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Abstract

The concept of causation is crucial to understanding the relationships between various

phenomena, but its nature and criteria for identification are still debated. This paper establishes

a new theory of causation with broad explanatory power through a quasi-axiomatic approach,

and reviews the value and shortcomings of current mainstream theories of causation. The new

theory proposes that the ontological basis of causality can be just if-then functions, and the

epistemological discriminant is S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ), where S(Y ) is a state of

affairs (expressed as a probability distribution) and Ψ represents all states of affairs that can

coexist with both S1(X) and S2(X). The paper distinguishes two related yet different causal

contexts, one emphasizes the potential influence in general sense, while the other focuses on

attributing responsibility in specific cases. Accordingly, the article clarifies the differences

and proper uses of concepts such as “cause", “effect" and “causal relationship". The new

theory takes probability distribution determinism (PDD) as its basis, which updates traditional

determinism by representing states of affairs as probability distributions. This is because on

the basis of PDD, a series of nested hierarchical structures similar to the relationship structure

between things in the real world can be deduced simply through certain naming strategies.

Although some aspects of the new framework may require further analysis, it may provide a

fruitful framework for a deeper understanding of causation and shed new light on scientific

research methods.
*Email: john.liuchong@gmail.com
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1 Introduction

The concept of causation is fundamental to understanding and interpreting the relations among

things. However, there remains widespread debate about what exactly the connotation of causation

is and how to determine whether there is a causal connection among things (Cartwright, 2004).

This paper proposes a new theory of causation by employing a quasi-axiomatic approach. Tra-

ditional theories of causation often rely on empirical induction or linguistic conceptual analysis.

However, the limitations of human experience can restrict our perspective in understanding issues

(Wittgenstein, 2009; Kuhn, 2012; Silver et al., 2017). In contrast, a quasi-axiomatic approach

will likely overcome biases and analytical limitations imposed by human experience and natural

language, resulting in a theory with broader explanatory power.

Although this new theory has drawn a wealth of insights from other theories of causation and

evolved through critical reflection on them, its internal logic is independent. Therefore, the dis-

course structure in this paper primarily adheres to the inherent logic of the theory’s establishment,

while comparative discussions with other theories will be positioned as secondary, woven through-

out the various sections.

Section 2 analyzes the limitations of traditional views that consider specific events or proba-

bilities of events as the subjects of causal statements, pointing out that the state of affairs can be

expressed as a probability distribution over all possible specific values.

Building on this foundation, Section 3 revises traditional determinism into Probability Distri-

bution Determinism (PDD), within which the outcomes may be either non-probabilistic or prob-

abilistic. Subsequently, the laws of nature can be understood as a special mode of PDD, and

Hume’s regularity theory of causation is refuted. Furthermore, free will is discussed and shown to

be compatible with PDD.

On the basis of PDD, Section 4 uses only naming strategies to construct multiple systems with
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2 STATE OF AFFAIRS: EXPRESSED AS PROBABILITY DISTRIBUTION

structures of relationships similar to those in the real world, both of which have nested hierarchies.

This similarity demonstrates the rationality of the assumption that PDD reflects the real world.

Furthermore, we get insights for analyzing a series of issues about causation, such as the additivity

of causal effects, transitivity and ontological explanations of causal relationships, and whether

temporal property is necessary for causation. In addition, a critical analysis is conducted on the

value and limitations of mechanism and causal structural equations.

Section 5 analyzes two different contexts for statements regarding relationships in PDD: one

emphasizes the potential influence of conditions on outcomes in the general sense, while the other

focuses on attributing responsibility for the state changes in specific scenarios. Then, it explains

why counterfactual theories of causation failed.

The central theme from Section 2 to Section 5 is the metaphysical analysis of PDD. Based

on this, Section 6 undertakes an analysis from the epistemological perspective for the relation-

ship between things in the general sense in PDD, and gets the formula for determining it as

S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ). Eventually, Section 7 explicates the proper use of a series

of concepts related to causation and completes the system of this new theory of causation.

In order to further illustrate the explanatory power of the new theory, Section 8 compares

it with some highly influential theories of causation, such as Randomized Controlled Trials and

Interventionism. Section 9 concisely demonstrates how the new theory can be applied in scientific

research where those theories cannot.

2 State of affairs: expressed as probability distribution

In the formation and evolution of concepts in natural language, the associated experiential contexts

are diverse and dynamic, leading to the phenomenon where words in natural language often carry

multiple meanings. This ambiguity is particularly evident in the concept of causation, one of

the most commonly used concepts in daily life, as pointed out by Russell (1913) and Cartwright

(2004). Thus, it may ultimately be in vain to provide a unified and precise definition only based on
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2 STATE OF AFFAIRS: EXPRESSED AS PROBABILITY DISTRIBUTION

analyzing the meaning of causation in scattered experiential contexts. (Wittgenstein, 2009).

However, existing theories of causation have been developed more or less in this manner. For

instance, for these theories, what exactly are the relata of causation appears to be a fundamental

starting point question that is often positioned at the initial stages of their analysis. While some

traditional theories posited causal relations are connections between substances such as individual

objects or events (Mumford and Anjum, 2013), contemporary scholars argue that these explana-

tions are not applicable to relationships between abstract properties, and then consider the primary

relata of causation as variables, which are symbols that represent entities, objects, events, or prop-

erties (Cartwright, 1979; Hitchcock, 1993; Woodward, 2003, p. 17; Pearl and Mackenzie, 2018,

p. 7).

Although treating variables as the relata of causation has shown good applicability in scientific

practice, the effectiveness is primarily empirically inductive. Whether this approach can general-

ize all cases lacks rigorous demonstration, implying the potential for exceptional cases it cannot

handle. What is more, the accuracy of the definition of the relata fundamentally impacts the ex-

planatory power of the theory of causation based on it. To avoid basing the final theory on unstable

foundations, this paper proposes temporarily suspending the determination of what exactly the

relata of causation are at the beginning of the analysis, similar to temporarily suspending the defi-

nition of causation, as the two questions are closely related.

In contrast, another question, similar yet fundamentally different to the question about the

relata of causation, remains meaningful: If there is some sort of connection between things rather

than being independent of each other, what words can we use appropriately to describe everything

related to that relationship, and how to identify it? And this is exactly what we are concerned with

and will attempt to address in this article.

This paper’s analysis begins by hypothesizing an observer without background knowledge or

presuppositions. For such an observer, unaware of any connections or influences between things,

the most fundamental information is the state of affairs at each moment. Therefore, the paper first

analyzes what a complete and sufficient scientific expression of the state of affairs is.

4



2 STATE OF AFFAIRS: EXPRESSED AS PROBABILITY DISTRIBUTION

For a certain state of affairs, it can be expressed as X = x, where X is the variable, and x is

a possible value. For example, someone’s state of being alive can be encoded as follows: let us

represent “whether this person is alive" with variable X , appoint 1 to refer to yes and 0 for no, then

this person’s state of being alive can be expressed as X = 1.

However, this expression is not applicable to situations where the states of affairs are prob-

abilistic, such as whether one will win a lottery after purchasing a ticket, whether vaccination

will prevent the infection of a disease, and so on. Strictly speaking, except for the events that

have already occurred, which can be viewed as certain, most events are probabilistic in our world.

For instance, although our everyday experience suggests that the probability of a person walk-

ing through a brick wall seems zero, quantum tunneling theory posits that this probability, while

extremely small, is not exactly zero (Ford, 2004, p. 128).

Thus, expression with probability allows a more accurate description of more states of affairs.

For uncertain cases, suppose a lottery sells 100,000 tickets with ten winning tickets, and a person

buys one ticket. The state of affairs regarding whether he will win cannot be expressed using

X = x, while it can be described using the probability P (X = 1) = 0.0001, where the variable X

represents “whether his ticket will win the lottery," with 1 for yes and 0 for no, and 0.0001 is the

probability of his winning. For cases with certainty, this expression is also suitable by setting the

probability to 1 or 0. For example, it can be expressed as P (X = 1) = 1 for someone being alive.

Therefore, to some extent, the probabilistic expression P (X = x) = p seems to be a universal way

of expressing states of affairs. This is exactly the expression widely used in contemporary theories

of causation (Hitchcock, 1993; Woodward, 2016a; Pearl and Mackenzie, 2018, p. 14).

Unfortunately, the expression P (X = x) = p still has limitations, as it does not apply to

involving discrete variables with multiple possible values or continuous variables.1

• As for discrete variables with multiple possible values, for example, suppose one side of a

six-sided die is red, two sides are yellow, three sides are blue, and it is covered by a black

box after being rolled. From the observer’s perspective, the state of the die (color of the top
1Discrete variables are those that take specific, separate values like gender, while continuous variables can take any

value within a range, such as temperature, which can vary continuously.
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face) cannot be described with a single P (X = x) = p.

• As for continuous variables, take estimating someone’s lifespan as an example. Since the

probability of any specific lifespan is theoretically close to zero, P (X = x) = p cannot be

used to represent an estimate of lifespan.

Then how should these two situations be described by formal expressions? Actually, using

‘probability distribution’ can aptly describe them, that is, comprehensively depicting all possible

values and the corresponding probabilities (for discrete variables) or probability densities (for con-

tinuous variables). The basic idea of ‘probability distribution’ can be found in any probability

theory textbook (DeGroot and Schervish, 2012).

