed from
classical physics to the Standard Model of particle physics, as reported by B.
Falkenburg [Fal07, Chap.6].

For the sake of clarity, some general remarks would be recalled:

1. The objectives of the RV — The RV is occupied with the logical and
metaphysical foundations of quantum theories. The main book where such a

3David Hume, for instance, claims that we attribute identity to an object when we observe
that there is a continual succession of perceptions in our mind [Hum88, p.65]. His Principle of
Individuation “is nothing but the invariableness and uninterruptedness of any object”’ — idem, p.201.
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view is outlined has a subtitle ‘A historical, philosophical, and formal analysis’
[FK06]. This should be enough to show its main finalities: a formal (logical)
analysis of the view that quantum objects can be viewed as non-individuals.
Notice in addition that the RV does not pray for such a view, accepting that
there are alternatives and talks about the non-individuals view as one of the
possibilities. In the same mentioned book, it is argued that quantum objects can
also be viewed as individuals, provided that only some states are available. This
is more or less in the direction Dieks suggests the physicist goes in her usual
‘practice’. But, as we shall enlighten below, to be careless with the underlying
logic is a fault regarding the logical foundations of any physical discipline,
despite it can be dispensed with in the first moment during applications.

2. Why to question STI — The criticism of the STI assumed by the RV has
a reason. According to this theory, whenever we have more than one object,
they are different (‘a , b’) and this means that a and b can be discerned by some
property. That is if a , b, then there exists P such that P(a) but ¬P(b) or the
other way around. There is no escape to this conclusion, which is imposed
by logic, once one assumes a logic encompassing STI. But take bosons in a
bosonic condensate, a BEC (Bose-Einstein Condensate). They may be milliards,
all in the same quantum state. It is assumed by the quantum theory that
there are no differences among them, and as far as quantum mechanics works, no
differences among them can be found. The obedience to quantum statistics (in
this case, Bose-Einstein statistics) provides also an argument favouring the RV:
without assuming substratum or something else beyond the properties, how
can something obey such statistics under the validity of STI? In our opinion,
this makes no sense: if it is assumed that bosons (or other quantum entities)
cannot be discerned in any way, how can STI hold to them? Notice that we agree
with the claim that the physicist can, momentaneously, treat them as individuals
endowed with identity, but such an identity has no sense in the wide aspect and
should be understood as just a mock identity, as advanced (and acknowledged
by Dieks) by Toraldo di Francia [TdF76, TdF98] (see below).

3. Weak discernibility and discerning properties — Some philosophers have
proposed that in certain situations quantum entities (both bosons and fermions)
cannot be discerned ‘absolutely’, that is, by a monadic predicate, but just by an
irreflexive and symmetric relation. They call it weak discernibility (see [DL22]
for references and discussion). We have discussed elsewhere such a proposal
and will not revise it here, but just make some general remarks; for details, see
[Kra10]. The fact is that if the underlying logic encompasses STI, as classical
logic these philosophers are assuming does, there is no escape to the conclusion
that for any object y (say in the universe of sets and atoms) we can define the
property ‘identity of y’ by positing something like Iy(x) B x ∈ {y}. Since the
unitary set {y} can be assumed to exist for every y, then y is the only object
having such a property. There is no surprise concerning this, for it is exactly
what STI says. However, the mentioned philosophers are not satisfied with
such a logical imposition. They refuse that a ‘logical property’ can individuate
a thing, saying that the discerning property must be ‘physical’, something
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‘measurable’. This supposition introduces a lot of other difficult questions,
such as (a) what is a ‘physical property’? (b) what is ‘measurement’? (c) why
such a bias to avoid logical implications in a theory? — see below, section 3.
There are no clear answers to these questions. We think that by ‘measurable
property’ we can understand whatever property to which we can ascribe the
epithet ‘true’ or ‘false’ when compared with some value or set of values (for
instance, whether a certain observable has a value in some specific Borelian set).
For instance, ‘the volume of that portion of water is half a litre’ can be true or
false depending on the portion of water. But also ‘the spin of the electron in the
z direction is UP’ and ‘x belongs to the unitary set of y’ are ‘measurable’ in this
sense. So, we don’t see any reason to restrict the properties (hence the formulas)
involved in the axioms of STI. As Shoenfield insists, “the symbol ‘∀’ [used in
the definition of identity in STI] means for all” [Sho67, p.13], and we could add
‘and not for some’. Thus, when we say (even if in the metalanguage) that in
being identical x and y satisfy all the same formulas, we are not restricting the
phrase to ‘some formulas’ (or predicates).

