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Abstract

As was recently shown, non-relativistic quantum theory can be derived
by means of a projection method from a continuum of classical solu-
tions for (massive) particles. In this paper we show that Maxwell’s
equations in empty space can be derived using the same method. In
this case the starting point is a continuum of solutions of equations of
motion for massless particles describing the structure of Galilean space-
time. As a result of the projection, the space-time structure itself is
changed by the appearance of a new fundamental constant c with the
dimension of a velocity. This maximum velocity c, derived here for mass-
less particles, is analogous to the accuracy limit ~ derived earlier for
massive particles. The projection method can thus be interpreted as a
generalized quantization. We suspect that all fundamental fields can be
traced back to continuous sets of particle trajectories, and that in this
sense the particle concept is more fundamental than the field concept.
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1 Introduction

”..one is struck by the dualism
which lies in the fact that the
material point in Newton’s sense
and the field as continuum are
used as elementary concepts side
by side”

Albert Einstein [1]

The disturbing dualism between the incompatible basic concepts particle
and field has accompanied modern physics from the very beginning. If one
wants to eliminate the particle concept in favor of the field concept, then one
needs nonlinear field equations of unknown origin. The reverse way, namely
the elimination of the field concept in favor of the particle concept, is much
easier to accomplish, at least in a formal way. This elimination is actually an
innocent looking standard technique of fluid mechanics known as Lagrangian
to Eulerian transition [2, 3]. It is based on the existence of a continuum of
solutions of first order ordinary differential equations which fill and thus gen-
erate the space under consideration [4]; let us note for clarity that the Eulerian
formulation is nothing but the standard formulation of physical fields.

A popular version of this deep particle-field duality is the particle-wave
duality of quantum theory (QT). Einstein rejected this concept and considered
QT to be a theory which is complete only with respect to statistical ensembles
and not with respect to individual particles. From the point of view of this
ensemble interpretation [5], QT must be understood in terms of its relation
to classical statistical ensembles. The general program of a “quantization”,
or better reconstruction of QT, then consists in the transformation of the
basic equations of the theory of classical statistical ensembles into the basic
equations and structures of QT. The first step of this transformation must be
the Lagrangian to Eulerian transition.

This program has been realized in a series of papers of the present author
which will be referred to as I [6], II [3], III [7], and IV [8]. Reconstruct-
ing QT along these lines is very simple from a conceptual point of view. It
requires, besides the transition to the Eulerian formulation, only two essen-
tial steps, namely a projection from phase space to configuration space and
a linearization or randomization. Both steps can be motivated physically. A
theory containing these two steps, regardless of the order, is referred to as
“Hamilton-Liouville-Lie-Kolmogorov theory” (HLLK). This acronym is also
used in this paper. As shown in I - IV, the success of the HLLK is remarkable
- not only Schrödinger’s equation but essentially all characteristic features of
(single-particle) QT, like non-commuting observables, Born’s rule, and even
spin, have been derived.

The program underlying the HLLK has not yet been fully carried out. It is
obviously incomplete with respect to the description of several particles and
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with respect to the extension to Minkowskian spacetime. One wonders, how-
ever, if this program cannot be completed in an even more fundamental sense.
So far, we have studied only particles of non-zero mass. We have found, in IV,
that such particles must be fermions with spin one-half. The second class of
elementary particles of fundamental importance in nature are bosons, which
have integer spin and are responsible for mediating interactions. The most
important structureless particle of this class is the massless photon, which
has spin 1, and mediates the electromagnetic interaction. The question arises
whether the program of the HLLK can - in analogy to the situation with mas-
sive particles - also be used to derive the ”quantum mechanical field equations
of the photon”, i.e. Maxwell’s equations. In this work, which is the fifth in this
series of papers, we show that this is indeed possible.

The ordinary QT of massive particles, derived in I to IV, describes the
behavior of particles under a variety of external conditions (forces), each cor-
responding to a particular functional form of the Hamiltonian function. In
contrast, in Maxwell’s equations (in empty space) there is no quantity whose
functional form could be varied; the form of the equations is fixed once and for
all. In other words, Maxwell’s equations describe only a single system. If one
asks, what this single system might be, then the only possible (reasonable)
answer seems to be: the empty space.

As a consequence, we need, as a starting point of the HLLK program,
equations of motion for massless ”particles” describing the structure of empty
space. Such a differential equation, in which no inertial mass occurs, can be
derived by means of a transformation from an inertial system to an arbitrarily
moving coordinate system (see section 2). The result agrees with the equation
of motion derived by Holland from Maxwell’s equations [9]. In Holland’s paper,
it is also mentioned that one can, in turn, derive the time-dependent part of
Maxwell’s equations from these equations of motion, using the standard quan-
tization rules. Since Maxwell’s equations are no longer Galilei-invariant, this
means that, in the course of this standard quantization, the Galilei invariance
is broken. In fact, the quantization process introduces, according to Holland,
a new fundamental constant c and this implies a fundamental change from
Galilean spacetime to Minkowskian spacetime [9]. This is astonishing because
physical constructions usually take place within a given spacetime. Holland’s
remarks provided a strong motivation for the author to try to realize the HLLK
process for massless particles - despite this mismatch of symmetries which was
irritating at first sight.