For example, in the case of the six-sided die, if X represents the top face color, with 1 for red,

2 for yellow, and 3 for blue, then the state of the top face color can be expressed as: “P (X =

1) = 1/6, P (X = 2) = 1/3, P (X = 3) = 1/2," indicating a 1/6 probability of being red, a 1/3

probability of being yellow, and a 1/2 probability of being blue. In the lifespan estimation case,

assuming the current age is 50 and the human lifespan limit is 150, with X representing lifespan,

then one possible description of the lifespan estimation could be:“P (50 < X < 150) = 1, P (75 <

X < 90) = 0.9," meaning the lifespan is longer than 50 but less than 150 years, with a 90%

probability of being between 75 and 90 years.

Moreover, for expressing ‘changes’ of states of affairs, the probability distribution expression

is more precise and sensitive than the probability expression P (X = x) = p. In situations where

only a small part of a whole thing changes and other parts remain unchanged, an observer who

focuses only on the probability of one of the unchanged parts might mistakenly conclude that

the whole thing is unchanged and thus uninfluenced by other things. In contrast, when using

the probability distribution expression, any change in the probability of any part will change the

probability distribution of the whole, thereby clearly revealing the change of state of the whole.

For example, suppose that after a twelve-sided dice is rolled, a cheater can change the top face into

12 only when the result of rolling is 1. If the other observer, in many experiments, only records

the probabilities of certain numbers, such as “P (D = 3), P (D = 6), P (D = 9)," and finds
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that these probabilities do not change, remaining close to 1/12, then this observation might lead

him to conclude that the dice’s state is normal and unaffected by the cheater. However, if he uses

the probability distribution to express the state of the dice, it would reveal the variation, thereby

indicating that the dice’s outcome is influenced by the cheater.

General speaking, for cases involving discrete variables, the state of affair can be expressed as

all possible values and their corresponding probabilities, precisely expressed as:

P (X = xi) = pi, i = 1, 2, . . . , n.
n∑

i=1

P (X = xi) = 1 (1)

Here, pi is the probability that X takes the value xi.

For the cases involving continuous variables, the state of affairs can be described as all possible

values and the probability density within the corresponding value range, precisely expressed as:

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx, x ∈ K,

∫
K

f(x) dx = 1 (2)

Here, P (a ≤ X ≤ b) is the probability of X falling within the interval [a, b], K represents the

set of all possible values that X can take, and f(x) is the probability density function of X that

assigns probabilities to each value in the set K.

For the cases involving variables whose possible values are partly discrete and partly contin-

uous, the expression of the state of affairs is a combination of the two expressions above, with

the sum of probabilities of all values being 1. Cases of certainty (such as events that have already

occurred) can be viewed as a special case of discrete distribution, namely P (X = x) = 1.

Thus, whether the case is certain or uncertain, the state of affairs can be described using the

expression involving probability distribution. That is to say, we can get a theorem as follows.

Theorem 1. A state of affairs can be expressed by a probability distribution.

This paper will use S(X) as the sign of the state of affairs referring to the variable X , which

comprises two parts: all possible values of a variable and the probability associated with these
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values (or ranges of values). As a descriptive form of a state of affairs, S(X) can be represented

both in an exact quantitative manner and in a fuzzy manner, adapting to the needs of scientific

expression as well as to the needs of everyday cognitive expression. For instance, if a teacher wants

to reform teaching strategies to improve student’s academic performance, she can roughly estimate

the results under different strategies in the sense of probability distribution without needing precise

quantification.

The graphical representation of probability distributions also facilitates a simple and intuitive

understanding of states of affairs, because a specific probability distribution represents a specific

state of affairs. For example, in the case of teaching strategy reform, students’ academic per-

formance under different strategies can be represented as Figure 1, where the y-axis represents

students’ academic performance, and the P (Y )-axis represents the proportion of students at each

performance level. The area under the curve above the y-axis represents the ‘probability distri-

bution,’ i.e., “academic performance of the whole class." Different curves represent different per-

formances under corresponding teaching strategies. Such graphs intuitively show the differences

between outcomes. For example, S4(Y ) shows generally higher performance and less disparity

among students compared to S1(Y ). This intuitiveness is a clear advantage of representing states

of affairs as probability distributions.2

Figure 1: Understanding states of affairs with probability distributions.

2This graph is an example of a continuous variable. The expression of discrete variables is simpler in principle,
consisting of histograms, as detailed in contemporary probability theory. For brevity, these are omitted here.
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Slightly different from the general use of ‘probability’ in probability theory textbooks, except

for special explanations, this article uses this concept in a broader sense, sometimes not clearly

distinguishing it from the concepts of possibility or likelihood. There are two main reasons for

this.

On the one hand, from the metaphysical perspective, the state of affairs may be objective or

subjective, and in both cases, it is possible to describe the state of affairs as a probability distribu-

tion. It is crucial to consider the inherent probability of certain events and the limits of observers’

of knowledge. In some cases, the uncertainty of a state of affairs is objective, such as the theoreti-

cal outcome of a die roll which has not been done. In other cases, the uncertainty is not objective

but reflects the observer’s lack of information. For instance, when a die roll has been done and

covered by a black box, the outcome is objective because others can check and get the same result,

but the observer can only describe it in terms of possibilities. The distinction between subjective

and objective states of affairs is also helpful for the in-depth analysis of objective causation and

subjective causation, which will be discussed later.

On the other hand, from a cognitive perspective, it is sometimes difficult to distinguish the

subjectivity and objectivity of a state of affairs, and it is often not necessary to strictly distinguish

between the two in daily life. Because human cognitive activities must be conducted from a sub-

jective perspective, and we cannot know all the information about the external world. In reality, the

distinction between these two uses is not always clear. For example, when considering the effec-

tiveness of a vaccine for an individual, even though the outcome may be objectively determined by

the vaccine’s characteristics and the individual’s physiological condition, the outcome is uncertain

in the view of a doctor without knowing all that information, and he can only describe it in terms

of the probability or likelihood based on the effective rate in the group.

9



3 PROBABILITY DISTRIBUTION DETERMINISM: IF... THEN...

3 Probability distribution determinism: if... then...

Based on our experience, it is incredible to view things in the world as totally disconnected. If we

think there are connections between things, then it inevitably involves a certain degree of determin-

ism, or at least local determinism, which means in a given context, specific conditions inevitably

lead to certain results (Lewis, 1973; Cartwright, 1979; Gallow, 2016; Woodward, 2016a).

This article does not intend to argue whether the world truly follows determinism completely,

as making a rigorous judgment on this point is likely to exceed the limits of human cognitive

ability. What this article is actually concerned with is the logical feasibility of determinism and the

rationality of assuming determinism as a way to understand the relationships between things in the

world, and they will be demonstrated in this section and the next section.

Typical determinism says that a series of conditions determines the result. Traditional views of

determinism often interpreted it in terms of specific results (like X = xi), but this becomes inap-

plicable when results are uncertain (i.e., P (X = xi) = p, 0 < p < 1). For instance, phenomena

like radioactive decay in quantum mechanics can only be described involving probability. Accord-

ing to traditional interpretations of determinism, such systems are non-deterministic. However, a

closer examination of the characteristics of these probabilistic outcomes reveals that the probabilis-

tic nature itself possesses a level of stability. For example, probabilistic phenomena in quantum

mechanics can be described by a definitive equation, such as the Schrödinger equation. There-

fore, phenomena characterized by probabilities in quantum mechanics can be viewed as genuinely

deterministic from a certain perspective (Gallow, 2016).

As Theorem 1 argued, states of affairs can be understood as probability distributions, and each

state corresponds to a probability distribution with unique identifiable characteristics. Thus, a result

of determinism is a specific probability distribution, which can be both certain and probabilistic.

That is to say, traditional determinism can be adjusted to accommodate situations of both certainty

and uncertainty by interpreting states of affairs with probability distributions. This article defines

this updated determinism as follows.
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3 PROBABILITY DISTRIBUTION DETERMINISM: IF... THEN...

Definition 3.1. Probability Distribution Determinism (PDD): A series of specific conditions E

can deterministically produce a state of affairs R which can be represented by a probability dis-

tribution, that is, “if E , then R.”

For convenience, this paper denotes the relationship in Definition 3.1 with ‘=⇒’. For example,

the relationship “if E , then R” can be represented as “E =⇒ R”.3

In Definition 3.1, the term used to describe conditions is ‘a series of ’ instead of ‘a set of’, this

is because the order of the conditions is vital to the outcome. So the conditions include not only

the elements but also the order of these elements. This order is metaphysical rather than temporal

in the empirical world. The concept of ‘a series of conditions’ is akin to a ‘tuple’ in computer

programming, where a tuple is a data structure that holds multiple elements in a specific order.

This ordered property distinguishes tuples from sets. Sets are unordered and do not allow duplicate

elements, whereas tuples maintain the order of elements and can contain duplicate elements.

The core concept of Definition 3.1 is the ‘if... then...’ function, and it has almost the same mean-

ing as the fundamental concept in programming and logic, so it does not need further reduction to

other concepts for accurate interpretation. In computer programming, the ‘if... then...’ function is

used to execute a corresponding operation when certain conditions are met: if the condition is true,

a specific block of code is executed.

PDD is logically possible and feasible. For instance, in computer programming, the following

three programs are conceivable. (For simplicity, the information about the background conditions

is omitted.)

• If input ‘on’, then output the light is on.

• If input ‘on’, then output the light is on with a 50% probability.