On the contrary, the theory of quasi-sets may be the right place to formalise the
weak discernibility claim. We can suppose a qset with two indiscernible m-
atoms and with quasi-cardinal two so that there is an irreflexive but symmetric
relation holding between them. No monadic property is supposed to exist.
For instance, the classical example of the two electrons of a neutral Helium
atom and the property ‘to have spin opposite to’. The idea that electrons are so
discerned but are not discerned by a monadic property can be formalised inQ,
but not in ZFC.

4. Isolation — We have remarked already that with regard to quantum objects
being distinct in certain situations conflates the notions of identity and isolation,
or idividuation. Identity is a logical notion, given by some ‘theory of identity’
such as STI; individuation is an epistemological notion of taking something
in a situation that can give us the impression that we are facing an isolated
individual with an identity. For instance, a case also explored by Dieks speaks
of isolation and not of identity. Quantum objects located in distant places (say
the South Pole and the North Pole) are isolated or individuated, being able to
be momentaneously treated as individuals, but they are not individuals since
they do not satisfy re-identification, something required by something ‘having
identity’. Later we shall further analyse this example.

5. Factorism — Dieks criticizes the RV also because this view presupposes that
quantum objects are the basic tenet of the theory and labels such as ‘#1’, ‘#2’,
etc are given to these entities, causing what he calls the factorizing account (a
term borrowed from A. Caulton [Cau14]). According to this view, labels such
as ‘#1’ and ‘#2’ refer to particles and this would cause them to be able to be
absolutely discerned by a monadic property. As Dieks and Lubberdink say, “the
factor space labels [in the N-fold tensor product of Hilbert spaces] should not
be thought of as referring to single particles” and the tensor product, in their
interpretation, do not have the form of a concatenation of one-particle states
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[DL22]. They attribute such a ‘complication’ to the symmetrization postulates:

“As the symmetrization postulates apply universally and globally to
all particles of a given kind (. . . ), ‘factorists’ must hold that each single
electron [say] is equally present at all positions in the universe.”

Not at all! The ‘identical’ particles sharing the Bell state (their equation (1))∣∣∣ψ〉
=

1
√

2

(
|L〉1 |R〉2 ± |R〉1 |L〉2

)
(Bell)

are not both at L (left) together with all other particles of the universe (of the
same kind). They share that state while a measurement is not made, but as a
vector ofH = H1 ⊗H2, this does not imply that we are identifying that particle
(say, ‘Peter’) as the particle whose states are represented by vectors at H1 and
which is at L. No, the tensor product just says that we have one particle in each
position (or around it) without saying which one is it. The identification makes
no sense, as is well known. In fact, they add that “[i]t is therefore impossible to
individuate the ‘factorist particles’ via different physical characteristics.”

Well, while sharing the Bell state there is no way to individuate them. By the
way, we think that this is one of the main results of quantum physics! the
identification, say that one is at L, comes only with the measurement. Maybe
this emphasizes the role of the underlying logic (or mathematics); the two
particles are two and there are no physical characteristics that discern them, but
there are logical ones once we remain with STI. But if we wish, as it seems clear,
to maintain that before measurement the particles are ‘really’ indiscernible, then
STI must be placed aside.

In general, the authors forget that, even implicitly, they assume something
like ZFC since they seem to reason with the classical logic canons. Thus, in a
system of N quantum systems, the state space is the ‘factored’ tensor product
H = H1 ⊗ . . .HN of the Hilbert spaces of each system. The indices 1, . . . ,N
are labelling both the H-spaces and the particles. But this is not so in the Q-
spaces [DHK08, DHKK10] built in Q. There, there are no particle labels that
significantly, tag the particles. Maybe this would satisfy Dieks et al.

The RV intends to consider entities of the kind just referred to; it assumes that,
whatever their origin, they are better characterized as non-individuals, even
if resulting from quantum fields or strings. We reinforce that the RV does
not refuse the alternatives that the literature presents us, Dieks’ inclusive, but
proposes a different approach. If Dieks argues that the RV is wrong, then there is
no other alternative than to say that it is so wrong as the approach he proposes.