In this paper we follow the version of HLLK reported in I and II. The space
generated in section 4 by means of the Lagrangian to Eulerian transition is
the cotangent bundle of the configuration space R3 × SO(3). We find that we
have to exclude a certain subset of all possible trajectories from this process.
This implies an additional condition, which leads later, in section 6.3, to the
transversality conditions of the electromagnetic fields. It is this additional
condition that allows for the first time a derivation of the complete set of
Maxwell’s equations in empty space.
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Fig. 1 This is a generic trajectory
for initial values v0 neither parallel
nor perpendicular to n

Fig. 2 This is a special case of a tra-
jectory for initial values v0 parallel
to n

In section 5 the projection onto the configuration space R3 × SO(3) is
performed. This part represents the core of the HLLK-quantization. The pro-
jection creates a new fundamental constant c with the dimension of a velocity.
Due to the additional rotational degrees of freedom, a further projection onto
the Euclidean configuration space R3 is required, which is carried out in
section 6. The physical meaning of the system of equations derived in this way
is discussed in section 7.

The last section 8 contains some reflections on the concepts of particles,
fields, and quantization, as suggested by the success of the HLLK. We propose
a new principle for describing the relation between a physical theory and a
related “better” theory. This principle may be summarized as follows: ”Get
rid of idealizing assumptions”

2 Equations of motion for Galilean particles

Galilean spacetime is given by E3 × Rt, where E3 is the Euclidean space
equipped with an Euclidean distance function. A complete description of
Galilean spacetime is given by its symmetry group, the 10-parameter Galilean
group. Those elements of this group that are continuously connected with the
identity can be expressed, in a Cartesian coordinate system, in the form

(x, t) 7→ (Rx + gt+ b, t+ s) . (1)

Here R is a 3 × 3 orthogonal matrix with determinant 1, x, g, b are three-
vectors, and s is a scalar parameter. The Galilei group, as Eq. (1) shows, has
rotations, Galilei boosts, and space- and time translations as subgroups.

Our task is to find equations of motion whose solutions are as similar
as possible to Eq. (1). We call the hypothetical particles that satisfy these
equations Galilean particles. We introduce this name in order to emphasize
the analogy with both the previous theory of particles with non-zero mass and
also with the photons to be derived later. The above definition of the equations
of motion is admittedly rather fuzzy; however, we will show that important
physical results can be derived with their help.
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Let us first consider Newton’s equation of motion for a free particle ẍ = 0
and its general solution x(t) = v0t + x0. This solution already describes, in
its dependence on the initial conditions, two of the above subgroups namely
the Galilei boosts and the spatial translations. To account for the still missing
rotations, one can tentatively use the defining equation ẋ = ω × x of the
angular velocity ω. To recover the Galilei boosts and spatial translations, it is
only necessary, to perform a derivation of this equation with respect to time.
Considering only angular velocities constant in time (clearly, time-dependent
angular velocities are not compatible with our similarity requirement) one
obtains the equations

ẍ = ω × ẋ, ω̇ = 0, (2)

which agree with the equations derived by Holland [9]. These relations have
a simple physical interpretation. Let us consider two coordinate systems, an
inertial frame K, with basis vectors ei, and a rotating reference frame K ′,
with basis vectors e′i(t). Any position vector x(t) can be represented in either
K or K ′. The relation between velocity v and acceleration a in K and the
corresponding quantities v′ and a′ in K ′ is given by

a = a′ + 2ω × v′ + ω̇ × x + ω × (ω × x) (3)

v = v′ + ω × x. (4)

If we set here v′ = a′ = 0 (and ω̇ = 0), we obtain Eq. (2). The equation of
motion (2) for Galilean particles thus simply states that for a point held fixed
in K ′, the sum of the centripetal force and the centrifugal force vanishes.

The general solution of (2) depends on the 9 integration constants
ω, v0, x0. If the unit vector n = ω/ω parallel to ω and its magnitude ω = |ω|
are introduced, the solution takes the form

x(t) = (n× v0)
1− cosωt

ω
+ (v0 − v0 · n n)

sinωt

ω
+ v0 · n n t+ x0. (5)

The generic solution, with v0 neither parallel nor perpendicular to n, is shown
in Fig. 1. It has the form of a spiral, i.e. a superposition of a circular motion
with a Galilean boost. When v0 is parallel to n, the circular motion disappears
and only the Galilean boost survives, as shown in Fig. 2. We shall come back
to this degenerate case in section 4

Finally, to investigate the similarity of the solutions (5) with the Galilean
transformations (1), we use the relation

r′ := R(n, φ)r = r− (r− r · n n) (1− cosφ) + (n× r) sinφ, (6)

which describes the effect of a rotation R on a vector r when the angle of
rotation φ and the axis n are used as parameters [10]. With the help of (6)
and the definitions r0 = v0/ω, vq = v0 · n n, the solution (5) may be written
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in the form

x(t) = R(n, ωt− π/2)r0 + vqt+ n× r0 − n · r0 n + x0. (7)

In this formula all types of transformations belonging to the Galilei group,
with the exception of the time translations, occur. We have a rotation of the
vector r0, with an axis n and an angle ωt − π/2, a Galilei boost, with the
velocity vq, and a spatial translation by n× r0 − n · r0 n + x0.