3This paper distinguishes between using ‘=⇒’ and ‘→’. ‘=⇒’ means ‘necessarily leads to’, equivalent in logical
strength to logical implication, with its subject being specific conditions and states of affairs, e.g., “S(X), E =⇒
S(Y )”. ‘→’ is widely used in other literature to represent causal relationships, e.g., ‘X → Y ’. In this paper, it is
actually a simplified expression denoting that the state of X is part of the conditions that determine the state of Y ,
omitting background conditions E and the expression of state S( ).
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• If input ‘on’, then output the light is red with a 20% probability, yellow with a 30% proba-

bility, and blue with a 50% probability.

As mentioned earlier, not only is the third scenario a typical example of PDD, but the other two

cases can also be represented using probability distributions.

The new definition of determinism emphasizes the sufficiency of the relationship. Therefore,

the conditions must comprehensively include information that is traditionally treated as back-

ground conditions. Even if it cannot be clearly described, it needs to be vaguely referred to,

for instance, with statements like “with some other conditions." This is because that it is logically

possible to imagine a scenario where one of the background conditions may change, thereby af-

fecting the result, and in explaining such a situation, that condition cannot be ignored. This can be

understood through the following scenario: for a programmer of a computer program, any param-

eter which is part of the conditions determining the outcome of the program can be manipulated to

produce a different result, thus this parameter can not be ignored when we explain the result.

For events in our world, all its conditions include the fundamental physical properties of the

universe. Because any fundamental physical property of the real world could appear in a different

way from our world, leading to different states of the things in our world. For example, in our

universe, we take for granted the homogeneity of space which means that every point in space is

equivalent to every other, and thus the laws of physics are the same in one place as another. We also

believe in direction invariance which refers to the property where a physical law or phenomenon

remains unchanged under different spatial orientations. However, these principles are not neces-

sary but only because it happens to be a feature of the universe we live in, and our experience with

the world around us conditions us to believe it. Theoretically, one could imagine hypothetical uni-

verses with heterogeneous space and preferred directions—universes in which the laws of nature

depended on location and direction, where physicists would need to figure out not only the laws

of physics but the rules about how those laws change when location and direction change. (Ford,

2004, pp. 157-158).

Therefore, the relationships between things in PDD are mostly context-dependent rather than
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absolute. From the perspective of PDD, the scientific knowledge we use to describe the external

world is relative to conditions such as a series of fundamental properties of our universe. Suppose

there is another universe with fundamentally different properties from our world, then our scientific

knowledge may not hold true there. For example, Newton’s law of universal gravitation, which is

expressed as F = Gm1m2

r2
and states that the force of gravity between two masses is directly

proportional to the product of their masses and inversely proportional to the square of the distance

between their centers, should be strictly stated as, “In a universe like ours, F = Gm1m2

r2
.” Because it

is possible that there is another higher-dimensional universe where gravity is inversely proportional

not to the square of the distance (r2) but to the cube of the distance (r3), that is to say the law of

universal gravitation in there might be expressed as F = Gm1m2

r3
.

On that ground, the stability of background conditions determines the stability of the relation-

ship between things. Only when background conditions are stable, do relationships between things

show stable regularity (like physical and chemical knowledge), and when background conditions

are unstable, they do not constitute a regularity (like some epidemiological or sociological knowl-

edge). Therefore, the concept of causation which involves determinism can not be simply defined

with ‘regularity’ as proposed by Hume (2007, p. 69). Moreover, for the problem of external valid-

ity of causal knowledge whether the conclusion on one occasion is transferable or valid in another

occasion, it essentially depends on whether the background conditions are similar in these contexts.

Definition 3.1 only requires sufficiency, which means the condition may not be necessary for

the result. This can be understood as a kind of asymmetric mapping relationship, i.e., a series of

specific conditions E1 corresponds to a unique result S1(Y ); however, a result may correspond to

multiple different series of conditions, i.e., another series of conditions F1 may also produce the

same result S1(Y ). That is, 
E1 =⇒ S1(Y )

F1 =⇒ S1(Y )

(3)

This asymmetric relationship can be understood with this example: it is possible that two software

companies receive the same task from a client and then write two programs independently. The
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codes of these two programs differ in many details, but they produce the same result. Similarly,

we can imagine another universe with completely different basic physical conditions from ours,

yet having similar macroscopic state results. Furthermore, this occasion can happen not only at the

overall level but also at the local level. For example, under certain conditions E0, taking either drug

A or drug B can lead to the cure of someone’s disease S0(H). Or, for computer programming,

there may be two series of subprograms, and the use of either can lead to the same result.

The focus on sufficiency rather than necessity makes the PDD system compatible with things

like free will. ‘E =⇒ R’ emphasizes that conditions can lead to results, rather than the depen-

dence of results on conditions, that is, it is not equivalent to ‘if R exists, then there must be some

conditions E’, which is the thinking perspective of some traditional determinism. Thus, under

Definition 3.1, there could exist things whose states are not entirely determined by anything else,

while they can be parts of the conditions which can produce certain outcomes. And this can be

regarded as the definition of free will under the PPD framework. It can be expressed as follows.


. . . ̸=⇒ FW

FW , E =⇒ . . .

(4)

Where FW refers to free will, ̸=⇒ means ‘cannot determine’, and E refers to some other condi-

tions.

The key point of ‘free’ is not that there is no limit of the range of options, but that even if there

is a limited range of options, the result of it is not completely determined by any other conditions.

For instance, in computer programming, the options of an input signal may be finite, but the result

of the input is not determined by the internal information of the program system.

If the physical world in which humans live is regarded as a completely deterministic system,

we can say that free will is out of this system, the state of it is not completely determined by the

information of the physical world, and it can input information into the physical world to influence

the things in the system. This statement is obviously compatible with the religious claim that the

soul with free will is an existence outside this physical world. The discussion here is only to show
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that PDD does not exclude this claim, rather than support it.

Since Section 2 distinguishes the objective level and the subjective level for the state of affairs

(probability distribution), we can distinguish between objective effects and subjective effects. Sup-

pose that at the objective level, the state (probability distribution) of an event remains unchanged

regardless of whether an action is taken or not. However, from an individual’s subjective perspec-

tive, due to not having access to all the information of conditions, he may perceive a risk for the

result if he does not act, and thus he decides to take action to reduce the risk. In such a scenario, it

can be said that his action has no effect objectively, but it does have an effect from the subjective

perspective of the person.

Take vaccination as an example. Objectively speaking, based on an individual’s physical char-

acteristics and the characteristics of the virus, it’s possible that even without vaccination, the person

would not contract the disease; hence, vaccination does not influence their likelihood of falling ill.

However, subjectively, due to a lack of understanding about relevant information, the individual

is unable to know whether he will get ill if not getting vaccinated. He might only believe that the

probability of contracting the disease without vaccination is much higher than with it. Therefore,

from a subjective standpoint, getting vaccinated is effective, as it reduces the perceived risk of

illness.

4 Similar to reality: individualization and nestability

When understanding relationships, we usually focus on individualized things. However, the extent

to which something is considered an ‘individualized’ thing is not purely objective but depends

on our cognitive needs, which can vary depending on the situation. What may be considered as

an individualized object in one context may be perceived as a mix of lots of different things in

another context. In certain contexts, we may focus on specific attributes of an object and make

it stand out as an individual, while in other situations, we might group objects based on shared

characteristics, downplaying their individual distinctions. This cognitive flexibility highlights the
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dynamic nature of individualization, revealing how our perception of individuality is adaptable and

context-dependent.

The flexibility of individualization is reflected in the activities of naming and referring. We can

use various names for different objects, or we can view these objects collectively and refer to them

by a single name. This section will demonstrate that, relying solely on PDD and the strategy of

naming, we can derive systems with complex relationship structures akin to those in the real world.

The fundamental form of relationships in PDD is ‘E =⇒ R’, so the relationships named in an

integrated manner within this system must be based on this and have additional elements. Thus,

there are initially two basic ways of integration: one is the synthesis of multiple parallel determina-

tive relationships into ‘one’ determinative relationship, and the other is the integration of multiple

successive determinative relationships into a simplified determinative relationship. Additionally,

let us call E in the determinative relationship an effective condition, and other information that does

not affect this process is deemed ineffective, then there is a possible way of integration, namely, the

combination of ineffective and effective information to form an ‘individualized’ condition. These

three methods can be combined to form more complex ways of integration. Below, the systems

under these three basic integrated naming strategies will be analyzed in detail.

Firstly, let us look at the synthesis of multiple parallel determinative relationships. Suppose

there are some relationships as follows,



A1, E =⇒ B1

A2, E =⇒ B2

...

An, E =⇒ Bn

(5)

If we view Ai,Aj as a whole, collectively referred to as Cm, and Bi,Bj as a whole, collectively

referred to as Dm, 
Cm ≡ {Ai,Aj}

Dm ≡ {Bi,Bj}
(6)
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then

Cm, E =⇒ Dm (7)

Again, we can view Ci, Cj as a whole, collectively referred to as Gm, and view Di,Dj as a whole,

collectively referred to as Hm, 
Gm ≡ {Ci, Cj}

Hm ≡ {Di,Dj}
(8)

then

Gm, E =⇒ Hm (9)

And so on, many nested layers can be formed based on this naming strategy.

Thus, (5) can be seen as a detailed explanation of (7), and (7) can be seen as a detailed expla-

nation of (9).

