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Abstract Causal reasoning can be seen as the backbone of science in aiming at the
attainment of stable, transferable, and replicable knowledge. In the empirical sci-
ences, gathering data helps the researcher in forming an opinion about the investi-
gated causal hypothesis. What makes collected data evidence for or against such a
hypothesis is its interpretation in light of the indicative traces the hypothetical causal
association entails. In this paper, I will first collect the pivotal causal indicators. I
will then revisit the literature on causation and put on different hats in reassessing
how theory choice influences the relationships amongst this set of indicators. I will
finally argue that, for the precise formulations proposed, utilizing all four indicators
(i) presents a resolution to seemingly conflicting perspectives in the causal literature,
and (ii) paves the way towards an enriched picture of scientific instruction, prediction,
and explanation across the conceptual fences of different causal theories.
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1 On the track of a causal association

Causal reasoning can be seen as the backbone of science in aiming at the attainment
of stable, transferable, and replicable knowledge. In the empirical sciences, gathering
data helps the researcher in forming an opinion about the investigated causal hypoth-
esis which is rarely tested directly. What makes collected data evidence for or against
the hypothesis is their interpretation in light of the indicative traces the hypothesized
causal association entails: The more such empirical data supports the theoretical con-
sequences (i.e., testable semantical aspects) of a causal hypothesis, the higher our
confidence in the existence of the causal association, precisely because these theo-
retical consequences speak to the truth of the hypothesis as mediating indicators. In
this paper, I will first collect the pivotal causal indicators and then discuss their inter-
dependencies through the lenses of the most prominent theories of causation. I will
then advance the view that making these indicators precise and keeping them distinct
facilitates a unifying view on seemingly contradictory theoretical stances and thus
paves the way for a novel, cross-theoretical concept of causal assessment. But let me
start by carving out the pivotal indicators of a causal association.

The philosophical literature on the epistemology and ontology of causality dis-
tinguishes three tightly related main goals of the hunt for causal knowledge: control,
prediction, and explanation. The idea that causal knowledge bestows control on us
is rooted in the intuition that causes are difference-makers and can thus be leveraged
to bring about desired effects (or influence expected effect events toward a desired
direction, respectively). Possessing knowledge of such control factors allows us to
instruct others in their pursuit of specific outcomes. Control can be understood as
a special instance of prediction: Predicting the effects of my own actions precisely
enables me to choose the action suited to bring about the predicted effect. When it
comes to predicting outcomes whose causal factors are not (or not fully) under our
control though, we rather couch our statements about suspected effects in a language
that conveys our uncertainty about possibly complex scenarios. We are prepared to
encounter exceptions in the chain of causal links and oftentimes resort to speaking of
tendency and likeliness: a statement such as “smoking causes lung cancer” is to be
understood as a comparative claim about risk, i.e., ultimately, a claim about probabil-
ities (and how these change). Knowledge about difference-making and information
about tendencies may both figure in the third main aim of causal reasoning, explana-
tions. Nevertheless, if a causal explanation is given in an attempt to satisfy a question
about how exactly it was that a specific effect occurred, the explanation will include
semantically rich details about the workings of the system under consideration.

Instructions, predictions, and explanations are fundamentally grounded in time –
they will only be fruitful and successful in a given context if they do not run counter to
how the causal and the temporal structure of Nature are related. If causes precede their
effects, then they will make a difference to future events, they will shape temporally
posterior probabilities, and they will figure as genuinely initial conditions for fine-
grained descriptions of a system’s interacting components in informative answers to
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Theory D-M PROB MECH TEMP
Hume I X X

Hume II X (X)
Lewis X (X)
Mackie X (X)
Reichenbach X X
Suppes X X
Good X X
Spohn X X

Pearl X X
SGS X X
Woodward X X

Salmon X X
Dowe X X

Popper X X

RWT X X

Table 1: Systematic overview over how various prominent theories of causation build
on different indicators of a causal relation in their explication of cause and effect.

how-questions. Virtually no theory of causation stays silent on how its concepts re-
late to time: If time does not explicitly figure in the definiens of a causal relation, the
direction of causation is stipulated as along the arrow of time, because temporal order
plays a crucial role for the identifiability of cause and effect – as deeply entrenched
in our intuitions, as established by successful heuristics, or as encoded in physic’s
differential equations (possible deviations from such alignment have been philosoph-
ically motivated and defended; see, e.g., [9] and [32]).

When empirical data informs us about the difference-making or probability-
raising relation between cause and effect, or about a system’s mechanistic and tem-
poral structure, these semantical aspects point to the truth (or falsity) of a hypoth-
esized causal association as testable causal indicators. Fig. 1 provides a systematic
overview over how different conceptual approaches towards causation build on these
four pivotal indicators of a causal association in their explication of cause and effect,
with D-M as label for the difference-making aspect of a cause, PROB referring to
both characteristics of probabilistic covariation, dependency and uncertainty, MECH
as label for knowledge about the connecting mechanism supporting the causal asso-
ciation, and TEMP as label for information about the temporal order of cause and
effect:

1. Hume I refers to the first half of Hume’s famous dictum: “We may define a cause
to be an object followed by another, and where all the objects, similar to the first,
are followed by objects similar to the second.” ([14, Section VII]). Building on
constant conjunction, this analytic departure from a purely metaphysical concept
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of causation can be seen as an important starting point for regularity theories of
causation.

2. Hume II refers to the Hume’s other words, the second half of his famous def-
inition: “[I]f the first object had not been, the second never had existed.” ([14,
Section VII]; it might be argued about whether first and second have a temporal
meaning here). This can both be understood as the starting point for counterfac-
tual as well as for interventionist theories of causation, as listed in the following.