However, the individual group parameters in (7) are complicated functions
of the initial conditions x0, v0, ω; in particular, the angle of rotation depends
on time. Therefore (7) is still very different from a real Galilei transformation,
where all group parameters can be varied independently. As the solutions of (2)
do not provide a complete description of of Galilean space we expect that the
HLLK will only lead to physically meaningful results if additional restrictions
are introduced.

3 Transition to Canonical Equations

In order to start the program of the HLLK, we must bring, as a first step,
the equations of motion (2) of the Galilean particles into canonical form. For
this purpose, the components of the angular velocity may be expressed by
Euler angles, which allow to describe the instantaneous state of rotation of
the particles. We follow here closely the procedure of Holland [9, 11] using a
standard notation for the Euler angles θ, φ, ψ [10], which will alternatively be
denoted by αk where α1 = θ, α2 = φ, α3 = ψ.

The relation between the time derivatives α̇i of the Euler angles and the
components of the angular velocity is given by

α̇i = Aikωk, (8)

where the elements of the matrix A are periodic function of θ and φ,

A =

 cosφ sinφ 0
− cot θ sinφ cot θ cosφ 1
csc θ sinφ − csc θ cosφ 0

 . (9)

Using the Euler angles, the original equations of motion (2) now take the form
of two second order differential equations,

α̈l +Ali
∂A−1

ik

∂αr
α̇rα̇k = 0, (10)

ẍi = εijkA
−1
js α̇sẋk. (11)

Note that Eq. (10) only describes the constancy of ω over time and does not
depend on x. The equations of motion (10), (11) of the Galilean particles have
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a somewhat unusual form which stems from the fact that each point of time
t is assigned not only a position in R3 but also a state of rotation, which is
described by a point in the group space SO(3) of the rotation group. The 6-
dimensional configuration space R3×SO(3) agrees with that of the rigid body,
as already mentioned by Holland [9, 11].

The equations (10), (11) can easily be derived, by means of a variation
with respect to xk and αk, from a Lagrangian L of the form

L(x, α, ẋ, α̇) = d0A
−1
ik (α)ẋiα̇k, (12)

if one observes that the matrix elements of A fulfill the relations[
∂A−1

kr

∂αs
−
∂A−1

ks

∂αr

]
Asi = εijkA

−1
jr . (13)

Before we construct the canonical equations we note the following inconspic-
uous but important point.

We introduced in Eq. (12) a constant d0 as a prefactor. Neither its numer-
ical value nor its dimension is determined by the form of the equations of
motion. We can choose both freely, at least at this point. However, due to the
projection onto the configuration space, to be performed later in section 5, a
new fundamental constant, say c, will be generated in our theory. This seems
to be a generic property of the HLLK (In the earlier case of massive parti-
cles studied in I-IV, Planck’s quantum of action was generated in this way).
Clearly, the choice of the constant d0 is important because it determines this
new constant c. In a sense, we are even able to derive the constant c, to
the extent that we are able to justify our choice of d0 sufficiently well. Of
course, this derivation can not concern the numerical value of c, this value will
be determined by nature alone. However, by means of a physically justified
determination of the dimension of d0 we can at least derive the dimension
of c, which already gives us a crucial information about its physical mean-
ing. A reasonable choice for the dimension of the Lagrangian L seems to be
energy, the same dimension as in the theory of particles with non-zero mass.
We have already chosen the designation (Galilean) “particles” for the objects,
whose trajectories are determined by the solutions of Eq. (2). However, this
was just a semantic assignment. If we now determine that d0 has the dimen-
sion g cm (which gives L the dimension of an energy) then we make a formal
determination of these objects as particles - which goes beyond the previous
semantic assignment. In section 5.2 we will see that this choice of d0 implies
the dimension of a velocity for c.

The canonical equations may be constructed using the standard method.
The momentum pk, canonically conjugate to xk, is given by

pi :=
∂L

∂ẋi
= d0A

−1
ik (α)α̇k. (14)
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Eq. (8) shows that pi = d0ωi. Since ω̇i = 0, the momentum pi is con-
served. Thus, Galilean particles are subject to an unusual, strongly degenerate
dynamics. The momentum πi canonically conjugate to αi is given by

πi :=
∂L

∂α̇i
= d0A

−1
ki (α)ẋk. (15)

The momentum pk does not depend on ẋk but ony on α̇k; an analogous
behavior is shown by πk. Hamilton’s function,

H(x, α, p, π) = d−1
0 Aki(α)piπk (16)

does not depend on x, in agreement with the fact that p does not depend on
time. The canonical equations are given by