6. Isolation does not entail identity — In the RV, ‘identical particles’ (in the
physicist’s jargon), that is, indistinguishable particles of the same species, can
have different properties, say when localized in different traps, or when having
different directions of spin. As seen before, Dieks suggests that the RV entails
that all such particles have exactly the same properties. We never found where
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French and Krause (some of the main proponents of the RV) are saying that
or making such a hypothesis. The two electrons in a neutral Helium atom are
fermions and have opposite values of spin in a given direction, so cannot have
all the same properties and values. Their indistinguishability results because
they share the same entangled state, a state that cannot be separated into two
states, one in each factor of the tensor product, as the Bell state above. If there
is some quantum system (a positron, say) in a quantum trap. it should be
regarded as an isolated entity, not as an individual. The notion of ‘mock’ (or
‘fake’) identity is useful here. The non-individuality is linked more with the
impossibility of re-identification, but isolation is possible, as discussed in the case
of Hans Dehmelt’s positron ‘Priscilla’ (see [Die23, Kra11]). Just to summarize,
Priscilla was a positron trapped in Dehmelt’s laboratory and supposedly, she
had an identity because of that. But this is not so; recalling David Hume
once more, a single object gives us the idea of unity, not of identity [Hum88,
p.200]. If Priscilla were an individual, she would carry her identity whenever
she goes, but this is not what happens; as we know from quantum theory,
quantum entities don’t have genidentity, something acknowledged by Dieks
himself. Individuals can have proper names which serve to re-identify them
in other contexts; these proper names act as rigid designators in Kripke’s sense,
something not available in quantum physics [DCTdF93].

6. The bank account analogy — Dieks goes further. He criticizes the theory
of quasi-sets by stating that to use such a theory to discuss the bank account
analogy would be “an extravagant decision”. Not at all! We think that quasi-
sets can explain nicely what happens with such an analogy, something that
a standard set theory cannot do. Let us explain, even if briefly. The bank
account analogy was introduced by Schrödinger [Sch98] and used for instance
by Paul Teller [Tel83] to exemplify quantum non-individuality. Suppose I have
¤100 in my bank account. Is there a sense in asking for my particular euros,
that is, to suppose that there are in the bank some particular euros that are
exactly my hundred euros? Not at all, and here enters an important feature
of the RV: what import are the qualities (of the things, that is, their kinds), say
‘euros’, and their quantities, say hundred. No particular euro exists as being
mine. The same happens in chemistry and, in a more general situation, with
quantum theory. In a water molecule H2O, what import is that we have two
Hydrogen atoms and one Oxygen atom distributed in a certain way, and not
which particular atoms we have. Kinds and quantities. It is precisely this which
the theory of quasi-sets enables us to consider. Symbolically, we could write
in terms of quasi-sets the above molecule as 〈H,O; 2, 1〉, while my account is
associated with 〈euros; 100〉. If we have two accounts in two distinct banks,
one in New York with $ 200 and another in Paris with ¤100, we can write
〈dollars, euros; 200, 100〉. No identification, no identity.

Quasi-set theory enlarges standard set theory (say the ZFC system) by enabling
us to consider collections (quasi-sets) with a cardinal, but with no associated
ordinal, as explained already. It is a theory that goes in the direction of the
problem posed by Yuri Manin when he asked for a ‘more general’ theory of
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collections to cope with indistinguishable quantum objects (see [Man76, FK06]
and section 7.4 below).

8. Permutations — In a comment on quasi-sets, Dieks claims that “if labels
cannot be defined, permutations as ordinarily defined makes no sense”. This is
correct; a quasi-set with N indistinguishable elements of kind k is indistinguish-
able (and not ‘identical’) to any quasi-set with N indistinguishable elements of
the same kind k. This makes sense the fact that there may exist several ‘distinct’
BECs with elements of the same kind and estimated to have the same quantity
of elements (termed ‘N’).

The idea can be extended to the situation with more kinds of things so that we
can say that two sulfur acid molecules are indistinguishable H2SO4 ≡H2SO4 in
the quasi-sets notation. A permutation can modify things in this case; although
Dieks did not comment on this point, we suppose it is relevant and deserves
mention. In the acid molecule, of course there is no sense in permuting Oxygen
atoms among them or Hydrogen atoms among them. But we can modify
the format of some molecules by re-arranging their components and getting
different things. This is the case, for instance, when isomers are considered,
that is, substances that have the same molecular formulas with the same number
of atoms of each element, but the atoms are arranged differently in space. To
consider the form of something constituted by different kinds of things and
their respective quantities, our suggestion is to develop a quantum mereology,
something not achieved yet (see [Kra12, Kra17, HJ23]). Thus, by specifying
how a whole is formed by its parts, maybe we arrive at a way to approach the
form of an entity.