3. Lewis actually picked up on Hume’s second half of the quote and framed his con-
cept of causation in terms of counterfactuals (to be evaluated in possible worlds).
In his first formulation ([19]), Lewis does without time and only builds on the
asymmetry of difference-making (‘small miracles’ disturbing the normal course
of events). In further elaborations ([20]), Lewis introduces time in an attempt to
avoid overdetermination via fine-graining.

4. Mackie’s famous INUS condition goes under the label ‘logical reconstruction’ –
in this explication, a cause is defined as a particular element in a logical schema
by which the relevance of a cause to its effect (D-M) is captured in terms of
necessity and sufficiency. It shall be mentioned that Streven’s kairetic account is
formulated in the same vein (see [40]). Although Mackie does not include time
in his definition, he discusses the spatio-temporal distance and order of the INUS
relata explicitly (see, e.g., Causes and Conditions, [22, p. 258]).

5. The names of Reichenbach ([33]), Suppes ([41]), Good ([12]), and Spohn ([38])
are all connected with theories integrating probabilities and time in a Humean
effort to learn about the causal structure of the world only from observational
data.

6. Pearl (together with Verma and Halpern, see [27], [28], [42], [13], [13]), Spirtes,
Glymour, and Scheines (SGS) ([37]), as well as Woodward ([44]) explicate causal-
ity in terms of probabilistic concepts, and build on the Bayes net framework to
accommodate the idea of asymmetrical difference-making in the sense of system-
external interventions (distinguished from personal agency).

7. Salmon ([35]) and Dowe ([8]) are best known for emphasizing the push-and-pull
mechanism (MECH) between cause and effect, in terms of traceable physical
processes or exchange of conserved quantities. Although the proponents of these
ideas aimed at freeing the concept of causal relations from non-physical knowl-
edge, implicitly, this move cannot do without counterfactual information (D-M)
about how things would have been had two processes not interacted, or had en-
ergy, momentum, etc. not been transferred.1

8. Popper argues for an objective interpretation of conditional probability capturing
causally productive disposition as “a property of the generating circumstances”
([31, p. 34]). In Popper’s view, probabilities “must be physical propensities, ab-
stract relational properties of the physical situation, like Newtonian forces, and
‘real’, not only in the sense that they could influence the experimental results, but
also in the sense that they could, under certain circumstances (coherence), inter-
fere, i.e. interact, with one another” ([31, p. 28]). Causal theories in that spirit,

1 [8] notes that “Salmon was uncomfortable with the use of counterfactuals, fearing that their context
dependence was problematic for an ‘ontic’ account.”, and examines Salmon’s stance ([35]) in light of
Kitcher’s ([17]) critical comments.
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in one way or another, combine probabilistic knowledge about causal tendencies
(PROB) and a process or systems view (MECH) to explicate productive capacity
or causal power (see also, e.g., [23] and [24]).

9. I want to consider one more position in this list: RWT, the Russo–Williamson
Thesis, is highly debated in the literature on causation in medicine and can be
understood as in opposition to causal inference based on merely probabilistic data
(as advocated in the evidence-based medicine paradigm, EBM). RWT suggests
that only both an appropriate correlation and mechanistic knowledge together
genuinely establish a causal claim (see [34]).

This list is certainly not exhaustive, but it illustrates how the theoretical differ-
ences between prominent analytic theories of causation can be broken down in terms
of the four indicators introduced above. Notably, all of the theories discussed (explic-
itly or implicitly) rely on a combination of two aspects.

My plan for this paper is to first make the content of the four causal indicators
introduced above explicit. After doing this I will revisit the literature on causation
and put on different hats in reassessing how theory choice influences the relation-
ships among this set of indicators, and how each indicator relates to the hypothesized
causal association. I will then argue that, for the precise formulations proposed, utiliz-
ing all four indicators (i) presents a resolution to seemingly conflicting perspectives
in the causal literature, and (ii) paves the way towards an enriched picture of scien-
tific instruction, prediction, and explanation across the conceptual fences of different
causal theories.

2 Evaluating causal indicators with different causal theories

Before I want to do a comparative survey of how the conceptual relations between our
four indicators change with respect to one’s choice of causal theory, I will explicate
the content of our indicators on a level of abstraction suitable for the present purpose.
In doing so, I am not aiming at establishing a logical system as a frame for a rigid
proof. My goal is to delineate the indicators in such a way that I can juxtapose them
on very much the same analytic level with different theoretical explications of cause
and effect.

The four causal indicators introduced above encode facts about the investigated
causal association. Let me list the four indicators again together with their shorthand
slogans and more elaborate explications in which I am relating intrinsic connotations
and sub-properties of their respective relational characteristics:

D-M: Causes make a difference to their effects; or more elaborate: A cause event
makes a difference (influence) or can be used to make a difference (control) to the
normal course of events (as counterfactual deviant) in bringing about its effects.
PROB: Causes and effects covary; or more elaborate: A cause event will change
the probability of its cause (dependency) within a particular expectancy (predic-
tive uncertainty).
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MECH: Causes and effects are connected by a mechanism; or more elaborate:
There exists a mechanism by and through whose interconnected and interacting
components the cause influences its effect.
TEMP: Boldly put, causes precede their effects; or a bit more elaborate and a bit
more cautious at the same time: cause and effect are in a temporal relation (w.r.t.
order, duration, and distance) that is compatible with one’s understanding of how
time and causation hang together.

It is important to remark here that these indicators are of different strength in
causal assessment: TEMP might only be less informative yet a necessary requirement,
while D-M might be understood as a perfect indicator (i.e., a sufficient condition)
entailing the existence of a causal association.