In our world, there are many similar cases, for example, a compound medicine (Cm) containing

multiple active ingredients (A1,A2, . . . ,An), each of which has an independent effect that can

influence different aspects of the body (B1,B2, . . . ,Bn). The integration of these effects is the

alleviation of a person’s illness (Dm). In this context, the effects of each component (Ai, E =⇒ Bi)

serve as a micro-level explanation of the medicine’s ability to cure diseases (Cm, E =⇒ Dm).

Secondly, let’s examine the integration of multiple successive determinative relationships. Sup-

pose there are a series of relationships as



A1, E1 =⇒ A2

A2, E2 =⇒ A3

...

An−1, En−1 =⇒ An

(10)

where each Ei does not affect the others relationships.
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We can collectively refer to E1, E2, . . . , En−1 as F ,

F ≡ {E1, E2, . . . , En−1} (11)

then (10) can be expressed as:

conditional on F : A1 =⇒ A2 =⇒ A3 =⇒ . . . =⇒ An (12)

Due to the inevitability of determinative relationships, even if some parts are omitted, the relation-

ship still holds,

conditional on F : A1 =⇒ A3 =⇒ A5 =⇒ . . . =⇒ An (13)

conditional on F : A1 =⇒ A5 =⇒ A9 =⇒ . . . =⇒ An (14)

...

conditional on F : A1 =⇒ An (15)

Regarding such a series of relationships, (14) can be seen as a detailed explanation of (15),

while (13) can be considered a detailed explanation of (14), and so on. In other words, they can be

viewed as relationships at different levels of granularity, constituting multiple nested hierarchies.

There are also many similar nested hierarchical relationships in the real world. For example,

the macroscopic effects of drugs on diseases can be detailed as a series of microscopic processes.

First, the drug is absorbed into the bloodstream. Then, it is transported throughout the body by the

blood, particularly to its targeted tissues or organs. Subsequently, the drug interacts with specific

cellular receptors or enzymes at the target site, initiating biochemical reactions that lead to its

therapeutic effect.

Thirdly, let us consider the combination of ineffective and effective information. Suppose there

is a relationship as

A, E =⇒ C (16)
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and U1,U2,U3, . . . ,Un, . . . are things that does not affect the relationship between A and C, then,

A, E ,U1,U2,U3, . . . ,Un, . . . =⇒ C (17)

If we view A and U1,U2, . . . ,Un as a whole, denoted as Bn,

Bn ≡ {A,U1,U2, . . . ,Un} (18)

then 

B1, E =⇒ C

B2, E =⇒ C
...

Bn, E =⇒ C
...

(19)

and for any i < j, Bi is a part of Bj .

In this system, Bi and Bj are in a part-whole relationship, and both can lead to the same result.

Thus, Bi, E =⇒ C can be seen as the refinement of Bj, E =⇒ C .

Relationships with this structure are also common in the real world. One typical example

is the relationship between citrus fruits, vitamin C, and scurvy. Historically, it was empirically

discovered that consuming citrus fruits could prevent scurvy. As medical science advanced, it

became clear that the critical ingredient within citrus fruits responsible for this benefit was vitamin

C rather than anything else like acidity. Therefore, the intake of vitamin C leading to the prevention

of scurvy is a refined understanding of the initial broader observation on the relationship between

citrus fruits and scurvy. It can be shown graphically as follows:

Figure 2: Relationship between citrus fruits, vitamin C, and scurvy.
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Pearl failed to properly handle such nested relationships, he considered vitamin C as a media-

tor in a causal chain and denoted the relationship as “Citrus Fruits → vitamin C → Scurvy” (Pearl

and Mackenzie, 2018, p. 300). This treatment is inappropriate because there is not a determinative

relationship or causal relationship between Citrus Fruits and vitamin C, but a whole-part relation-

ship. Thus, a shortcoming of Pearl’s theory is its neglect of such whole-part relationships when

analyzing relationships between things using causal diagrams, leading to the misrepresentation of

non-causal relationships as causal ones.

Relationships between things are not limited to causal ones but also include non-causal ones,

such as the relationship between a whole and its parts. Therefore, to accurately represent the

connections between things in causal diagrams, it is essential to consider the presence of non-causal

relationships. Additionally, in different situations, we often need to consider the relationships

between things at different levels. When multiple local causal networks at different levels are

incorporated into a large causal network, it may appear that the two individualized things in local

networks are different parts of an individualized thing in another level. These relationships may be

like the below:

(a) (b) (c)

Figure 3: Causal networks involving whole-part relationships.

The treatment of whole-part relationships helps us to better grasp the calculation of causal

effects. Some other theories of causation are ambiguous on issues such as the additivity of causal

effects (Pearl and Mackenzie, 2018, p. 326) and the transitivity of causal relationships (McDonnell,

2018). Now we can at least deepen our understanding of these issues: within causal networks, for

segments involving whole-part relations, the transitivity of causal relationships may be interrupted,

and the calculation of the overall causal effect needs to consider both the effect size of the causal

part and the relation between the part and the whole.
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The universality of the above three nested systems in the real world is more fully reflected in

the mechanistic theory of causation. The analyses of the characteristics of scientific knowledge by

Glennan (1996, 2002) and Machamer et al. (2000) suggest that, except for possible fundamental

processes, almost all causal relationships are typically underpinned by complex systems, which

produce those behaviors through the interaction of numerous parts. Those systems are referred to

as mechanisms. Mechanisms exhibit nested hierarchical structures with multiple layers. In these

hierarchies, the connections between various levels are characterized by part-whole relationships,

and the processes at the lower levels form the basis for the emergence of phenomena at the higher

levels (Machamer et al., 2000). According to this, it can be said that (5), (7) are the mechanisms

of (9), while (12), (13), and (14) are the mechanisms of (15).

From the above analyses, we can get this:

Theorem 2. Based solely on Probability Distribution Determinism and naming strategies, it is

possible to deduce systems whose nested hierarchical structures are highly similar to those found

in the world we inhabit.

This supports the legitimacy of PDD as a basis for studying the relationships between real-

world events.

Furthermore, these analyses can provide insights for scrutinizing some other theories of cau-

sation, such as mechanistic theory, structural equations, and ontological interpretations of causal

relationships.

Mechanistic theory undoubtedly helps us understand the relationships between things more

deeply. One significant insight is that the existence of a micro-level mechanism can provide a

strong rational basis for the hypothesis that there is a causal relationship between things at the

macro level. Causal claims with mechanistic explanations are usually more credible than those

lacking such explanations.

However, there are issues with the mechanistic theory’s definition of the concept of causation.

As for the priority of the concepts of mechanism and causation, it proposes that mechanisms pre-

cede causation, which means that mechanisms underlie most causal connections and do the causal
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work (Glennan, 2002, 2010). This is refuted by the new theory. Firstly, this assertion itself has

an internal logical flaw because it cannot answer whether the description of the local details of

a mechanism can avoid the concept of causation. Theoretically, we can imagine a relationship

without microstructure. For example, in a computer program, the relationship between actions

and effects might be merely based on the if-then function, lacking a subdividable structure, and

therefore no mechanism exists. A character ‘hit’ by a ‘bullet’ in the ‘head’ might be programmed

to ‘die’ instantly, without certain parts of the ‘brain’ and ‘nerves’ being damaged, which leads to

the disruption of ‘life systems.’ In this situation, it is obvious that the basic irreducible relationship

cannot be described by the concept of mechanism, but it can be described by the concept of deter-

mination in PPD, which is related to the concept of causation. Secondly, according to the analysis

in this paper, a system similar to the mechanism in the real world can be built based on PDD, and

the relationship in PDD involves the concept of causation (see Section 7 for details). Therefore, it

is more reasonable to regard the concept of causation as the basis of mechanism than the contrary

claim held by the mechanistic theory.

Regarding the debates about the ontological explanation of causation, the analysis of this paper

can also provide insights. In mechanistic explanations, the basic elements of causal relationships

are objective entities and activities (Machamer et al., 2000). Transfer theories view the basis of

causal relationships as involving the transfer of energy, momentum, electrical charge, or infor-

mation, based on objective real connections, or consider causal relationships to have certain spa-

tiotemporal properties, such as spatial adjacency and temporal sequence (Mumford and Anjum,

2013, p. 66). However, causal relations are not necessarily limited to the physical level; they can

also be abstract, such as how gender characteristics influence hiring in a company with gender

discrimination. The analysis of this paper shows that relationships of one thing influencing the

other may not depend on physical characteristics. A more intuitive example comes from virtual

reality in computer programs. One of the bases of computer programming is the if-then function.

Programmers use these functions to write codes, ultimately constructing programs that closely re-

sembles the real world in terms of phenomenological representation. In computer programs, there
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are also relationships of influence between events or phenomena, and this concept of ‘influence’

can also be regarded as ‘causation’ (Wheeler, 2022). In the virtual world of computer programs,

things with physical characteristics do not exist, and the fundamental basis for the ‘relationships

of influence’ between phenomena is the if-then functions in the code. Therefore, causation can be

based solely on if-then function without needing other ontological assumptions.