3 The role of the underlying logic

Any theory has an underlying logic, even if it is not made explicit. Usually,
scientists assume that what is called classical logic, or at least a part of it as their
basic logic, perhaps because the ways we reason are more conformed to such
a logic (of course we should say the opposite: classical logic was created to
cope with the standard ways we reason). By classical logic we understand the
standard ‘classical’ first-order predicate logic with or without equality, some
subsystem of this calculus such as the classical propositional logic and even
those system of Magna Logica, encompassing higher-order ‘classical’ systems
and set theories. Categorical logic ([Hat82]) can also be included in this schema.
What characterizes a logical system as ‘classical’ is the obedience to some basic
principles, such as the following ones: the excluded middle law, the law of non-
contradiction, the explosion rule, the principle of identity, the double negation
rule, Peirce’s law, the ‘classical’ reductio at absurdum (in distinction to the
intuitionistic reduction at absurdum, which by the way holds also in classical
logic), some form of Leibniz’s Principle of the Identity of Indiscernibles, an
axiom of extensionality in set theory, compositionality (the truth value of a
complex sentence is a function of the truth values of its component formulas),

9



etc. In particular, classical logic (in whatever form) encompasses a theory of
identity which we term the Standard Theory of Identity (STI) discussed earlier.
Hence it is a theorem of any theory based on classical logic that if a , b,
then there exists F (either a predicate or a set) such that F(a) (a ∈ F in the
case of set theories) and ¬F(b). Thus, a and b can be discerned absolutely, if
by this term we understand the existence of a monadic predicate obeying the
indicated conditions. So, one should pay attention to this, to be emphasised
below: even if two particles represented in a mathematical scheme comprising
STI cannot be discerned by what philosophers wish to call ‘physical properties’,
they are discerned (absolutely) by ‘logical’ properties. Since the theorems of the
underlying logic are also theorems of the physical theory, we need to conclude
that, with STI, even ‘identical’ particles are discerned absolutely.

Really, the role of the theory’s underlying logic is to give an account of the
theory’s acceptable inferences (deductions in the case of deductive logics), and
all theorems of the underlying logic are theorems of the theory itself. So, if
the theory’s underlying logic is classical logic, for any formulas A and B, the
formula A → (B → A) is a theorem, but it is not if the logic is some suitable
quantum logic [DCGG04]. So, we may say that the theorems of a theory T can
be divided up into two classes: (i) the logical theorems, which do not make
use of any specific notion of the theory, and (ii) the specific theorems, which are
typical of the considered theory. So, take T as classical particle mechanics as
formulated by McKinsey, Sugar and Suppes in 1953 (see [Sup02]). Kepler’s laws
are theorems of T and belong to the second group of theorems, but the above
A → (B → A) is also a theorem of such mechanics since it is supposed to be
settled on classical set theory (hence encompassing the classical propositional
calculus). What respect to quantum mechanics, let us assume a formulation
such as that presented in some standard book like [Ish95].

In this sense, a theory T can be viewed as an ordered pair T = 〈F,M 〉, where
F is a ‘formalism’, which means the mathematical counterpart of T, and M is a
class of mathematical structures, the models of T. We are not considering here
‘models’ other than set-theoretical structures, such as toy models or mockups.
Furthermore, we assume that at least in principle every scientific theory can be
axiomatized by a set-theoretical predicate [Sup02].

Thus we may assume that F is formulated in the language of a set theory
such as the ZFC system, which is enough for most of the physical theories that
are important here, enlarged by specific (proper of the theory) concepts, such
as ‘electron’, ‘wave-function’, and so on. Being mathematical structures, the
models of T must be built in some place. That is, we need a meta-theory to
give rise to models; after all, T = 〈F,M 〉 is a set in some set theory. If we are
modelling also ZFC, what would happen if we assume that the theory’s logic is
precisely ZFC, then the models need to be constructed in a strong theory, such
as the KM (Kelley-Morse) system [Kel55, Rub67].

The choice of the theory’s underlying logic, as the choice of the theory’s
primitive notions and axioms, is a task of the scientist. But once chosen, the
axioms, both of the logic and of the theory, become normative: they determine
what can be accepted as legitimate. If something goes wrong, the scientist needs
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to revise her assumptions. But before this step, the scientist is free to choose
the logic and the postulates she wants, and despite there being no specific
rules in this direction, in general, there is an underlying metaphysics being
assumed, even if unconsciously. For instance, in classical physics one makes
assumptions, such as (i) determinism, (ii) individuals, (iii) impenetrability, (iv)
the existence of trajectories, (v) locality, (vi) separability. all of this in a certain
way subsumed in a ‘classical’ setting.

4 The infinitesimals analogy

It is well documented that Newton’s fluxions and fluents and Leibniz’s in-
finitesimals led to contradictions [DB15, Vic13]. Let us summarise a little using
updated language. The idea is to calculate what later was called the derivative
of a function y = f (x) (a fluent). In Leibniz’s terms, this would require calculat-
ing the quotient of the increments given to the independent variable x and that
one got by the dependent variable, that is, dy

dx . Take y = x2 as a paradigmatic
case. Given an infinitesimal increment dx to x, we get y + dy = (x + dx)2, that
is, y + dy = x2 + 2xdx + (dx)2, so dy = 2xdx + (dx)2. Dividing both terms by dx
(which is supposed to be not null since it is an increment), we get dy

dx = 2x + dx.
And here is the tricking step: since dx is arbitrarily small, we can dispense it and
arrive at the derivative, dy

dx = 2x. Of course, there is a contradiction since dx was
taken both as not zero and as zero. The right way to provide such a calculation
came only later with Cauchy and Weierstrass with the notion of limit.