The following four sections will look in more detail at how our four indicators
are spelled out in different causal theories, and how their conceptual relations vary
for these different causal theories. To this end, I will revisit D-M (Subsec. 2.1), PROB
(Subsec. 2.2), MECH (Subsec. 2.3), and TEMP (Subsec. 2.4) by putting on different
‘theoretical hats’ (not necessarily all hats in the list above for all points of comparison,
but in each case at least one pair of hats that provoke contrasting viewpoints). To
structure the text, I will highlight the discussion of such different hats by marking
the theoretical approaches listed in Tab. 1 in bold face. For illustrative purposes I will
use some of the standard examples found in the literature together with examples
taken from medicine, where the analysis of cause and effect comes with notorious
difficulties and the theoretical/conceptual frame for causal assessment is far from
settled.

2.1 Causes make a difference to their effects (D-M)

D-M and PROB.Keeping the causal indicators D-M and PROB separate reflects the
conceptual/methodological dividing line between observational/static and interven-
tional/dynamic support for the causal hypothesis, i.e., the opposition between infer-
ence from observation alone vs. inference from data collected in interaction with the
investigated system or population. As mentioned above, this principled distinction
is already laid out in Hume’s famous twofold definition of causation which can be
seen as a point of reference both for regularity/supervenience theories as well as
for counterfactual/manipulationist theories of causation (cf. [14, Sec. VII]). Pro-
ponents of the latter camp emphasize in their theories the asymmetrically directed,
difference-making relationship between cause and effect (in contrast to symmetric
regularities; see also [18] for a discussion of difference-making characteristics). For
example, in Pearl’s interventionist account of causation, D-M and PROB surface
in the mathematical explication of cause and effect as two distinct theoretical compo-
nents: the difference-making power of a cause is mirrored in changed outcome values
upon symmetry-breaking transformation of the investigated system, whereas uncer-
tainty is expressed as disturbance terms inside the structural equations inducing the
topology of the causal network. Causal mechanistic functions of the form fi(pai, ui)
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(determining in the observational case the outcome of effect variable Vi w.r.t. its
direct causes – i.e., parents in the network – pai and the sum of potential random
disturbances ui) are replaced by constant values to express the forced value of Vi

upon intervention on the system. This symmetry-breaking intervention is mirrored
in the graph as removal of edges from Vi’s parents into Vi. Thus, what difference-
making via intervention means is really defined over a pair of Bayesian networks
(for a formal statement of this contrast, see especially Pearl’s definition of a proba-
bilistic causal model, Def. 7.1.6 in [28, p. 205], and his explication of causal claims
in terms of structure-based counterfactuals, [28, pp. 222 f.]).

From the perspective of the empirical sciences, the dividing line between D-M
and PROB becomes blurred: When the Russo-Williamson Thesis (RWT) ([34])
calls for the combination of difference-making plus mechanistic knowledge, what is
really meant is appropriate correlations plus biologically plausible explicatory sys-
tem descriptions (in order to improve upon the merely data-driven orientation the
evidence-based medicine paradigm advocates). RCTs, for example, have been de-
signed to yield robust difference-making information about an investigated system.
Yet, even when diligently devised, it is simply never possible to consider (let alone,
measure) all possible confounding factors potentially influencing the investigated
causal association. The “ideal RCT”, in which the investigated causal association
is genuinely isolated from other influences, must be understood as a guide in the sci-
entific endeavor. Consequently, if one skeptically claims that only the unattainable,
ideal RCT yields genuine difference-making information (along the lines of [45]),
then one has to accept that any real-life experiment only returns correlations (depen-
dency and strength) – some more, some less appropriate.

D-M and MECH.I will treat the relationship between the causal indicators of
difference-making and mechanistic connection below after subjecting MECH to close
scrutiny in Sec. 2.3.

D-M and TEMP.The counterfactual-based cases of Hume II, Lewis, and Mackie sug-
gest that counterfactual intuitions (as one way of spelling out difference-making)
better be supplemented with temporal information to avoid certain causal pitfalls:
E.g., so-called backtracking conditionals must be ruled out by additional knowledge
if one wants to maintain the intuition that causes precede their effects. The cluster of
interventionist and process accounts in the lower half of Tab. 1, however, shows
that the temporality aspect of a hypothesized causal relation seems to be secondary if
mechanistic details are available or the control aspect of D-M is emphasized – quite
naturally so: (i) Mechanistic information is understood to provide insights into a sys-
tem’s development over time, and (ii) knowledge about how to control a system can
be used in predicting the outcome of one’s own actions (or, similarly, in instructing
someone else). Pearl ([28]), SGS ([37]), and Woodward ([44]) augment their proba-
bilistic frameworks in a way such that causally interpreted conditional probabilities
only allow for causal flow in one direction.

D-M and the causal claim.As mentioned above, D-M can be understood as a per-
fect indicator of a causal relation. But, to qualify this statement: Although in the
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empirically-informed literature on causal inference Randomized Controlled Trials
(RCTs) are advocated as the means of choice for detecting difference-makers, any
RCT is necessarily bound to a set of variables deemed relevant and sufficient for the
task. The output of an RCT will thus only yield partial information about D-M in the
idealized absolute sense. Consequently, even though D-M might be a perfect indica-
tor of a causal relation, there is simply no perfect data to match this indicator. We
have to keep this in mind going forward (see, e.g., [45] and the paragraph on D-M
and PROB above.).

Moreover, even if one understands D-M as a perfect indicator of a causal relation,
it is not a conceptual necessity to infer from the truth of a causal claim the possibility
of control via difference-making. Another look into the discussion around the efficacy
and validity of RCTs reveals why. In their discussion of causal inference from RCTs,
Landes, Osimani, and Poellinger ([18]) state the following:2

Methodological pluralists such as Cartwright [7,5], and Stegenga [39], among
others, express concerns against the privileged role of RCTs also on grounds
that classical ‘linear’ approaches to causal inference cannot do justice to the
complexity of causal phenomena in the biological and social sciences, charac-
terized by nonlinear causation and causal interactions. In the same line, also
modular conceptualization of causes such as the ones implied in the causal
graph methodology developed by Pearl [28] and Glymour [37] and colleagues
(see also [44]), are under attack for failing to recognize that causes may be
holistic and therefore may be not adequately captured by a difference making
account.