As for whether temporality is a necessary attribute of the concept of causation, this paper

also provides an interpretation different from traditional theories. A challenge to theories that de-

fine causation based on temporal sequence is the phenomenon of quantum entanglement, where a

change in the state of one entangled quantum instantly affects the state of another, without any tem-

poral sequence (Ford, 2004, p. 231). Such scenarios are difficult to explain using causality theories

reliant on temporality. Within the framework of this paper, on the one hand, relationships based on

PDD does not necessarily require temporality; on the other hand, the asymmetry of relationships

based on PDD is compatible with the asymmetry of temporal sequence. Thus, PDD can explain

both relationships involving temporal sequence and those that do not. In the relationship between

conditions and outcomes in a computer program, there exists a purely logical and non-temporal

relationship. Specifically, a series of parameters, functions, and input signals constituting all con-

ditions determine the outcome of the program in an absolute logical sense. This determinative

relationship does not depend on temporality but merely on the program’s logical sequence. Even

if not executed and merely written on paper, the same results can be necessarily deduced from the

defined program parameters and operating rules as those obtained from actual execution.

The theory of causation asserting that the cause must precede the effect faces certain difficulties

in explaining the following hypothetical scenario: Suppose a primitive man from ancient times

time-travels to the modern era. He is unaware that weather can be predicted. Based on his repeated

observations, he notices that whenever there are many people carrying umbrellas, it subsequently

rains. If he adheres to the theory of causation mentioned above, he might deduce that carrying

umbrellas causes rain (he may even think that the collective act is a form of rainmaking witchcraft

practiced by modern people). Obviously this is wrong. More generally, it is conceivable that
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someone might have the ability to foresee the future. For a person with foresight, his or her present

actions could be affected by future events. In this scenario, the cause is temporally subsequent,

whereas the effect is temporally antecedent. For instance, suppose someone foresees that a bridge

will collapse, leading he to choose a different route instead of crossing the bridge. Here, the

bridge’s collapse occurs later in time, while the person’s change of route occurs earlier. In terms

of causal explanation, it is because the bridge will collapse that he changes his route, that is, the

cause is subsequent, and the effect is antecedent. Since PDD does not require temporality, the new

theory in this article will not be challenged when facing such situations.

The above analysis may have greater implications for reflecting on the expressive ability and

application scope of the structural equation method in representing causal relationships. Currently,

in the theoretical domain of causality and in the social and behavioral sciences, structural equations

are quite popular for characterizing the relationships between things. For instance, an equation like

Y = f(X,UY ) is used to represent the knowledge that “X can influence Y ," where UY stands for

unobserved variables that affect Y . The equation is ‘structural’ in that variable Y does not enter into

the equation about causes of X (Pearl and Mackenzie, 2018, pp. 277-278). However, according

to the previous analysis, this method of expression faces multiple challenges. Firstly, since any

background condition could theoretically change and thereby affect the outcome, it seems that

all determinative conditions should be included in the equation, but that is infeasible. Secondly,

due to possible naming approaches and various cognitive levels, there are infinite conditions that

can affect the outcome. Therefore, structural equations cannot be perfect expressions of causal

relationships.

For practical purposes, maybe it is unnecessary to include every possible influencing condition

in the equation, and the causal knowledge expressed by the equation could be considered valid

only in specific situations, not absolutely. However, this approach raises a new issue: how do

we decide which variables to include? By what criteria should we determine the types of objects

that can be incorporated into the equation (Woodward, 2016b)? Perhaps an intuitive judgment is

that the variables need to be at the same level in the aforementioned nested hierarchies, but this
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knowledge itself might transcend empirical cognitive abilities and be indeterminable. In other

words, the rationality of selectively including variables, as well as the rationality of the criteria for

variable selection, both require further in-depth analysis and demonstration.

5 From general relations to specific events

Determinism describes relationships in a general sense, however, even if something is one of the

conditions that can determine a result, it is not always considered one of the factors for the ex-

planation of a specific event. When explaining everyday events, people do not consider the basic

physical properties of our universe, even though they are fundamental supportive conditions for

those events. That is, there are two different questions:

• Q1: In the general sense, what conditions can produce a specific result?

• Q2: In a specific situation, what is responsible for the change of the state of a thing?

As practitioners in a dynamic world, when we interpret events in real life, we mostly do it in

a manner similar to Q2. Clearly, not all supportive conditions for a specific event are considered

factors in an explanation. For example, the presence of air is one of the conditions for fire, but it is

usually not regarded as the responsible factor of a fire. However, is the presence of air always not

considered a cause of fire (responsible for fire accidents)? Not necessarily. Consider the following

two scenarios involving air and fire:

• F1: Suppose a forest fire occurs. Should the presence of air be considered one of the factors

responsible for the fire?

• F2: Suppose there is some oil in a high-temperature vacuum tank. Since there is no air in

the tank, no fire occurs, and this state continues for a long time. Then, at a certain moment,

someone injects air into the vacuum tank, and a fire starts. Should the presence of air be

considered the factor responsible for the fire in this context?
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Intuitively, in F1, we usually do not consider the presence of air as one of the factors responsible

for the forest fire, but in F2, the introduction of air is considered the factor responsible for the fire,

while the presence of oil and the high-temperature condition may not be seen as responsible for

the fire. This shows that for specific events in Q2, whether a condition is considered as its cause

(responsible for the event’s occurrence) does not entirely depend on the general attributes of the

condition or its general relationship with the result. Therefore, we can get:

Theorem 3. Regarding the relationships of influence between things, there are two different con-

texts: one focuses on the potential relationships of influence in the general sense, and the other

focuses on the responsibility for changes of states of affairs in specific situations.

However, what makes something considered responsible for a specific event? In F1, air is not

considered as the cause of the fire because air is always present, and its existence does not differ

between the fire and non-fire scenarios. In F2, the presence of oil and high temperature remains

constant before and after the fire, while the only difference is the presence of air, so the appearance

of air is seen as the responsible party for the event. That is, whether the presence of air is considered

the cause of the fire depends not only on the general potential determining relationship between air

and fire but also on whether the condition of air’s presence changes before and after the fire.

Whether explicitly stated or implied, for events that have occurred, the analysis of the factors

responsible for the result actually involves a comparison with the scenario where the phenomenon

did not occur. Compared to Q1, which is concerned with all supportive conditions in an absolute

sense, Q2 is more interested in what specific variation of condition (∆S(X)) is responsible for the

variation of the state of the other thing (∆S(Y )).

Theorem 4. For a specific event, the factors responsible for it must be something whose state has

a variation in this situation.

Based on the analysis above, we can discern the predicaments faced by the counterfactual

theory of causation (Lewis, 1973). The basic idea of counterfactual theory is that causal claims are

interpreted in terms of counterfactual dependence, formulated as “If A had not occurred, C would
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not have occurred; A occurred and C occurred.” A major challenge for this theory is that one

thing may have a counterfactual dependency relationship with another thing but there is no causal

relationship between them. For example, suppose the flowers in my house died. Obviously, if a

stranger who had never known about the existence of my flowers had watered them, they would not

have died. Theoretically, the stranger’s action of watering the flowers and the death of the flowers

constitute a counterfactual dependency relationship. However, usually, we would not attribute the

death of the flowers to the stranger (Menzies and Beebee, 2020). Thus, counterfactual theory apply

at most to relationships of influence in the general sense (i.e., the scenario in Q1), and cannot apply

to the analysis of factors responsible for a specific event (i.e., the scenario in Q2). According to

Theorem 4, the stranger’s behavior has no variation when the flowers alive and dead, so it should

not be considered the cause of the flowers’ death.

6 Epistemological perspective

The previous text analyzes the characteristics of the PDD system from a metaphysical perspective

and considers it as a viewpoint for understanding causal relationships. However, merely based

on this knowledge, we are unable to determine whether a certain relationship belongs to PDD.

Therefore, we also need to analyze this type of relationship from an epistemological angle, so that

we know how to identify this relationship without background knowledge.

Two types of relationships under different situations are distinguished in Theorem 3, and the

relationship in the special situation is built upon the relationship in the general sense with additional

conditions specified in Theorem 4. Thus, we only need to analyze the general one to understand

both of them. The strategy of this section is to assume this kind of relationship and then gradually

transform the scenario with metaphysical knowledge into a scenario without prior knowledge.

Since in reality we are concerned with the relationship between two specific things, our hypothesis

is as follows:
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Assumption 6.1. The state of X can influence the state of Y under certain condition E , that is,

S(X), E =⇒ S(Y ) (20)

This relationship can be equivalently expressed as: X has at least two different states, which

under the unchanged condition E , can deterministically lead to two different states of Y , that is,


S1(X), E =⇒ S1(Y )

S2(X), E =⇒ S2(Y )

(21)

where S1(X) ̸≡ S2(X), S1(Y ) ̸≡ S2(Y ).4

The above two expressions are logically equivalent, they imply each other:5 (21) ⇔ (20).

Suppose there are various pieces of information N that have no impact on the above relation-

ships. According to Definition 3.1, conditional information allows redundancy, because even when

unrelated information is added to the condition, it can still sufficiently determine the outcome. So

when N is added to the conditions, the determinative relationship remains valid. In the context

of computer programs, this information corresponds to redundant code that, due to programmer

error, is written into the program but is never executed and has no impact on the final result of the

program. Therefore, we have: 
S1(X), E ,N =⇒ S1(Y )

S2(X), E ,N =⇒ S2(Y )

(22)

Obviously, (22) ⇔ (21).

Regarding what should be included in N , caution is needed, especially concerning intermediate

variables. Suppose under certain conditions, S(X) can lead to S(M), and S(M) can lead to S(Y ),

conditional on E : S(X) =⇒ S(M) =⇒ S(Y )

4 ‘̸≡’ means not the same. The reason for not using ‘=’ is that the subject of the formula is ‘state’/‘probability
distribution’, which may not necessarily be a single value.