ẋk = d−1
0 Aik(α)πi, α̇k = d−1

0 Aki(α)pi, (17)

ṗk = 0, π̇k = −d−1
0

∂Aji(α)

∂αk
piπj . (18)

The solutions of the ordinary differential equations (17),(18) are trajectories
in a 12-dimensional phase space Ω [cotangent bundle of the rigid-body con-
figuration space R3 × SO(3)], which is spanned by the coordinates x, α, p, π.
Remarkably, the velocity ẋ is not proportional to the momentum p. Another
interesting variable, defined by its components

mk = Aik(α)πi, (19)

takes the dimension of an angular momentum (if the parameter d0 is defined
as in section 3). The elements of the matrix A obey the relations Ark∂rAji −
Ari∂rAjk = εikrAjr. Using these identities it is easy to see that the mk fullfil
also the Poisson bracket relations

{mi,mk} = εiklml (20)

characterizing angular momentum components, as noted already by Hol-
land [9, 11]. Remarkably, according to the equations of motion [see the left
member of (17)], the velocity v = ẋ agrees for arbitrary times with the angu-
lar momentum m, apart from a proportionality constant. The Hamiltonian
function may consequently be written in the form H = vkpk.

In order to get rid of the ugly prefactors d−1
0 the position variables xi may

be replaced by the new variables

ui = d0xi, (21)

which have dimension g cm2. The new momentum variables, canonically con-
jugate to ui are then given by d−1

0 pi = ωi. Using the new variables ui, ωi the
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Lagrange function and the Hamilton function take the form

L(u, α, u̇, α̇) = A−1
ik (α)u̇iα̇k, (22)

H(u, α, ω, π) = Aki(α)ωiπk, (23)

and the canonical equations are given by

u̇k = Aik(α)πi, α̇k = Aki(α)ωi, (24)

ω̇k = 0, π̇k = −∂Aji(α)

∂αk
ωiπj . (25)

We will change freely between Eqs. (23)- (25) and the original equations (16)-
(18) where the important parameter d0 appears explicitly.

The set of all solutions, together with a probability (or density) distribution
at t = 0, defines a statistical (or particle) ensemble formulated by means of
Lagrangian coordinates. The next step in the formulation of the HLLK is
the transition to the usual (Eulerian) formulation, which describes physical
properties by means of fields depending on the coordinates of a suitable space.
In our case, this space is Ω.

4 Lagrangian to Eulerian transition

For the general considerations of this section, it is convenient to use the original
equations of motion (17),(18). We write the solutions in the form

xk(t) = xk(t, x0, p0, α0, π0), (26)

pk(t) = pk(t, x0, p0, α0, π0), (27)

αk(t) = αk(t, x0, p0, α0, π0), (28)

πk(t) = πk(t, x0, p0, α0, π0), (29)

where x0
k, α

0
k, p

0
k, π

0
k are the initial values of the dynamic variables at t = 0. If

these equations can be solved for x0
k, α

0
k, p

0
k, π

0
k, then they define a flow in Ω,

that is, there is a mapping from Ω onto itself at each instant of time t.
In order to discuss the physical meaning of this mapping it is convenient

to abandon the special meaning of H and to substitute an arbitrary observ-
able A(Q,P ) in place of H. We think of these observables, which depend on
2n phase space variables Q,P , as important physical quantities like energy,
momentum or angular momentum (all defined by a fundamental symmetry
of space-time). Each A(Q,P ) defines canonical equations, whose solutions (if
invertibly) represent a group of transformations, each element of which maps
the phase space onto itself. The observables A represent the classical equiva-
lent of the associated Hermitian operators Â in QT. The one-parameter group
of transformations generated by A corresponds in QT to the one-parameter
group of unitary operators generated by Â. These relations, basically known
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for a long time [12] have recently been used by the author as an essential
component in a reconstruction of QT, see II.

In the present work we assume that analogous relations hold also for mass-
less particles. Accordingly, A is identified with the Hamiltonian function (16)
of Galilean space-time. The variables Q and P are identified with the con-
figuration space variables x, α and the corresponding canonically conjugate
momenta p, π, respectively. We first assume that the mapping defined by (26)-
(29), from Ω onto itself, is 1 : 1, but analyze this question more carefully at
the end of this section.

The Lagrangian to Eulerian transition, which we perform now, is a straight-
forward generalization of the well-known method in fluid mechanics (where
n = 3) to arbitrary n. The details were reported in II. From the canonical
equations it follows that an arbitrary density ρ(x, α, p, π, t) obeys the Liouville
equation

∂ρ

∂t
+

∂ρ

∂xk

∂H

∂pk
+

∂ρ

∂αk

∂H

∂πk
− ∂ρ

∂pk

∂H

∂xk
− ∂ρ

∂πk

∂H

∂αk
= 0, (30)

During the reconstruction of QT in I-IV an analogous quantity ρ(x, p, t) was
assigned the physical meaning of a probability density. In contrast to this
we do not specify the physical meaning of the density ρ(x, α, p, π, t), at least
at the moment. We assume further, as in I-IV, that the dynamical variable
ρ(x, α, p, π, t) is not sufficient to perform the transition to a quantum the-
ory. As a second variable we choose, again in analogy to I-IV, the variable
S(x, α, p, π, t), defined by

S(x0, α0, p0, π0, t) =

∫ t

du

[
pk
∂H

∂pk
+ πk

∂H

∂πk
−H

]
. (31)

The action variable S(x, α, p, π, t) obeys the following differential equation,
which is referred to as action equation,

∂S

∂t
+

∂S

∂xk

∂H

∂pk
+

∂S

∂αk

∂H

∂πk
− ∂S

∂pk

∂H

∂xk
− ∂S

∂πk

∂H

∂αk
=

pk
∂H

∂pk
+ πk

∂H

∂πk
−H.