Keeping a causal relation and its indicator D-M separate leaves room for holistic
causation in systems that cannot be investigated with the modularity-based inter-
ventionist toolbox. Pearl as prominent proponent of the interventionist account of
causation rejects the idea of holistic causation as a contradiction in terms. Not only
does he define what it means to be a cause based on atomic, surgical interventions,
he also emphasizes repeatedly that any practical task that can be described in causal
vocabulary can also be cast in a causal model and consequently precisely be specified
and analyzed in terms of hypothetical interventions (see in particular Pearl’s reply to
Cartwright’s critique in Appendix 11.4.6 of [29, pp. 362 ff.]). From this perspective
(and contrary to the holist’s position), knowing that the causal association holds is
equivalent to knowing that this relationship is characterized by the difference-making
property.

Now, one could either say that Pearl’s account simply rules out the idea of holis-
tic causation precisely in tying causation to the possibility of interventions, or that
his account only covers a subset of causal scenarios – namely those that can be ana-
lyzed via intervention. Yet, even for the seemingly irreconcilable clash between Pearl
and Cartwright on this matter, a conciliatory middle-ground can be found in Wood-
ward’s relativization of causal efficacy to the question whether a suitable intervention

2 See also Osimani’s paper on the asymmetry of evidence for risk [25] as well as the concerns expressed
in [6], [24], [1], and [16]
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variable can practically be defined. In this move, Woodward ([44]) separates causal
structure (in the same Bayes-net spirit as Pearl) from interventions which might not be
straightforwardly guaranteed (in contrast with the abstractly defined, purely structural
transformations in Pearl’s proposal). In this sense, Woodward combines Cartwright’s
and Pearl’s analysis in his fine-grained sub-case definition of causal effect. His ac-
count can be understood as one further, illuminating example of how collecting differ-
ent understandings of/stances towards difference-making, encoded in different causal
theories can be used in strengthening prediction, explanation, and instruction (con-
trol) – even if (or: even more so if) the respective theories are seemingly in conflict.
Key to this enriched concept of cross-theoretical causal assessment is the distinction
between the hypothesis and its indicators – and the distinction between different in-
dicators of causation. I will now turn to the causal indicator PROB and investigate its
role in contributing to enriched, cross-theoretical causal assessment.

2.2 Causes and effects covary (PROB)

We already discussed the relationship between PROB and D-M above (Sec. 2.1); how
PROB and MECH are related shall be looked at in detail in the next section (Sec. 2.3)
– so we are left with the question how PROB and TEMP are related, and if their
relationship varies for different ‘theoretical hats’.

PROB and TEMP.The relationship between probabilistic and temporal information
is really at the heart of much of the debate on both the ontology and the learnabil-
ity of causality since Hume (Hume I in the table above). Reichenbach’s common
cause principle ([33]) highlights the necessity of temporal information in learning
about the direction of a causal association: Correlation only tells us that some causal
structure supports the dependency, but not which. In probabilistic theories of causa-
tion, information about dependency and/or tendency must thus be supplemented with
temporal information to discern sound models from misrepresentative ones. Notably,
Popper deviates from this requirement in his formulation of the propensity account
– he invokes a capacity understanding of a causal system in order to treat quantum
experiments in which precisely the idea of a cause’s temporal precedence seems to
be violated. The proponents of the interventionist account of causation do not in-
clude time in their explications, but – as mentioned above (in the paragraph on D-M
and TEMP) – temporal information becomes secondary once knowledge about con-
trol (difference-making via intervention) is available. One important thing shall be
mentioned here, nevertheless: When the interventionist account of causation is im-
plemented to infer causal relations from static, non-interventional data with causal
learning algorithms (e.g., with Pearl’s algorithm for Inferred Causation, IC*), time
comes back into the picture explicitly as one way of narrowing down the class of ob-
servationally equivalent (Markov-equivalent) causal structures. Acquiring informa-
tion about the temporal structure of a causal association is not always straightforward
nor trivial, since temporal order, distance, and duration may interact such that variable
choice (or definition) becomes an arduous task. For example, in epidemiology, where
the onset of a certain disease might not have been detected or well documented, the
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underspecified duration of the disease might make it difficult to avert confounding by
indication.

PROB and the causal claim.I want to conclude this subsection with a some brief re-
marks on the relationship between the indicator PROB and the hypothesized causal
association: According to Reichenbach’s principle, there is no correlation without
causation; i.e., when PROB points to probabilistic dependency between cause and
effect candidate, this precisely means that they stand in some causal relation (may
it be a common cause structure). Reichenbach’s principle together with the possibil-
ity of capturing uncertainty with random variables has been exploited by probabilis-
tic approaches in order to deliver better predictions by simulating exceptional influ-
ences and unmodeled disturbances. Yet, problems emerge when it comes to extracting
causal associations from our surroundings: Firstly, concrete real-life data will in all
cases show dependencies and tendencies between any two variables. The negative
signal ‘independency/no tendency’ must obviously be relativized to some threshold,
i.e., in statistical terms, some arbitrarily or habitually fixed significance level (in other
words: algorithms for the detection of independencies are only as good as the power
of the statistical test they encode). And secondly, causation does not entail correla-
tion, in reverse (see especially Cartwright’s critical comment ‘What is Wrong with
Bayes Nets?’, [3]):

(i) Causes do not necessarily raise the probability (tendency) of their effects (e.g.,
a badly hit golf ball might arrive at the hole only because some tree’s branch,
usually an obstacle, diverted the ball in the right direction),

(ii) in Simpson’s paradox it depends on the choice of population whether some vari-
able raises or lowers the probability of a second dependent one,

(iii) causal dependency might be hidden by statistical independence through precise
cancellation (as, e.g., in Hesslow’s famous pill example),

(iv) same time trends may be statistically dependent, but not causally linked (as, e.g.,
when the bread price in London and the sea level in Venice rise alike), and

(v) correlation (or covariation, respectively) might simply be due to other reasons
like logical, mathematical, semantical dependencies (see also [43]).