5In this paper, ⇔ is used in a logical sense, meaning mutual logical implication, each can be deduced from the
other. It is not used in the sense of determinism.
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Suppose there is already a certain amount of M in the environment of S(X), we can denote this

part as M0. Of cause, M0 can independently lead to a part of S(Y ). However, the presence of M0

does not affect the relationship between S(X) and S(Y ), so this part of M0 belongs to N . Since

S(X) itself can produce S(M), we cannot say at the variable level (or type level) that M belongs

to N .

Suppose there is something can potentially influence S(X), then when S(X) is already deter-

mined as S1(X) or S2(X), the presence of these things will not affect the relationship between

S(X) and S(Y ). If we call all these things that can potentially influence S(X) as I, then


S1(X), E ,N , I =⇒ S1(Y )

S2(X), E ,N , I =⇒ S2(Y )

(23)

This brings us to a key concept in this theory, the meaning of “when S(X) is already deter-

mined", which is a metaphysical concept rather than an empirical one. Although this scenario can

be understood through the concept of intervention, like Pearl’s explanation that intervention can

make S(X) immune to other influences (I) and only subject to the intervention (Pearl and Macken-

zie, 2018, p. 41). However, there may be some differences between them. Traditional concepts

of intervention are to some extent empirical concepts; the realization of intervention effects itself

depends on certain conditions involving the concept of causation. This is one of the main reasons

for the non-reductive nature of interventionism (Woodward, 2016a). In this article, this state is in

the metaphysical sense. Drawing an analogy from computer programming, it does not intervene

in the target object through certain objects within the program. Instead, from the programmer’s

perspective, it involves directly modifying the program parameters, resulting in the state of the tar-

get object being directly specified. Alternatively, due to hardware reasons external to the program,

the parameters related to the state of X are forcibly set, ensuring that no other input information

can alter X’s state. In the PDD framework, the basis for the validity of the relationship between

(S(X), E ,N ) and S(Y ) in (22) is necessary, and when (S(X), E ,N ) is determined, regardless of

what I is, it necessarily determines S(Y ).
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Equation (23) can be represented as another form:6

S(Y |S1(X), E ,N , I) ̸≡ S(Y |S2(X), E ,N , I) (24)

We can collectively refer to E , N , I as Ψ, and (24) can be written as:

S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ) (25)

At this point, we reach a crucial step. E , N , I are not distinguished in Ψ, and they include all

related and unrelated things, constituting a context with no need for prior knowledge. This means

that aside from the things to be examined, we only know that in the two scenarios being compared,

all other information is the same. However, we do not know among these pieces of information

which might have an impact on S(Y ) and which do not. This is precisely the judgment environment

we wish.

The content of Ψ can be defined using the common attributes of E , N , and I. According to

(23), a common feature of the three is that they are all states of affairs that can coexist with S1(X)

and S2(X). In fact, this is the only information we can obtain about them. While it seems that E ,

N , and I can also coexist with S1(Y ) and S2(Y ), they are only parts of not all states of affairs

that can coexist with them. That is, a state of affair that can coexist with S1(Y ) and S2(Y ) may

not coexist with S1(X) and S2(X). Thus, (25) implies a non-symmetrical relationship between

X and Y . Since the content of N is defined at the individual level rather than the type level of

the variable, the definition of Ψ should also be at the individual rather than the type level of the

variable. That is, for any ψi, treated as an individual or property of the individual rather than a

variable, if it can coexist with both S1(X) and S2(X), then it belongs to Ψ.

Since (25) ⇔ (24) ⇔ (23) ⇔ (22) ⇔ (21) ⇔ (20) ⇔ Assumption 6.1, we can conclude that (25)

⇔ Assumption 6.1, meaning (25) and Assumption 6.1 can logically imply each other. Therefore,

6‘|’ represents conditional on. This expression is inspired by the conditional probability notation P (Y |X) in
probability theory, which represents the probability of Y occurring given the existence of X .
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the latter can serve as a definition for the former. That is,

Theorem 5. S(X) can influence S(Y ) under certain conditions if and only if: for two different

states S1(X) and S2(X) of X,

S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ)

where Ψ represents a series of conditions, and if ψi, which is not the state of a variable treated as

a type but refers to the state of an individual or property of an individual, can possibly coexist with

both S1(X) and S2(X), then ψi ∈ Ψ.

This expression, when understood in a non-technical way, means that if the state of Y varies

when the state of X differs, while all other conditions are the same, then we can say that the state

of X can influence the state of Y under those conditions. This expression has a high degree of

intuitive fit with everyday intuition, making it not only precise for scientific or philosophical un-

derstanding but also applicable to everyday reasoning in a simple and intuitive way. For example,

a gust of wind blows, and a girl’s hat moves. In her observation, with wind S1(X) and without

wind S2(X), almost all other events are identical Ψ. Without wind, her hat doesn’t move, which is

S(Y |S1(X),Ψ); but with wind, it does, which is S(Y |S2(X),Ψ). Therefore, according to Theo-

rem 5, she can infer that the presence of wind caused the hat to move. This shows that Theorem 5

can be used to guide and explain everyday causal reasoning processes.

As for why ‘coexistence’ can serve as a foundational concept for causation, firstly, this attribute

of ‘coexistence’ is directly contained in the above formal expression and is even the only attribute

we can derive from the above analysis framework. Secondly, coexistence may be more fundamen-

tal than causation, as causation is abstract and even polysemous, while coexistence is relatively

concrete. Although in the above, ‘coexistence’ is used in a metaphysical sense, it can also be

directly observed and perceived at an epistemological level.

In some popular theories of causation, there are expressions that have a formal similarity to

Theorem 5, such as using P (Y |X) ̸= P (Y |¬X) (Cartwright, 1979; Hitchcock, 1993; Rubin,
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7 PROPER USE OF SERIES CONCEPTS RELATED TO CAUSATION

2005; Woodward, 2016a) or P (Y |do(X)) ̸= P (Y |do(¬X)) (Pearl and Mackenzie, 2018, p. 151) to

determine causal relationships. That is, if the probability of occurrence of Y varies under different

interventions on X , then there is a causal relationship between X and Y . If one analyzes precisely,

beyond intuitive vagueness, it becomes evident that this expression is incomplete and omits much

information. First, the limitations of ‘P (X)’ in situations involving continuous variables have

already been analyzed in Section 2. Secondly, this type of expression lacks information about other

conditions. Without tacit understanding, an uninformed person might interpret it as suggesting that

“the relationship betweenX and Y can be inferred by comparing P (Y |do(X)) and P (Y |do(¬X)),

regardless of the similarities and differences of other conditions." Of course, such an inference

could be incorrect.

In understanding Theorem 5, it is important to note that these are not formed through empirical

analysis and summarization but are derived through a quasi-axiomatic approach. Therefore, they

are fundamentally metaphysical. However, in situations where information for reasoning is in-

complete, epistemological knowledge may help enhance the credibility of causal inferences. This

epistemological information might include spatiotemporal relationships, results of intervention,

background knowledge, knowledge about microscopic structure (mechanisms), etc. And this is

exactly how the elements of traditional causal theories truly contribute to causal reasoning.

7 Proper use of series concepts related to causation

Now, we can provide a comprehensive clarification on the connotation of causation. From an

ontological level, the if-then function is the basis of the relationship in PDD, which is the basis of

the concept of causation in the PDD framework.

Based on Theorem 3, there are two types of contexts involving the concept of causation: one

emphasizes the potential influence of conditions on outcomes in the general sense, while the other

focuses on attributing responsibility for the variation of the state of affairs in specific cases.

In the general sense context, the definition of general potential influential relation from the
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epistemological perspective is given in Theorem 5:

S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ)

The standard statement for this relationship is: “conditional on Ψ, S(X) can influence S(Y ),"

or “S(X) is a potential factor influencing S(Y )." When the background condition Ψ is stable, it

might be suitable to say that “there is a causal relationship between S(X) and S(Y )", or “there is a

causal relationship between X and Y ." Due to the possibility of changing background conditions,

it is inappropriate to use concepts of ‘cause’ and ‘effect’ in this sense, which may be done in

traditional causal theories.

In the context of specific events, the identification of the factors responsible for the events from

the epistemological perspective ultimately relies on a combination of Theorem 5 and Theorem 47:

∃∆S(X), S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ)

Therefore, the standard statement for specific events is: “under the specific condition Ψ, ∆S(X)

is the cause of ∆S(Y )" , or “under the specific condition Ψ,∆S(Y ) is the effect of ∆S(X)". The

subjects referred to as cause and effect are the variations of the state of affairs ∆S(X) and ∆S(Y ),

not the specific state Si(X) or the variable X or specific value X = xi, the latter is believed by

other theories of causation. Additionally, meaningful causal statements must specify background

information Ψ, while the everyday expressions in this context are actually simplified and left this

information as part of tacit knowledge.

The above encompasses almost the entirety of the concept of causation in the new theory pre-

sented in this paper. This deviation in expression may also be one of the important reasons why

the concept of causation has been unclear historically.

7When multiple factors contribute to a specific result, the composite explanation ultimately reduces to the identifi-
cation of each individual factor, which still follows the method in Theorem 5.
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8 Comparison with RCT and interventionism

This section compares the new theory presented in this paper with several currently popular theo-

ries of causation, and further argues for the reasonableness and completeness of the new theory.