(32)

We can combine Eqs. (30), (32) into a single differential equation using the
complex-valued field variable ψ(x, α, p, π, t), defined by

ψ =
√
ρ exp

( ı
w
S
)

. (33)

In this formula we have introduced a parameter w which has the dimension
of an action and has no physical meaning at all (it is part of the definition
of the quantity ψ and may take any numerical value). It follows immediately
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from (30) and (32) that ψ satisfies the homogeneous linear ’pre-Schrödinger’
differential equation

w

ı

∂ψ

∂t
− ∂H

∂pk

(
pk −

w

ı

∂

∂xk

)
ψ − ∂H

∂πk

(
πk −

w

ı

∂

∂αk

)
ψ

− w

ı

(
∂H

∂xk

∂

∂pk
+
∂H

∂αk

∂

∂πk

)
ψ +Hψ = 0.

(34)

In this field-theoretic form of the equations of motion (17), (18), the projection
onto the configuration space R3 × SO(3) becomes particularly simple, as will
be shown in the next section.

We now return to the question whether the mapping defined by the solu-
tions of the equations of motion is 1 : 1. We use the equations of motion in
the form (24),(25); the mapping has the form of Eqs. (26)-(29), with x and p
replaced by u and ω. A point in Ω is denoted by x, its components are denoted
by xµ, where (xµ) = (u, ω, α, π) , µ = 1, .., 12. The initial values at time t = 0
are denoted by y, its components yµ are given by (yµ) =

(
u0, ω0, α0, π0

)
.

The mapping can then be written in the compact form x = f(t, y), and this
mapping will be 1 : 1 if the determinant of the functional matrix

f
′

=

 ∂1f1 ∂2f1 · · · ∂12f1

...
...

. . .
...

∂1f12 ∂2f12 · · · ∂12f12

 (35)

(where ∂µ denotes the derivative with respect to yµ) is different from 0 every-
where in Ω. We are unable to perform a complete analysis of this determinant
as the time-dependence of the Euler angles is very complicated [13], even for
the simple case of constant angular velocity considered here. We will exam-
ine only the case where the velocity v is parallel to ω (this is the special case
shown in Figure 2). This means vk := u̇k = rωk where r is a real number.
It is easy to see that in this special case the determinant of the functional
matrix (35) vanishes.

To show this, we first assume that the parallelism between vk and ωk holds
true only at t = 0. Thus, the initial values obey the relations v0

k = rω0
k. We

know that ω is constant, thus ωk = ω0
k in agreement with the left member of

Eq. (25). Eq. (2) shows that all derivatives of v with respect to t vanish at
t = 0. It follows that the parallelism v0

k = rω0
k at t = 0 implies the parallelism

vk = rωk for arbitrary t. The left member of Eq. (24) implies Aik(α0)π0
i = rω0

k.
Thus, the initial values of πi can be expressed by the initial values of α and ω
using the relation π0

l = rA−1
kl (α0)ω0

k. As a consequene, the last three columns
of the functional matrix (35) vanish, since nowhere in the solutions do the
variables π0

l appear any more. For the solutions obeying

v = rω, (36)
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the Lagrangian to Eulerian transition cannot be carried out. These solutions
must be excluded by an appropriate additional constraint. This will be done
in section 6.3.

An important part of HLLK is the projection from phase space Ω onto
R3 × SO(3). This step is similar to the usual quantization rule, in that the
canonical momenta are replaced by operators acting on configuration space.
This projection, which will be carried out in section 5, is, in the case of massless
particles treated here, not sufficient to generate a physically meaningful field
theory. In order to arrive at a field theory with independent variables t, xk a
further reduction from R3 × SO(3) to Euclidean configuration space R3 must
be performed. This step will be reported in section 6.

5 Projection to rigid-body configuration space

From now on, we use the original system of Eqs. (17),(18) for the variables
xk, αk and the canonically conjugate momenta pk, πk. Our starting point is the
linearized equation of motion (34) for ψ, with the Hamiltonian function (16).
In Eq. (34) two constant parameters d0 and w occur, which have - as part of
the definition of the Lagrangian function and the dynamical variable ψ - no
physical meaning at this time.