The practical results of the Calculus were correct despite this fact. Still
today an engineer may use infinitesimal elements of areas or volumes in her
reasoning in the old style, sometimes even by ignoring the right definitions in
terms of limits or the existence of Non-Standard Analysis, introduced in 1960 by
A. Robinson, who gave a re-birth to the notion of infinitesimals without the old
problems (see the above references). Berkeley, who made a serious criticism of
the use of infinitesimals, acknowledged that the results of the Calculus are right
and did not criticise them, but its logical deficiencies. This is important to our
case, as we shall see now. Anyhow, it is clear that to neglect the infinitesimals
constitutes a logical mistake.

Dieks argues that sometimes physicists consider two quantum entities as
described by independent wave functions ψ1 and ψ2 when they are sufficiently
apart. In this case, as he recalls, all happens as if they were two distinct
and isolated entities behaving as classical physics says. Let us summarize the
argument given in [DCTdF93] with a simplified example. We shall not use the
bra-ket notation here for simplicity. Suppose we have two elementary particles
of the same kind located at different points A and B, say the North Pole and the
South Pole of Earth. Being x1 and x2 their coordinates,4 let ψA(x1) and ψB(x2)

4Notice that the coordinates do not provide identity to the particles, but just say that one is in
the North Pole while the other is in the South pole; the identity of the particles don’t matter, mainly
if they are of the same kind.
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the wave-functions of the particles. Then the joint probability amplitude for
finding the first particle at x1 and the second at x2 might be thought as being
done by the tensorial product ψA(x1)ψB(x2), but it is not! Since the particles are
indiscernible, nothing different would get if they are exchanged, that is that
the joint probability amplitude would be ψA(x2)ψB(x1), which is different from
the first product once the tensor product is not commutative. As Dalla Chiara
and Toraldo di Francia said, “this would go against the indistinguishability
principle”.5

The acknowledged right vector for describing the joint probability ampli-
tude is

ψ12 =
1
√

2

(
ψA(x1)ψB(x2) ± ψA(x2)ψB(x1)

)
,

where the plus sign holds for bosons and the minus sign holds for fermions.
The joint probability density is then given by∥∥∥ψ12

∥∥∥2
=

1
2

(∥∥∥ψA(x1)
∥∥∥2∥∥∥ψB(x2)

∥∥∥2
+

∥∥∥ψA(x2)
∥∥∥2∥∥∥ψB(x1)

∥∥∥2

±2Re
〈
ψA(x1)ψB(x2)

∣∣∣ψA(x2)ψB(x1)
〉 )
,

where the last term 2Re(. . .) is the interference term. This term, for the ‘practice
of physics’, can be eliminated, since the overlap of the two wave functions
becomes appreciable only when the distance between the particles is not much
larger than the de Broglie’s wavelength. As Dalla Chiara and Toraldo di Francia
emphasize,

“This is the reason why an engineer, when discussing a drawing,
can temporarily make an exception to the anonymity principle6 and
say for instance: ‘Electron a issued from point S will hit the screen
at P while electron b issued from T hits it at Q.’ But this mock
individuality of the particles has very brief duration. When the
electron hits the screen (. . . ) it meets with other electrons with
substantial overlapping, and the individuality is lost. In fact the
de Broglie wavelength of an electron inside an atom is on the same
order of magnitude as the atomic diameter.”

This shows that the supposition that the interference term can be neglected
is similar to the supposition that infinitesimals can be dispensed with. The
results in quantum physics, so as those in the Calculus, are right (as far as we
know), but from the logical foundational point of view the logical mistake is
evident.

5This principle states that for all vectors (states)
∣∣∣ψ〉

, all operators Â, and all particle label
permutation operators P, we have

〈
ψ
∣∣∣Â∣∣∣ψ〉

=
〈
Pψ

∣∣∣Â∣∣∣Pψ〉
, that is, the expectation values are the

same before and after a permutation.
6[According to them, quantum physics is the land of anonymity, where proper names make no

sense since they to not play the role of rigid designators, as it would be if the involved entities were
individuals.]
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We emphasize here, again, that the Received View is not occupied with the
practice of physics, but with its logical foundations. This is why we think that
the interference term cannot be dispensed with in such an analysis.