Obviously, probabilistic causal analysis is well-advised to include evidence for a
second causal indicator in order to avoid such pitfalls. Table 1 shows how different
theories emphasize additional concepts – with different advantages and different dis-
advantages (for the combination of PROB + DM see Sec. 2.1, for the combination of
PROB + MECH see Sec. 2.3, and for the combination of PROB + TEMP see Sec. 2.4
below).

With current achievements in statistical data analysis and machine learning tech-
niques, causal inference from even large pools of data has become attainable. This
opens up the possibility of synthesizing big and unstructured, heterogeneous and also
historical data. Reichenbach’s principle tells us that PROB alone will not be a good
idea for causal analysis, and causal learning algorithms must be supplemented with
further information to narrow down the output class. Viewing causal assessment from

10



the here proposed higher perspective in distinguishing the indicators of a causal hy-
pothesis makes transparent how automated causal inference techniques can benefit
from cross-theoretical causal assessment – in specifying heuristics, in encoding ex-
pert knowledge, and in defining points of input for supervised learning strategies.

2.3 Causes and effects are connected by a mechanism (MECH)

The concept of mechanism is highly debated in the philosophy of science, with differ-
ent characterizations emphasizing different qualitative aspects of what a mechanism
could be and what the concept might be useful for.3 However, a common denomi-
nator of this enterprise seems to be that mechanistic reasoning is invoked in contrast
to black-box inference, precisely when questions about the innards of the black box
arise. Therefore, one idea common to different conceptualizations is modularity: A
mechanism is somehow composed of different parts that together fulfill a certain
function, may it be to propagate something, to sustain itself or a larger system, or
also to act as a switch for other connecting mechanisms in relaying inputs to different
outputs. While the causal indicator MECH, as introduced above, refers to the com-
plete mechanism, in biology or pharmacology for example it is usually the case that
evidential support for MECH comes in small pieces (about sub-mechanisms). How
such piecemeal evidence is glued together in support of MECH and what it means
for MECH to be partially “confirmed” are difficult questions in themselves and go
beyond the scope of this paper. As for D-M and PROB, I want to investigate MECH’s
relation to the other indicators from different theoretical perspectives in the following
– yet, what could be our handle on this elusive creature?

MECH was introduced above as encoding the existence of a mechanism by and
through whose interconnected and interacting components the cause influences its ef-
fect. This existential claim is easy prey to charges of vacuousness, if one understands
Nature as the all-embracing mechanism whose interconnected and interacting com-
ponents support causation around and within us. To avoid this conceptual erosion I
want to fully embrace the fact, that the indicator MECH is perspectival in character in
the following sense: (i) Mechanistic reasoning is invoked in going beyond black-box
inference, when how-questions arise and the need for a stable qualitative description
of a system’s inner workings emerges – such contexts establish perspectivally if and
when an answer is deemed satisfying, and when a description is good enough to sup-
port explanation. (ii) Depending on the investigation’s level of abstraction, the con-
cept of mechanism will possess a certain degree of definedness – from strictly defined
technical term to loosely defined but in a given context well-understood pragmatic la-
bel. And finally, (iii) if the existence of a mechanism is to be checked recursively by
going through its constituents, it depends on the level of (descriptive) granularity how
the existential claim can be supported or refuted.

3 See, e.g., [21] as a point of reference for much of the current debate, and [10] as well as [11] for a
more recent overview.
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Embracing this perspectival character of the mechanism concept, I will couch the
discussion in this section in terms of knowledge about the mechanism, i.e., I will
understand a mechanism’s existence in terms of the availability of a qualitatively
rich, fine-grained, explicatory description of a mechanism’s components, their con-
nections, and their interactions.

MECH and D-M.Causal process theories offer the most tangible interpretation of
MECH in terms of fundamental connections: Salmon, for example, famously defines
a causal process based on the concept of mark transmission (see, e.g., [8]). A billiard
ball uniformly moving across a billiard table can be understood as a causal process,
because the ball itself has the capacity of transmitting a physical mark applied to it,
e.g., a stroke of chalk. In contrast, a shadow moving across the same billiard table has
no causal powers in that sense, because it cannot be marked physically in the same
way. This idea is also very close to the medical practice of using chemical tracers
to map biological pathways. But in itself such practice only hints at the locus of
possible interactions and of possible ways of difference-making, and it does not reveal
the inner workings of how effects-as-differences are actually brought about. Much
criticism has been directed towards process theories in this vein, precisely because
Salmon’s definition of causal interaction relies on the counterfactual aspect of D-M,
i.e., knowledge about how things would have been – exactly the type of knowledge,
the idea of physical mark transmission sought to circumvent.

In a refined theory of causal processes, Dowe ([8]) draws on the concept of con-
served quantities (like charge, momentum, etc.) in his definition of a causal inter-
action: causal processes (possessing a conserved quantity) interact causally by ex-
changing conserved quantities (at the crossing of their trajectories). These attempts
at describing what it means to be a causally efficacious event were really meant to
capture a physics-based observable/measurable and replicable comprehension of a
causal connection. When theoretically scrutinized, though, these attempts might yield
too many causes (e.g., causes at different levels), and require knowledge about the un-
perturbed course of events – so to speak, a counterfactual, thus per definitionem not
observable, baseline.