5.1 The projection

The projection onto R3 × SO(3) is done exactly as in I, II. One replaces
ψ(x, α, p, π, t) by an unknown function ψ(x, α, t) denoted for simplicity by the
same symbol. Thus the third bracket in (34) disappears. To remove pk and
πk from the operator expression, the only remaining option is to perform the
following substitution by operators:

pk ⇒ p̂k :=
w

ı

∂

∂xk
, πk ⇒ π̂k :=

w

ı

∂

∂αk
. (37)

This makes the first two brackets disappear and the Hamiltonian function
H(x, α, p, π) becomes an operator Ĥ = H(x, α, p̂, π̂). So the well-known quan-
tization recipe finds a natural explanation as a projection rule. We mention
that the standard quantization recipe (without the α-degree of freedom)
has also been used to derive Maxwell’s equations from the relativistic par-
ticle equations of motion [14]. The projection transforms Eq. (34) into the
’Schrödinger-like’ differential equation(

w

ı

∂

∂t
+ Ĥ

)
ψ = 0, (38)

where, however, the exact form of the Hamiltonoperator Ĥ is not yet known,
because the order of the noncommuting quantities Aki(α) and π̂ has still to
be fixed (there is no ordering problem between x and p̂ because Ĥ does not
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depend on x). The standard method of symmetrization cannot be applied
here, because of the non-euclidean configuration space R3 × SO(3).

To clarify the ordering problem, we use the inner product

(ψ, φ) =

∫
Σ

dσ ψ∗(x, α, t)φ(x, α, t), (39)

where the abbreviations Σ = R3 × SO(3), dσ = d3x d3α sinα1 were used and
the Euler angles vary according to α1 ∈ [0, π], α2 ∈ [0, 2π]α3 ∈ [0, 2π]. One
can now show that the Hamilton operator

Ĥ = d−1
0 Aki(α)p̂iπ̂k (40)

is hermitian with respect to the scalar product (39) as long as one restricts
oneself to states in the space of 2π-periodic functions. The proof makes use of
the relations

∂Aki
∂αk

=
cosα1

sinα1
A1i. (41)

and is otherwise similar to the standard case, though slightly longer. The
reverse order of Aki(α) and π̂k can be excluded.

As a consequence of the quantization, the angular momentum components
mk, defined by (19), become operators

m̂k = Aik(α)π̂i =
w

ı
Aik(α)

∂

∂αi
, (42)

The mk satisfy the commutation relations ([â, ô] = âô− ôâ)

[m̂i, m̂k] = −w
ı
εiklm̂l. (43)

In the proof of (43) the same identity is used as in the proof of the corre-
sponding Poisson bracket relation (20). Using the operators m̂, the Hamilton
operator takes the form Ĥ = d−1

0 m̂kp̂k . It is then sometimes interpreted as
helicity, a projection of angular momentum (or spin) onto momentum.

The velocity components vk become operators v̂k = d−1
0 m̂k due to quan-

tization. When v̂ is used, Ĥ takes the form Ĥ = v̂kp̂k, and thus becomes
formally similar to the Hamilton operator of Dirac’s theory in the limiting
case of vanishing mass. Of course, in Dirac’s theory, the velocity operator is
given by c times α, where c is the speed of light, and α is a three-vector whose
components are 4×4 matrices. In the present case, the velocity is still a differ-
ential operator, but we will perform, in section 6, a second projection which
maps the velocity components to matrices.
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5.2 A new fundamental constant

If we insert the definitions of p̂k and π̂k, and multiply with a factor w−1, the
Schrödinger-like equation (38) takes the form(

1

ı

∂

∂t
− d−1

0 wAki(α)
∂

∂αk

∂

∂xi

)
ψ = 0. (44)

Thus, the constants d0 and w do no longer occur individually, but only in the
combination d−1

0 w, which has the dimension of a velocity. While the quantities
d0 and w were originally introduced as purely mathematical definitions, now,
after the projection, they can no longer be changed at will. Thus, a new natural
constant d−1

0 w with the dimension of a velocity appears, which we denote
by c. Experiments show that the constant c must be assigned the numerical
value of the speed of light. As is well-known, the appearance c of has drastic
consequences for the structure of spacetime.

During the quantization of massive particles, reported in I-IV, the parame-
ter w was identified with Planck’s quantum of action ~. This constant has the
physical meaning of an accuracy limit for measurements, and is in this sense
characteristic for QT. The absence of ~ in (44) indicates that this equation
should not be interpreted in the same probabilistic sense as Schrödinger’s
equation for massive particles. We discuss this point in more detail in section 7.