5 Dieks’ proposal: the Alternative View

Dieks et al. propose an Alternative View (AV) to substitute the RV which, they
say, is more in conformity with the practice of physics. In this section, we revise
his main claims that conduce to such a view and add some ‘comments’.

Dieks accuses the RV of using labels to name the particles (in a join system
with N of them). The labels 1, 2, . . . ,N serve to name the corresponding Hilbert
spaces in the tensor product but also name the particles. He considers anti-
symmetrized states (we use Dieks’ numeration for the equation below):

|Φ〉 =
1
√

2

( ∣∣∣ψ〉
1

∣∣∣φ〉
2
−

∣∣∣φ〉
1

∣∣∣ψ〉
2

)
(2.1)

He says that such equations (this one and similar) are so that “the symme-
try of [the equations] implies that each of those particles is in exact the same
state, a mixed state that can be obtained by the procedure of ‘partial tracing’.7

This sameness of physical states entails that switching the labels has no sig-
nificance: all statistical predictions of quantum mechanics are invariant under
permutations of particle labels.” [Die23, p.15]

This is the Indistinguishability Postulate, a core notion in quantum theory.
French and Krause conclude that the labels are ‘otiose’, and Dieks explores that,
by insisting that “all quantum particles of the same sort are in exactly the same
physical state and possess exactly the same physical properties and then cannot
be distinguished and individuated by any physical process.”

Comment — Fermions cannot share the same quantum states. For instance,
the two electrons of a neutral He atom share the same entangled state, but given
a certain direction, one of them has spin UP and the other has spin DOWN.
They do not have ‘exactly’ the same properties; the case is that when they share
an entangled state such as (2.1), we cannot specify which is which, that is, to
know which electron has spin UP, something that will be revealed only after
a measurement. We cannot speak of the electrons as isolated individuals; it
seems that this is a quantum fact. So, neither quantum mechanics nor the RV
assumes that all the particles (of the universe) of the same kind are in the same
quantum state and have the same properties.

Dieks takes for granted that when we follow the path of a particle in a
bubble chamber, or when a single particle is trapped in a potential well or even

7The partial tracing is an operation used when the join system is described by a density operator
and enables us to consider the trace (which gives us the expectation values) of some component of
the total system even if the whole state is entangled. But it should be remarked that if the systems
are of the same kind, it is not relevant which is the particular system we are taking into apart.

13



when just one electron is fired and later detected on a screen, we are assigning
them identities. We have discussed the case of trapped particles elsewhere (see
[Kra11]).

Comment — Again, the claim depends on what one understands by identity.
What Dieks means by that? Of course, we suppose anyone will agree, that
the particles do not obey STI for in this case they would carry ‘permanent
identities’, which in physical terms might be thought of as genidentity. The
above assumption can be made provisorily by the physicists, but one should
agree that it is an extrapolation of what quantum mechanics says.

In proposing the Alternative View, Dieks says that the particles are not de-
fined by reference to their labels but by observable physical properties which
give them their states. He recalls Schrödinger in that it is the state that con-
fers a particle its momentaneous (our add) individuality. So, according to him,
states such as (2.1) represent two individual particles possessing well-defined
individual properties, one characterized by the state

∣∣∣φ〉 and the other by the

orthogonal state
∣∣∣ψ〉

. He reports to a paper by Ghirardi et al. [GMW02] in
which they have analysed such a situation the particles behave in many respects
like product states representing individual particles (our emphasis). This is the
core of the AV: to be closer to the practice of physics. A nice example helps
in clarifying the issue. Dieks supposes two particles, one at the left L and
another at the right R of a certain apparatus whose details to not import here.
The entangled state is similar to (2.1) with |L〉 for

∣∣∣ψ〉
and |R〉 for

∣∣∣φ〉. Then he
states that “the states |L〉 and |R〉 do the job of identifying the particles in this
alternative approach. (. . . ) The particles are clearly distinguishable.”

Comment — Being in |L〉 or being in |R〉do not provide identity to the particles.
If we close our eyes for a moment and an evil genius appears and says that he
probably has permuted the particles, how could we know whether he is telling
the truth? Any measurement will do the same result independently of which
particle is in the left (right). This is not compatible with the identity ascribed
by STI. So, we will never be able to know if the genius is telling the truth.

Dieks suggests that the attribution of identities to the particles (without
specifying the identity he is considering) “is in accordance with how states of
this kind are interpreted in the physical practice.” (our emphasis). “By the contrary,
he continues, according to the RV the state (2.1) represents two particles with
exactly the same location, ‘smered out’ overly over L and R.”