Furthermore, although causal processes and exchange of conserved quantities
seems so intuitive, solid theories for complex systems are lacking. Nevertheless, de-
scribing causal processes as difference-makers is possible, if the description of the
mechanistic relationships includes the causal process, the level at which it operates,
the locus of the interaction, and the quantity to be considered together with the de-
scription of the unperturbed system. Yet, as soon as all these ingredients are avail-
able, we are essentially back to the interventionist concept of causation (which the
causal process theorist tried to avoid in the first place), and MECH is demoted to a
conceptual part of D-M (e.g., as difference-making at a certain biochemical level of
description).

Interventionist causal theories provide an explication of the mechanism con-
cept by building on the control aspect of D-M: In contrast with the rather family-like,
fuzzy, pragmatics-infused concept of mechanism above, Pearl ([28]), for example,
rigorously defines a causal mechanism to be a function fX , assigning to a random
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variable X (representing an event) its value x by computing only its direct causes,
i.e., X’s parent variables (w.r.t. a given ordering in a faithful Bayes net causal model).
Pearl goes on to define C to be a cause of E iff C and E are probabilistically depen-
dent upon intervening on the causal structure: “Manipulation subjugates the putative
causal event to the sole influence of a known mechanism, thus overruling the influ-
ence of uncontrolled factors that might also produce the putative effect” ([28, p. 253]).
While C is lifted from the influence of its parents, the only way for C to influence E
is along a web of causal mechanisms supporting the path from C to E. For Pearl, it
does not make sense to speak of a difference-making relationship without a mecha-
nism underpinning it, and it does not make sense to define or postulate a mechanism
that cannot be intervened on. In this sense, the causal indicators D-M and MECH
mutually depend on each other and cannot be separated. One important consequence
must be mentioned here: If one completes the reductive move and postulates D-M
as exhaustive characterization of causation (see the above discussion about the rela-
tion between D-M and the causal claim), then MECH and D-M really disappear as
indicators but much rather present modes of piecemeal causal learning.

This move comes with a caveat, though: Collapsing D-M, MECH, and the causal
association into one conceptual building block might be legitimate from an interven-
tionist’s perspective, if the causal hypothesis speaks about the same domain (popula-
tion, scenario, etc.) as the evidence that supports the indicators D-M and MECH. If,
in contrast, D-M and MECH are supported by evidence from a domain (population,
scenario, etc.) that differs from the intended target the causal hypothesis is meant to
apply to, then D-M plus MECH and the investigated causal association should be
kept apart. Bareinboim and Pearl (2012) discuss criteria for the transportability of
difference-making knowledge from experimental results to distinct targets for fixed
structures. But things might be more difficult, if study and target deviate in structural
knowledge about the relevant causal relations (see, e.g., [30] for an analysis of ex-
trapolation in pharmacological research, as well as [26] for a discussion of external
validity in the context of risk assessment).

In the interventionist framework, the structural equations at the heart of a causal
model support causal explanation from such models as answers to how-questions. It
is up to the modeler, of course, to choose a suitable level of abstraction, and to sup-
plement the equations with a meaningful key as to what and how those mathematical
functions represent. A causal claim is deemed established if a causal mechanism sup-
ports difference-making through intervention. This purely formal, mathematical way
of characterizing cause and effect has been criticized by pluralists about causation
like Cartwright, who argue that the rich workings of a web of mechanisms should not
be reduced away to the model-as-cleanroom idea of computing a function upon inter-
vening on a variable (i.e., setting it to a constant value). Cartwright argues for thick
causal concepts as an alternative to monolithic, universally applicable, formal and
thin accounts of causation: Rich terminology close to experimental practice conveys
information in a pragmatically exploitable way:

[. . . ] there is an untold variety of quantities that can be involved in laws,
so too there is an untold variety of causal relations. Nature is rife with very
specific causal laws involving these causal relations, laws that we represent
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most immediately using content-rich causal verbs: the pistons compress the
air in the carburetor chamber, the sun attracts the planets, the loss of skill
among long-term unemployed workers discourages firms from opening new
jobs. . . . These are genuine facts, but more concrete than those reported in
claims that use only the abstract vocabulary of ‘cause’ and ‘prevent’. If we
overlook this, we will lose a vast amount of information that we otherwise
possess: important, useful information that can help us with crucial questions
of design and control. ([4, pp. 814–815])

In embracing rich practice, Cartwright opens up the possibility of importing the
connotationally rich lingo of the empirical sciences into the philosophy of science
context.

Pharmacology shall serve to illustrate a qualitatively rich frame: Biological (bio-
chemical) networks are a natural way for drug researchers to think about biochemical
mechanisms – available mechanistic knowledge is stated in the description of in-
teracting biological pathways. As soon as we enter this level of description, we are
dealing with complex (non-linear, multi-level) systems that might appear relatively
robust w.r.t. higher level functions, but whose inner organization is often considered
fragile, input-sensitive, or highly adaptive to changing outer conditions. Moreover,
knowledge about such complex systems, if available, often spans multiple levels:
Parts of the system might be well-understood at cell level, while others are described
in terms of molecular interactions. In addition, some parts in the investigated system
lend themselves to being described as inhibitors (with negative influence), others as
propagators (passing on positive influence), others again as switches (relaying input
in a context-sensitive way) or as catalysts (enabling other parts).4

Understanding MECH as built on thick causal concepts, two reasons suggest to
keep D-M and MECH apart conceptually: (i) With all the rich terminology introduced
above, we can distinguish difference-making mechanisms and non-difference-making
mechanisms (switches under certain circumstances, mechanisms containing cancella-
tion sub-mechanisms, etc.). Importantly, this underlines the distinction between D-M
and MECH: Discovering a mechanism might not say anything about D-M if it turns
out to be of the non-difference-making sort (see, e.g., [15] for a discussion of mech-
anistic evidence and masking). (ii) Understanding the existence of a mechanism as
looking into the black-box and encoding the mechanistic workings of a natural system
in a fundamental way, really makes the indicator MECH an entry point for evidence
quite different from other information supporting D-M, PROB, and TEMP.