Whether in the statement of scientific knowledge or in theories of causation, a fundamental

consensus is the necessity of a ceteris paribus clause, literally meaning “other things being equal”.

However, for a long time, its detailed implications were seldom clearly defined. In recent years,

some causal theories have advanced in this area and achieved some basic consensus. According

to these theories (referred to as C-theories here), when analyzing the causal relationship between

two objects, all the scenarios that need to be considered can be roughly expressed as in Figure 4.

Here, the analysis focuses on the causal relationship between X and Y ; A might influence X , and

is often termed as ‘confounder’ when it also independently influences Y ; M is influenced by X

and affects Y , typically called ‘mediator’; U independently affects Y ; and N represents things

unrelated to both X and Y . Specifically, C-theory asserts that the ideal environment for causal

reasoning requires the same quantities of A and U in two comparable scenarios, but it does not

necessitate the same amount of M (Cartwright, 1979; Woodward, 2016a; Pearl and Mackenzie,

2018).

A

X M Y

N U

Figure 4: Typical situations involved in the definition of causation

This approach has significant intuitive appeal. Firstly, it confines all conditions that could

potentially influence Y apart from X , naturally leading to the attribution of the variation of Y to

the variation of X . Secondly, in observational data, if M were confined, Y would not change

anymore, thereby obstructing the judgment of the relationship between X and Y .

However, C-theory also has some flaws. Firstly, it typically only briefly asserts that the quantity

of variable M need not be the same, which is a description at the level of type. This can pose
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problems in cases where, suppose, there is a certain amount of M pre-existing in both comparative

scenarios, and their quantities differ. Since a part of M independently influences Y , the difference

in Y cannot be reliably attributed entirely to the difference in X .

Secondly, C-theory typically does not impose restrictions on unrelated variable N . All things

required to be constrained are causally connected with X or Y . For example, in Pearl’s structural

equation representation Y = f(X,UY ), UY represents omitted things that affect Y (Pearl and

Mackenzie, 2018, p. 276). However, if one does not yet know what the meaning of causation is,

how can these objects be defined? In other words, C-theory’s definition of the causal relationship

between X and Y depends on prior knowledge involving the concept of causation, which is a flaw

for definition and reasoning without prior causal knowledge.

In contrast, Theorem 5 not only fully encompasses the content intended to be defined but

also lacks the above flaws. In equation (24), the identical E ,N , I on both sides of the equation

represent all things required to be constrained. E includes all factors that can influence Y , covering

U in Figure 4; I covers general conditions that can influence S(X), thus including A in Figure 4.

Hence, A and U , which C-theory wishes to keep constant, are similarly constrained in Theorem 5.

Regarding the mediator variable M , the analysis of conditions is conducted at the individual

level in equation (24), not at the type level. The pre-existing part of M in the environment is

considered as part of N . Since N is required to be constant, its definition implies that the pre-

existing part of M must remain constant, while other parts of M are not restricted.

Regarding the unrelated variable N , in equation (24), it falls into N and is required to be the

same in both comparison scenarios. Moreover, it is undifferentiated from other causal information.

This approach ensures that the defined causal relationship fundamentally does not depend on prior

knowledge involving causation.

Therefore, the theory presented in this paper not only meets the goals set out by C-theory for

defining causal relationships but also improves upon them. The sameness of Ψ (the combination

of E ,N , I) in both comparison scenarios provides a clear and rational interpretation for the ceteris

paribus clause.
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A successful causal theory naturally cannot avoid comparison with the method of Randomized

Controlled Trials (RCTs), which is widely regarded by the scientific community as an ideal method

for analyzing causal relationships. The basic idea of an RCT hinges on the random assignments

of participants into experimental and control groups, ensuring, theoretically, an equal distribution

of factors that could influence the results across these groups. By comparing results from the

treatment group, who receive the intervention, with the control group, who receive a placebo or no

intervention, RCTs aim to attribute differences in outcomes directly to the intervention.

Comparing RCTs with Theorem 5, it becomes apparent that the reasoning conditions created

by RCTs almost perfectly align with the elements required by Theorem 5. Random assignment

ensures that all “other conditions are equal" between the experimental and control groups, which

is precisely the same as expressed by Ψ (the whole of E ,N , I) and Theorem 5. This means that

both related and unrelated conditions, undifferentiated, are balanced between the two groups, also

largely independent of prior knowledge. The difference in intervention between the two groups

signifies the difference between S1(X) and S2(X). The logic of inference in RCTs and Theorem 5

are also similar: when the above conditions are met, the difference in outcomes between the two

scenarios can be attributed to the difference between S1(X) and S2(X). In short, RCTs can be

seen as artificially creating scenarios that fit Theorem 5.

Thus, theoretically, the explanatory range of Theorem 5 perfectly encompasses that of RCTs.

However, RCTs cannot serve as a definition for the more general concept of causation due to

its clear limitations in applicability. In scenarios where RCTs are infeasible due to ethical or

practical reasons, they cannot be relied upon to explain relationships between objects. For example,

understanding the interactions between celestial bodies clearly cannot involve RCTs. In contrast,

the definition in Theorem 5 of this paper does not have this limitation, as it is a metaphysical

definition.

This naturally leads to the question of the role of ‘intervention’ in the concept of causation. In

the realm of causal theory, the concept of intervention is extensively discussed. Holland (1986)

emphasizes the necessity of interventions in drawing causal inferences in randomized experiments.
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Rubin’s Causal Model posits that interventions are critical in defining causal effects, distinguish-

ing between potential outcomes under intervention and no intervention scenarios (Rubin, 2005).

Pearl introduces the ‘do-operator’ (e.g., do(X)) as a formal representation of intervention (Pearl

and Mackenzie, 2018, p. 49). Woodward elaborates on this by defining an intervention as an ide-

alized manipulation that changes only the factor under consideration, thereby clarifying its causal

influence on an outcome (Woodward, 2003, 2016a).

However, the framework for causal explanations based on interventions still has imperfections.

These extend beyond scenarios such as celestial interactions, where interventions cannot be imple-

mented, and include the following aspects.

Firstly, interventionism contains a certain degree of circularity in its complete definition of

causation. It relies on the analysis of results similar to Figure 4, where interventions are used to fix

variables X , A, and U . Interventionism aims to define what a causal relationship is (between X

and Y ), but it requires prior knowledge of causation to define the relationship between M and X

and Y . In other words, its explanation of the concept of causation relies on the concept of causation

itself, making it non-reductive. Woodward argues that this is not viciously circular, because it is not

explaining the same causal relationship with itself but using causal knowledge of one relationship

(M and X) to explain another causal relationship (X and Y ), and some basic hypothesis of the

former can provide new insights for the latter (Woodward, 2016a). However, this defense faces

a fundamental difficulty: if one does not understand what causation means, they will first fail to

comprehend the relationship between X and M , and thus, also the relationship between X and Y .

Secondly, conclusions about causal relationships based on interventionism may not be com-

plete and accurate. Consider a thought experiment depicted in Figure 5, where there is a room A

with a switch SA connected to a screen DB in another room B, displaying the action signal

(ON/OFF) of SA. There is another switch SB in room B, actually connected to the light LA in

room A, and a person PB in room B may press SB according to her will upon seeing the screen

DB. Suppose a person PA enters room A and wants to determine if switch SA controls light LA.

If PA repeatedly operates SA and observes LA lighting up, can he deduce the relationship
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Figure 5: Switch and light thought experiment.

between the two through this intervention experiment? According to interventionist theory, if PA

finds that LA changes following repeated interventions (operating SA), they might conclude that

SA can stably control LA. This case challenges interventionist causal theory by demonstrating

that interventionist reasoning can lead to erroneous attributions of cause, especially in complex or

hidden causal mechanisms, and in situations where not all relevant factors can be controlled or

observed. According to the new theory in this paper, PB’s will is part of the condition Ψ, but it’s

unclear if this condition remains consistent between PA operating the switch and not. Therefore, it

does not completely satisfy the judgment condition in Theorem 5, preventing a strict inference of

causation.

Thirdly, it is possible to possess prior causal knowledge without referring to intervention. For

example, in the eyes of a car designer, the causal relationships between various mechanical parts

of a car (such as ‘accelerator’ and ‘wheels’) are constructed based on mechanical principles. This

causal knowledge is a priori for the designer and does not depend on intervention to be known.

Even if the designer is physically unable to test it personally due to a disability, as long as their

knowledge of mechanisms is sound and they fully trust their design skills, they can possess this

causal knowledge. More metaphysically, even if a specific car component fails, this does not affect

the causal relationships between components on the design blueprint, which is a metaphysical

piece of knowledge independent of any real conditions. For a computer programmer, the influence

relationship between events in the program is defined by him, and he can obviously know this

relationship without any intervention. Even more extremely, suppose the world was created by an
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omniscient God; in the eyes of this God, the relationships between states of affairs in the world

would be a priori known and not dependent on intervention.

Therefore, intervention may not be a necessary concept for defining causation and may not

always help in accurately discerning causal relationships at the epistemological level. Thus, a

comprehensive definition of causation cannot rely on the concept of intervention.