Comment — Not at all! The RV never said or assumed that! As said already,
the RV assumes that there is one particle at L and one at R, but quantum physics
cannot give them identities in the sense of STI. In our opinion, the practice of
physics requires precisely this: one at left and one at right, but their identities do
not matter (being of the same kind): kinds and quantities, not individualities. This
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is well exemplified by Dieks himself, but we also refer to the above mentioning
of Dalla Chiara and Toraldo di Francia.

6 Conclusion

The RV and the AV are not conflicting interpretations. Instead, we regard them
as complementary. Once one assumes that quantum entities can be viewed
as non-individuals, failing to obey STI, then an underlying mathematics such
as that provided by quasi-set theory is in order. But in order to account with
the practice of physics, one can reason as if the particles can be localized and
have (momentary) identities so that all happens as if they were individuals.
But we insist: on neglect the interference term, as mentioned above, we are
committing the same error than in the early calculus when they have neglect
the infinitesimal increments.

Dieks et al. analyses are of course good, and their points are clever. But we
insist that the RV is not proposed to cope with the practice of physics but with its
logical foundations. Thus, as the quantum logicians have agreed, if one wishes
to preserve the non-distributivity law needs to go outset a Boolean structure,
we argue that if someone wishes to consider ‘legitimate’ (and not ‘fake’) in-
distinguishable things she needs to go out of a mathematical framework that
encompasses STI. Quasi-set theory is of course an alternative.

7 Appendix

In this Appendix, we recall some other questions put by philosophers of physics
which seem to be against the RV, some of them endorsed by Dieks himself. The
comments are just to enlighten the main points, which are developed in other
works mentioned below.

7.1 The relevance of the notion of identity

We have seen that contrary to what Otávio Bueno, Francisco Berto and others
say, something endorsed by Dieks et al., the notion of identity is not ‘essential’
for the meaning of the concept of an entity.8 By an entity, we understand
everything that can be referred to by a suitable language either by a proper
name or by some description. An electron is an entity, and so are all quantum
particles.

We really can suppose the existence of entitites to which (at least) the stan-
dard notion of identity (given by STI) does not hold. There is no logical contra-
diction in supposing that, except if the theory’s logic says the opposite. But since
in the general discussions in the philosophy of physics the logic being used is

8A response to Bueno is presented in [KA19]. Again recurring to the example of a BEC, would
the entities that form a BEC (atoms, say) not be ‘entities’ of some kind?
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rarely made explicit, we are free to suppose that there are also non-individuals
in our metaphysical pantheon.

Quantum entities seem to provide a paradigmatic example of non-individuals
(entities that fail to obey STI). From a logical point of view, this was also as-
sumed by F. P. Ramsey when he criticized Whitehead and Russell’s definition of
identity (Leibniz Law) saying that it is logically possible the existence of more
than one thing sharing all their properties [Ram50, p.31]. There is no logical
contradiction here once we leave STI.

Perhaps what is involved in the atavistic criterion that we need identity to
construct our theories, so it cannot be dispensed with is a fallacy. The same
would apply in the construction of paraconsistent or intuitionistic frameworks
not regarding identity, but respectively the notions of non-contradiction and
the excluded middle. In the metalanguage, we assume the validity of the
Principle of Non-Contradiction even when we develop a system in which it
is not universally valid; the same happens with the Principle of the Excluded
Middle and some constructive frameworks (see also below). So, we usually
assume an intuitive identity to start with, but later we can dispense it in favour
of a theory encompassing non-individuals.

Summing up, we regard identity as a useful concept (perhaps even a neces-
sary one) to conceptualize individuals, but of course not for any kind of entity.

7.2 Emulating non-individuals

STI is incompatible with (completely) indistinguishable but not identical things.
This does not entail that we cannot mimic them within a theory encompassing
STI, as the ZFC system. This is the case of taking deformable or non-rigid
structures. A set-theoretical structure A is rigid if its only automorphism is the
identity function, the trivial automorphism, otherwise, it is deformable. For
instance, the additive group of the integers,Z = 〈Z,+〉 is deformable, since the
application h(x) = −x is an automorphism, as is easy to prove. So, within Z,
the integers 2 and −2 are indistinguishable. Thus, in a deformable structure,
we can make things happen as if some individuals were indistinguishable
by the canons of the structure, as it is supposed to happen when we opt by
eliminating surplus structures in favour of just symmetric and anti-symmetric
ones. With this move, we can work inside a ‘standard’ logical framework as
usually done; by the way, all standard books of quantum physics are developed
with standard mathematics by ‘mimicking’ indistinguishability by the use of
symmetry postulates.9

But every structure in ZFC (and in similar theories) can be extended to a
rigid structure. So, even if two elements are indiscernible inside a structure,
in the extended one they can be realized to be individuals. Furthermore, the
whole universe of sets is rigid [Jec03, p.66]. That is, everything represented in a
theory like ZFC is an individual and we do not need any argument other than

9Yuri Manin says that quantum mechanics (and quantum physics in general) has no ‘proper’
language, making use of a fragment of the standard functional calculus [Man77, p.84].
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logical ones to state that.