MECH and PROB.Saying that a causal mechanism supports a causal relation, en-
tails the possibility that the associated effect is never instantiated if the cause is never
triggered, even despite the existence of the supporting mechanism. Such a situation
poses difficulties to causal learning techniques, but the dispositionalist concept of
causation offers an intuitive way of thinking about these situations: A certain drug
might have the potential to cause an adverse drug reaction (as shown in controlled
tests), but its potential is never unlocked, and its contribution to potential effects is

4 See, e.g., [36] for an analysis of the behavior of complex systems w.r.t. paradoxical and bidirectional
drug effects.
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never manifested in circumstances deemed relevant. Explicating a causal association
in terms of capacities, propensities, or powers allows for the analysis of causes as dis-
positional properties (causal tendencies) of a system or of parts of a system to behave
in a certain way or develop in a certain direction when a specific trigger manifests. A
look at our systematic table shows that the process theories of causation (based on
mechanisms as processes) swap knowledge about a system’s tendency for the coun-
terfactual aspect of D-M. Certain causal questions might lend themselves to a more
straightforward treatment in one or the other approach.

And one further point demonstrates the complimentary natures of MECH and
PROB: As mentioned above, the Russo-Williamson Thesis presents a programmatic
call for supplementing difference-making information gleaned from appropriate cor-
relations (tendency and dependency, as encoded in PROB) with mechanistic knowl-
edge (MECH) in data analysis for policy-making. Russo’s and Williamson’s chal-
lenge for decision-makers can be interpreted as saying that complex real-world phe-
nomena can indeed be described by statistics, but can only truly be explained through
mechanisms – and responsible decision-making presupposes exactly the possibility
of such mechanistic explanation for justification.

MECH and TEMP.Interestingly, at least for thick causal concepts, knowledge about
the mechanistic connection between cause and effect seems to entail knowledge about
temporal structure by implicitly conveying information about order, distance, and
duration of connected events: (i) The mechanism provides a natural sequential order-
ing in which a system’s components connect and interact, (ii) longer distances never
present gaps, but are always filled with mechanistic details (such as a cumulative
build-up of a cause component that triggers the effect above a certain threshold), and
(iii) when dynamic descriptions of relevant gradients are available, inferential issues
due to potentially vague onset and duration of causes and effects vanish (e.g., some
pathological condition can be ruled out as an adverse drug reaction, if the condition-
specific mechanism suggests the condition’s onset before the drug treatment by point-
ing to a longer incubation time).

As a side remark, it is worth noting that the temporal information conveyed
by mechanistic knowledge in the qualitatively rich sense is obviously based on the
entrenched compatibility of causal directionality and time’s arrow. Although most
standard examples of interventionist accounts of causation also involve tempo-
rally well-ordered events, the mathematically thin, intervention-based explication of
cause and effect in such accounts does not prohibit the causal flow to run along time-
reversed structural equations (causal mechanisms) or to manifest in simultaneous
causation.

MECH and the causal claim.I want to conclude the discussion of the mechanistic
connection with remarks on how the relationship between MECH and the causal
claim changes with one’s choice of causal theory. In the philosophical literature on
causal mechanisms, the idea that causal relations are necessarily supported by mech-
anisms is usually rejected by reference to cases of causation by omission: An effect
might occur precisely because some potential cause event failed to trigger a certain
mechanism (“the flower withered because I did not water it”). From a causal process
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theory perspective, there is prima facie no obvious way to single out a productive
mechanism connecting the negative cause and the observed effect, in this case. There
is an explication of the situation with emphasis on the counterfactual aspect of D-M,
however: The deactivated mechanism can be understood as sustaining some default
effect state under normal conditions, and the failure to activate this sustaining mech-
anism now clears the way for other mechanisms that contribute to the effect’s deviant
state.

Yet again, if one investigates such cases through the lens of an interventionist
causal theory, matters are different: Since the mechanism for an effect is described
as the set of links connecting the cause to its direct parents (i.e., a functional as-
signment), an omission might be represented by the negative instantiation of a direct
cause (i.e., a direct parent variable) – the mechanism is not deactivated but vital in
determining the effect’s concrete manifestation.

When we turn to medicine one more time, we can see that drawing on thick
causal concepts helps bridging the gap between negative cause events and their ef-
fects: For example, when some neuro-blocker is not administered, this might gradu-
ally lead to a pathological condition in clearing the way for neurotransmitters to cre-
ate harmful stress in the body. Such situations are often described in terms of natural
gradients or balance/imbalance, and when a drug is well-understood, it is possible to
describe the causal chain of events as development over time from the event of not
administering the drug to the pathological condition. Naturally, all kinds of negative
states like decrease, depletion, reduction etc. can play triggering roles in complex
interactions of a system’s components.5

In this section, I specifically contrasted the causal indicator MECH in its thick,
domain-specific understanding, encoding biological and physical knowledge, with
MECH as a thin concept, encoded in systems of structural equations. Both read-
ings can be made compatible – not within one and the same theory, but in a cross-
theoretical view on causal assessment, resting on inference through causal indicators.
This not only means that cross-fertilization of seemingly clashing theories is possi-
ble (in exchanging complementary information), it might also suggest ways in which
domain-specific, context-inducing talk about compressed air, attracted stellar bodies,
and discouraged employers may eventually be systematized a bit further to allow for
knowledge transfer between contextual frames.