If we accept the independent existence of the constant c and identify the
constant w with ~, the constant d0 is given by

d0 =
~
c

, (45)

as the ratio of two fundamental constants of nature which characterize the
transition from classical physics to QT and to special relativity, respectively.
The constant d0 itself does not occur in the field equation (44), but it occurs
in the definition of the canonical momentum pk = d0ωk [see text following
Eq. (14)]. Accordingly, the linear relationship cpk = ~ωk exists between the
components pk of the canonical momentum of the Galilean particle and the
angular velocity, or angular frequency, ωk. The corresponding relation between
the absolute values p and ω is given by

cp = ~ω. (46)

Equation (46) establishes a relation between particle properties and wave
properties, as does the related equation p = h/λ between momentum p and
wavelength λ. These famous relations, associated with the names of Einstein
and De Broglie, were, remarkably, discovered very early in the development of
QT [15]. We have found here, using the framework of HLLK, a new derivation
of these relations.
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6 Projection to Euclidean configuration space

We perform, as a first step of the projection to R3, a general expansion in the
parameter space of the rotation group SO(3). A suitable set of basis functions
is provided by the so-called Wigner D-matrices [16]

Dl
m,n(α) = eımα2dlm,n(cosα1)eınα3 , (47)

where the dlm,n are generalized associated Legendre functions. The Dl
m,n are

the matrix elements of the rotation operator in a l,m (angular momentum)
basis (l = 0, 1, 2, .., m = −l, ..,+l). For each l, the (2l+ 1)× (2l+ 1) matrices
Dl
m,n represent an irreducible representation of SO(3). The homomorphism

property may be expressed in the form

Dl
m,n (g2g1) =

l∑
m′=−l

Dl
m,m′ (g2)Dl

m′,n (g1) , (48)

where g2g1 is the product of the rotations g1, g2 ∈ SO(3). The Dl
m,n form an

orthonormalized set of basis functions on SO(3),(
Dl
m,n, D

r
p,q

)
R

= δlrδmpδnq, (49)

with the inner product being defined by

(ϕ, χ)R =

∫
SO(3)

d3α sinα1ϕ
∗(α)χ(α), (50)

Furthermore, one can show that this set is complete. Our wave function may
consequently be written in the form

ψ(x, α, t) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

F lm,n(x, t)Dl
m,n(α). (51)

This expansion shows that ψ transforms under rotations according to a
reducible representation, namely the direct sum of all irreducible representa-
tions. If we were to project Eq. (44) onto R3 without any further constraints,
we would have to introduce a variable with infinitely many components. This is
of course not acceptable. We need a variable with a relatively small number of
components which, more importantly, transforms according to an irreducible
representation of the rotation group. Thus, the irreducibility postulate used so
succesfully by Wigner plays a decisive role in the projection from R3×SO(3)
to R3.
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6.1 Reduction to l = 1

We choose the irreducible representation l = 1. As a basis in the correspond-
ing subspace we use the three functions D1

a,0(α), a = −1, 0, 1; these transform
according to the l = 1 representation, as shown by Eq. (48). In the fol-
lowing, we write Da instead of D1

a,0 ommitting the indices 1, 0. Then the
expansion (51) reduces to

ψ(x, α, t) =

1∑
a=−1

Fa(x, t)Da(α), (52)

where the three orthonormalized basis functions are given by

D−1(α) = ı

√
3

4π
e−ıα2 sinα1, (53)

D0(α) =

√
3

2π
√

2
cosα1, (54)

D1(α) = ı

√
3

4π
eıα2 sinα1. (55)

The projection to the three-dimensional subspace generates a theory in the
Euclidean configuration space R3 (a conventional field theory) for a wave func-
tion ψ(x, t) with the three components F−1(x, t), F0(x, t), F1(x, t) (indices a, b
running from −1 to 1). The Schrödinger-like differential equation (38) takes
the form

~
ı

∂Fa
∂t

+ d−1
0 p̂iM

i
a,bFb = 0, (56)

where the quantities M i
a,b are the matrix elements of the operators m̂i in the

l = 1 basis,

M i
a,b = (Da, m̂iDb)R , (57)

M1 =
~√
2

0 1 0
1 0 1
0 1 0

 , M2 =
~√
2

 0 ı 0
−ı 0 ı
0 −ı 0

 , M3 = ~

−1 0 0
0 0 0
0 0 1

 . (58)

Performing a necessary rearrangement of indices, the matrices M i coincide
with the matrices Ji derived by Holland from Maxwell’s equations [9].

The matrices M i fulfil the same commutation relations[
M i,Mk

]
= −~

ı
εiklM

l, (59)

as the differential operators m̂k from which they were derived. The constant
matricesM i are angular momentum operators (for l = 1), but their action con-
sists only in a mixing of the three components of ψ. Thus, they do not describe
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an orbital angular momentum but an internal degree of freedom called spin
(spin 1). Based on the present derivation, it is clear that the rotational motion
associated with this internal degree of freedom must not be interpreted as
rotation of individual massless particles (photons), but as collective rotational
motion in a (statistical ?) ensemble of massless particles.

The components v̂k of the velocity operator are transformed by the projec-
tion into the 3× 3 matrices V k = d−1

0 Mk. We note that both the velocity V k

and the angular momentum Mk describe internal degrees of freedom. Using
the three-component wave function ψ, Eq. (56) may be written in the more
compact form (

~
ı

∂

∂t
+ V ip̂i

)
ψ = 0, (60)

which shows the formal similarity with the massless Dirac theory particularly
clearly.