7.3 Identity for m-atoms

Can we define identity for m-atoms in the theory Q? Of course we can. So,
why not to do that? The answer is similar to that one a paraconsistent logician
might give when asked why she does not accept the universal validity of the
Principle of Non-Contradiction or then the answer given by an intuitionistic
logician when asked why she does not accept the universal validity of the
Principle of the Excluded Middle: the reason is that we don’t wish to do it!
We are presenting a logical system that supports a metaphysics comprising
non-individuals, understood as entities that fail to obey STI. So, no relation
that turns out to be equivalent to the identity of STI is to be allowed, as those
presented below (without the proofs), and the reasons were put before.

Let us suggest some ways to define an identity among m-atoms so that the
theoryQwould turn equivalent to ZFA. Let x and y be m-atoms. Then we pose

Definition 1. x =a y B ∀z(x ∈ z↔ y ∈ z)

Definition 2. x =b y B x ∈ ~y� ∧ y ∈ ~x�,

where ~w� is a strong singleton of w, let us recall, a qset whose quasi-cardinal
is one and whose only element is indistinguishable from w.10 This definition
can be put another way as follows

Definition 3. x =c y B ~x� =E ~y�,

being =E the extensional identity introduced earlier. All these alternatives
conduce to the identity of STI as it seems to be immediate but, as said before,
we do not intend to introduce either of these (or other) identities for m-atoms
which turn out to be ‘classical identity’ (given by STI).

7.4 Quantity by not ordering

Francisco Berto for instance [Ber17], claims something accepted by most of the
philosophers we are considering, namely, that we cannot have a collection of
entities with a definite cardinality if these entities do not possess self-identity
that makes them different from each other. Here we sketch a way to do it with a
qset of N indiscernible things devoid of self-identity (N being a natural number;
the infinite case will be not touched here).

What we shall do is to enlarge the theoryQwith additional axioms that give
us natural numbers. Of course, we have a copy of the standard model of Peano
Arithmetics (PA) inQ, but the natural numbers we shall consider came not from
this model, but from the Peano Arithmetics we add to Q as a step-theory. If we
take the natural numbers from this model, they would be ordinals, something

10But recall once more that we cannot assert that such an element is w for to say that we need
identity: the element of the qset is just ‘identical’ to w.
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we wish to avoid. This is similar to adding the theory of fields to that of vector
spaces as usually done. Let us call Q’ this new theory, whose postulates are
those of Q plus those of PA. Hence the natural numbers to be considered here
are not ordinals, but just 0, s0, ss0 and so on, where s stands for the successor
function and 0 is the natural number ‘zero’. Now we can assume the existence
of a binary functional symbol qc and write qc(x,N) to mean that the qset x has
quasi-cardinal N, being N one of such natural numbers.11 The postulates of this
new notion are the following, where x and y range over qsets and M,N over
natural numbers.

1. ∀x(qc(x, 0)↔ x = ∅).

2. ∀x∀y(qc(x,N) ∧ qc(y, 1) ∧ x ∩ y =E ∅ → qc(x ∪ y,N + 1))

3. ∀x(qc(x,N)→ qc(P(x), 2N))

4. ∀x(qc(x,N)→ ∀M(M < N→ ∃y(y ∈ P(x) ∧ qc(y,M)))

The way we attribute a natural number N to a qset x is not a logical problem,
being left to the physical theory. For instance, chemistry has a way of attributing
natural numbers to the orbitals. The important thing here is that we can assume
that a certain qset has a finite number of elements.

So, Q’ shows that we really can consider collections of completely indis-
cernible things with a cardinal. For the sake of making things clear, consider
the third axiom and let qc(x, 4). Then qc(P(x), 16). So, we can reason as if there
is one subqset with no element, four subqsets with one element each, six sub-
qsets with two elements, also four with three elements and one with the four
elements. The counting is usual. The interesting fact is that we cannot discern
among the subqsets with the same quasi-cardinality but just to state that they are
indiscernible (by WEA). Since their elements are (by hypothesis) indiscernible,
all we have are their quantities given by the axioms.

But notice that in Q’, so as in Q, the fact that we cannot discern either the
elements of some qsets or the qsets themselves, does not make them identical
as STI would require.
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[DB15] Itala M.L. D’Ottaviano and Fábio M. Bertato. George Berkeley e os
fundamentos do cálculo diferencial e integral. Cadernos de Históra
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