9 Cases application

Randomized Controlled Trials (RCTs) are widely regarded in the scientific community as the ideal

method for analyzing causal relationships. As previously analyzed, under circumstances where in-

tervention is possible, the new theory of causation presented in this paper is fundamentally aligned

with RCTs in its definition of causal relationships. However, in some situations, RCTs are not fea-

sible due to ethical or practical reasons. In this section, several cases are presented to demonstrate

how the new causal theory can provide insights into causal analysis in such scenarios.

Snow (1856) conducted an extensive investigation into the cholera outbreaks in London in the

mid-19th century. Within the areas he studied, two main water companies served a population

exceeding 300,000. He found that the mortality rate was 107 per 100,000 inhabitants supplied by

one company, compared to only 8 per 100,000 for the other. His investigation revealed that the

infrastructure of these companies extended throughout the districts, with pipes running down all

streets and into nearly every court and alley. These companies supplied water indiscriminately to

a diverse demographic, encompassing both affluent and impoverished residents, large and small

houses, and people of all genders and ages. Notably, there was no distinction in the socioeconomic

status or occupation of individuals receiving water from either company.

Is it possible to infer a causal relationship based solely on this information, using the new

causal theory presented in this paper, without conducting an interventional trial? The answer is

yes.

We can apply the information from Snow’s study as follows: Use S(X) to represent the state of
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the water supply (either from one company or the other), and use S(Y ) to represent the incidence

of cholera (quantified as mortality rates). Since factors like socioeconomic status, age, gender,

and occupation, consistent across populations served by both companies are almost the same (all

those things which can coexist with both S1(X) and S2(X) are the same in both populations),

they can be represented as Ψ. Thus, all the information satisfy S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ).

According to Theorem 5, we can confidently infer that ∆S(X) is the cause of ∆S(Y ), which

means the difference of water supply is cause of the difference of the cholera mortality rates (107

vs. 8 per 100,000).

Therefore, for this case, based on the new theory of causation presented in this paper, a causal

relationship can be confidently inferred from the aforementioned non-interventional observational

data. The inference of this relationship is quite substantial. Further investigation into this causal

relationship is not necessary for the judgment of the causal relationship, but only deepen our un-

derstanding of the details of this relationship, thereby strengthening our recognition of the relevant

causal mechanisms. For example, Snow’s further investigations revealed that the key difference

between the two water companies lay in their water sources. One company drew water from

contaminated sections of the lower Thames River, while the other’s water source was relatively

cleaner, as it was sourced from the upper reaches of the Thames. This established a clear relation-

ship between water source contamination and cholera mortality rates, and made our conclusion

more strong.

The new theory can also provide ideas for exploring the relationship between smoking and

lung cancer.The historical debate on the link between smoking and lung cancer hinged on the diffi-

culty of proving causation without randomized controlled trials. Skeptics argued that the observed

association might be due to unmeasured confounding factors, such as a genetic predisposition in-

fluencing both smoking habits and lung cancer risk. This skepticism, underscored by the fact that

not all smokers develop lung cancer and some non-smokers do. The practical and ethical chal-

lenges in conducting RCTs for smoking meant that these doubts persisted for decades (Pearl and

Mackenzie, 2018, pp. 168-169).
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Firstly, we need to precisely state the question of interest, which is the relationship between

tobacco inhalation (rather than the act of smoking itself) and lung cancer. Let S(X) represent

the state of tobacco inhalation and S(Y ) represent lung health status. According to Theorem 5,

an effective judgment environment requires that all conditions potentially coexisting with both

S1(X)(non-inhalation of tobacco) and S2(X)(inhalation of tobacco) remain the same in both com-

parison scenarios. These conditions include all possible internal body conditions related to smok-

ing, such as a hypothesized smoking gene, because a person with a smoking gene may or may

not inhale tobacco. Therefore, data should not be derived from active smokers; instead, it should

be obtained from passive smokers, who are exposed to environments where smoking occurs by

others, thereby inhaling tobacco smoke.

From this perspective, focusing on passive smokers, two methods are feasible for investigat-

ing the relationship between tobacco and lung cancer. The first method can resort to traditional

randomized controlled trial without facing ethical issues. For instance, we could intervene in the

environment of passive smokers to reduce their inhalation of tobacco smoke, and then compare

the differences in disease incidence rates between them and an uninterfered group, as was done by

Emmons et al. (2001).

The second method employs a statistical investigation method similar to the cholera case men-

tioned above, we can construct two comparative groups: one group consisting of passive smokers

and another group not exposed to passive smoking. During the investigation, strategies can be

employed to ensure that the two groups are as similar as possible in various aspects such as gender,

age, income, education level, and all others that are potentially coexisting with both S1(X)and

S2(X). Such meticulous matching will ensure that Ψ remain consistent across both groups. Con-

sequently, according to Theorem 5, if the investigation reveals that the lung cancer incidence rate

is significantly higher in the passive smoking group compared to the non-passive smoking group,

S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ), then it would strongly suggest a causal relationship between

tobacco smoke inhalation and an increased risk of lung cancer.

In this case, utilizing the new causal theory, we can clearly determine that passive smokers
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should be the focus of the analysis. This approach transforms scenarios initially unsuitable for

RCTs into feasible ones. Additionally, a statistical investigation strategy can construct conditions

required for determining causal relationships, enabling inference without necessarily depending on

interventional trials. This offers a highly beneficial analytical tool for research methods in social

science and epidemiology.

10 Conclusion

The concept of causation is essential for understanding relationships among various phenomena,

yet its fundamental nature and the criteria for establishing it continue to be debated. This paper

presents a new theory of causation through an axiomatic-like system. The core of this framework

is Probability Distribution Determinism (PDD), which updates traditional determinism by repre-

senting states of affairs as probability distributions, with the ‘if... then...’ function serving as its

foundational definition. Based on PDD, by merely using appropriate naming strategies, it is possi-

ble to derive systems in which the structural characteristics of relationships among things closely

resemble those in the real world, such as having various forms of nested hierarchies. Additionally,

there are two interrelated yet distinctly different contexts associated with relationships in PDD: one

emphasizes the potential influence of conditions on outcomes in the general sense, while the other

focuses on attributing responsibility for the state changes in specific scenarios. The formula for de-

termining the relationship in the general sense is established as S(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ).

Subsequently, within the PDD framework, the paper clarifies the legitimate use of a series of con-

cepts related to causation in those two contexts, thus encompassing the entire detailed connotation

of the concept of causation. The comparison with other theories of causation and the analysis of

case applications demonstrate that the new theory is applicable not only to situations where other

theories are competent but also to situations where they are not. This suggests that, although cer-

tain aspects within the new framework may require further analysis, it provides a highly promising

direction for a deeper understanding of causation.
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This paper presents a new theory of causation through an axiomatic-like system.It proposes

that states can be represented as probability distributions, an approach more broadly applica-

ble in causal analysis than traditional concrete state understanding and probability interpreta-

tion. Traditional determinism, combined with this new understanding, can accommodate both

non-probabilistic and probabilistic scenarios. This paper introduces it as probabilistic distribution

determinism, with its core being the logical conditional if...then.... Based on this new assumption

of determinism, a system can be derived where the structural characteristics of the relationships

between objects closely resemble the real world, supporting the reasonableness of the assumption.

The framework leads to the analysis that there are two interrelated yet distinct contexts re-

garding the relationships between states: one focuses on the potential influence of conditions on

results in an absolute sense, and the other on the ascription of responsibility for changes in states

in specific contexts. The cause as the bearer of explanation in the latter must be something that

has a state difference in that context, not something that is relatively stable and unchanged. The

traditional usage of the concept of causation conflates these two different levels, and distinguishing

them helps to clarify the concept’s meaning.

Within the framework of probabilistic distribution determinism, the paper derives the essence

of causation as: in the absolute sense context, the definition of general relation is, S(Y |S1(X),Ψ) ̸≡

S(Y |S2(X),Ψ), with the standard statement for this general potential influence relationship being:

conditional on Ψ, S(X) can influence S(Y ) or S(X) is a potential factor influencing S(Y ). At

this level, due to the possibility of changing background conditions, it is inappropriate to use cause

and effect to describe entities. If the background condition Ψ is stable, then a causal relationship

between S(X) and S(Y ), or X and Y , can be affirmed. In the context of specific events, for the

identification of the responsible party for a particular change in state, there is a variation in the state

of S(X) in the current context, andS(Y |S1(X),Ψ) ̸≡ S(Y |S2(X),Ψ). Thus, the standard causal

statement for specific events is: conditional on Ψ, ∆S(X) is the cause of ∆S(Y ) (or ∆S(Y ) is the

effect of ∆S(X)), meaning causal statements must specify conditional information, and the sub-

jects referred to as cause and effect are the state variations (∆S(X) and ∆S(Y )), not the absolute
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states Si(X) or the variable X .

Through comparison with RCTs and interventionism, the paper demonstrates that the new

theory’s expression through Ψ fully includes what these theories aim to control when defining

causal relationships, and is more precise in its definition, avoiding their limitations. Case analysis

shows that the new theory can be applied to infer causal relationships from observational data not

based on experimental intervention and provide insights for scientific inquiry, thereby uncovering

more scenarios where interventional trials are feasible.

In summary, existing causal theories do not fully suffice in defining the concept of causation,

whereas the explanatory framework of this paper not only explains scenarios applicable to other

causal theories but also those where other theories are not applicable. Its powerful explanatory

capacity is demonstrated through comparison with traditional theories and analysis of specific

cases. While some details of the analysis and arguments in the paper may need further development

and strengthening, the framework provided holds potential for resolving disputes related to the

concept of causation.
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