5 Moreover, in the context of pharmacological risk assessment one is usually presented with positive
input: Our starting point is the suspicion of a causal connection between a substance and a side-effect –
what does the mechanism between the drug and its effect look like? The answer might have to do with
balance and imbalance, too, especially if the drug acts as an inhibitor. But this inhibition can again be
understood as contributing to a complex network of causal interactions on the bio-chemical level. So, for
the purpose of relating the causal claim and the MECH indicator in the context of pharmacological risk
assessment, hope certainly is, that for a causally efficacious substance, scientists will eventually find a
causal mechanism as a satisfactory answer to the “How?”. This is by no means guaranteed, however: It is
well known, for example, that putting newborns on their back prevents fatal incidents subsumed under the
Sudden Infant Death Syndrome (SIDS) – yet a (mechanistic) explanation is still lacking after many years
of research.
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2.4 Causes precede their effects (TEMP)

TEMP and the causal claim.Since temporal precedence as an indicator of causation
seems like the weakest indicator of the four, my comparative listing concludes with
the question, how TEMP might fail in supporting the causal claim when indeed it
holds. In other words: Under what circumstances might TEMP falsely mistake an
effect for the cause? Three cases shall be discussed briefly: (i) instances of backward
causation, (ii) feedback loops, and (iii) falsely determined event durations:

(i) Backward causation, a philosophical problem: This case is just another reminder
of the ramifications of theory choice in causal assessment. In principle, if the the-
ory permits effects that precede their causes, then the indicator must be adjusted
accordingly, and the framework tweaked to be sensitive to signals of backward
causation. Nevertheless, to be fair: This case is repudiated by the majority of
philosophers.

(ii) Feedback loops, a theoretical problem: If TEMP receives information of mis-
matching granularity, i.e., information about generic variables on a coarser level
than the actual investigation, inferred patterns might show loop structures in
which cause and effect mutually influence each other, thus reversing the cause–
effect relation.

(iii) Event durations, a practical problem: In defining or determining event boundaries
in a given study, cause and effect might be mistaken when the onset of the actual
cause is erroneously located after the actual effect event. E.g., in medicine, a dis-
ease might have a longer incubation time (i.e., an earlier onset) than recognized,
but its early, undetected symptoms might already have effects which might then
mistakenly be deemed causes of the disease’s outbreak (based on covariation).

All these cases once more emphasize the virtues of basing one’s causal assess-
ment on multiple, distinct indicators which mediate between the hypothesized causal
association and incoming evidence and do so by marking the theoretical demands of
the chosen causal theory.

3 Summary and conclusions

In my discussion of the ramifications of theory choice in causal assessment, I first col-
lected the pivotal causal indicators found in the prominent theoretical approaches to-
wards the concepts of cause and effect. In doing so, I distilled three main goals of the
hunt for causal knowledge: control, prediction, and explanation. Formally, these goals
surface as control and counterfactual reasoning (difference-making formalisms), de-
pendency/tendency (probabilistic terminology), and mechanistic knowledge (expli-
cated as systems and their properties). As a fundamental further category I added
temporal structure – a dimension more or less explicitly debated throughout the lit-
erature. In order to relate these four aspects to one another and to the hypothesized
causal association, I expressed them as indicators of causation (of different strength)
at a level of abstraction suitable for the purpose of this paper. Delineating the indica-
tors in such a way allowed me to discuss their interdependencies through the lenses
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of the most prominent theories of causation, listed in Tab. 1. The table is certainly
not exhaustive, but it illustrates how the theoretical differences between prominent
analytic theories of causation can be broken down in terms of the four indicators. Let
me reiterate that, notably, all of the theories discussed rely on a combination of two
aspects (explicitly or implicitly).

Putting on different ‘theoretical hats’, I revisited D-M (Subsec. 2.1), PROB (Sub-
sec. 2.2), MECH (Subsec. 2.3), and TEMP (Subsec. 2.4) in order to compare the
ramifications of choosing contrasting theoretical viewpoints. Naturally, theories sim-
plify – and as my tour through the theoretical landscape evinced, each of the the-
oretical stances on its own has its deficits. Uncounted philosophical disputes in the
vast literature on the concept of causation testify this finding. Yet, understanding the
fundamental aspects encoded in D-M, PROB, MECH, and TEMP as genuine indi-
cators of causation facilitates a unifying view on different theories each featuring
different strong points. Different theoretical/philosophical approaches might not be
able to jointly enter in the direct formulation of causal claims – different approaches
come with different languages, as demonstrated. Different approaches might enter
in the formation of causal indicators, though, and contribute to the assessment of
a hypothesized causal association on this higher level (given they are semantically
compatible).

As Tab. 1 makes visually graspable, no theory (amongst the ones discussed)
makes use of all four indicators. Since I derived D-M, PROB, and MECH from in-
struction, prediction, and explanation as main targets of causal reasoning, my discus-
sion shows that (and in which way) any given theory might be good at two of these
main targets, but does not exhaust the full spectrum. But of course, scientific inquiry
in all its richness builds on heterogeneous input (across all four indicators) on the one
hand and aims at meaningful, actionable output (across all main targets) on the other
hand: Machine learning algorithms trawling unstructured bodies of data (PROB) must
be supplemented with heuristics and expert knowledge (MECH) to generate actual in-
sights; in the clinical context, biomedical knowledge about a system (MECH) only
enters in causal inference if the interaction of the system’s components make a differ-
ence (D-M) to the patient; and for practical policy-making, instructions as to how to
intervene in something as complex as society, the potential difference-making power
of an intervention (D-M) only brings to bear if a policy with the right independencies
(PROB) is achievable. Adopting the unificatory, cross-theoretical view I advance here
enables the researcher to draw on heterogeneous resources and paves the way for a
novel, conciliatory perspective on seemingly contradictory theoretical stances: Just
imagine a small miracle and picture yourself in the peaceful world where Pearl tells
you how to control your effects, Good calculates the causal tendency, and Cartwright
provides a thick explanation. This world is not far.
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