6.2 Transition to Cartesian basis

If we assume that the theory described by (60) makes physical sense, then it
seems useful to replace the spherical coordinates with the more commonly used
Cartesian coordinates. In concrete terms, this means that we have to look for
a representation of the spin matrices that corresponds to the transformation
behavior of real vector fields in R3. These are given by Sijk = ~

ı εijk, or

S1 =
~
ı

0 0 0
0 0 1
0 −1 0

 , S2 =
~
ı

0 0 −1
0 0 0
1 0 0

 , S3 =
~
ı

 0 1 0
−1 0 0
0 0 0

 . (61)

As for the prefactors ~
ı , these were added in order to be able to use the classical

result as part of QT; of course, the classical rotation operator itself does not
depend on ~.

The transition to the Cartesian basis is performed by means of the trans-
formation Fa = UaiGi, S

i
nm = U−1

naM
i
abUbm, where indices a, b take values

from −1, 0, 1, all other indices running from 1 to 3, and the unitary matrix U
is given by

U =
1√
2

 1 ı 0

0 0
√

2
−1 ı 0

 . (62)

In terms of the new Cartesian field components Gi and spin matrices Si the
Schrödinger-like differential equation (56) takes the form

~
ı

∂Gn
∂t

+ d−1
0 p̂iS

i
n,lGl = 0. (63)

Denoting the components d−1
0 Si of the velocity operator with the same symbol

V i as before, and using also the same symbol ψ for the complex quantity with
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components G1, G2, G3, Eq. (63) may also be written in the more compact
form (60).

If we now introduce real vector fields E and B with components defined
by Gk = Ek + ıBk, it follows immediately from (63) that these fields satisfy
the two time-dependent electromagnetic field equations

∂

∂r
×B− 1

c

∂E

∂t
= 0, (64)

∂

∂r
×E +

1

c

∂B

∂t
= 0. (65)

We have not yet used the constraint that states corresponding to Eq. (36) are
not allowed. Next, we try to derive the two remaining Maxwell equations from
this constraint.

6.3 Derivation of transversality conditions

The additional condition we have to take into account was formulated in
section 4, in the context of the description of particle orbits in phase space.
It stated that those orbits which fulfil the condition v = rω [see Eq. (36)] are
to be excluded from consideration. If the relation p = d0ω [see text follow-
ing Eq. (14)] is used, then the additional condition means that the velocity
v must not be parallel to the direction of propagation n(p) = p/p, where
p =

√
p2

1 + p2
2 + p2

3.
We have made three drastic changes to the original picture of the motion of

(massless) particles in the course of the present development. In the first step,
we moved from particle coordinates to space coordinates, replacing ordinary
with partial differential equations. As a consequence, the concept of trajecto-
ries lost its meaning; it was replaced by the concept of continuous distributions
in phase space. In the second step, we moved from phase space to rigid body
configuration space. In this step the transition to QT was carried out - in the
sense that observables in phase space were replaced by operators in config-
uration space. Remarkably, with this single step we left not only the realm
of classical physics but also the realm of non-relativistic physics. In the third
step the projection onto the Euclidean configuration space was performed.
The number of degrees of freedom was further drastically reduced by replacing
operators on SO(3) by 3× 3 matrices.

Despite these major changes, the original condition (36) can easily be
”translated” into the present version of the theory. Let us consider the opera-
tors of velocity V i and momentum p̂i, replacing the original quantities vi and
pi. The eigenvalues of the components

V 1 =
c

ı

0 0 0
0 0 1
0 −1 0

 , V 2 =
c

ı

0 0 −1
0 0 0
1 0 0

 , V 3 =
c

ı

 0 1 0
−1 0 0
0 0 0

 . (66)
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of the velocity operator are 0,±c. The particles that form the quantum
mechanical counterpart to the original Galilean particles - we can call them
photons - are thus either at rest or moving at the speed of light. This means
that the photons that make up our ensemble may have unusual kinematics; for
example, the velocity is always parallel to the spin as shown by the relation
V i = d−1

0 Si.
In order to find the possible values of V relative to the direction of

propagation n(p), we solve the eigenvalue problem of the operator V ip̂i [17]: E ıcp3 −ıcp2

−ıcp3 E ıcp1

ıcp2 −ıcp1 E

u1

u2

u3

 = 0. (67)

We obtain three eigenvalues Ea (a = 0,+,−) given by

E0 = 0, E± = ±cp, (68)

with the corresponding orthonormalized eigenvectors

u0(p) =
1

p

p1

p2

p3

 , u±(p) =
1√

2p2 (p2
1 + p2

2)

±ıp2p− p1p3

∓ıp1p− p2p3

p2
1 + p2

2

 . (69)

With the help of these solutions, one can form a complete basis of plane wave
states

φap,n(x, t) =
1

(2π~)
3/2

uan(p)e
ı
~ (pkxk−Ea(p)t), (70)

and write the general solution of Maxwell’s equations as a linear combination,
with an amplitude Aa(p), in the form

Gn(x, t) =
∑
a

Gan(x, t) =
∑
a

∫
d3pAa(p)φap,n(x, t). (71)

This decomposition will allow us to identify the part of the solution that has
to be eliminated due to the original additional condition.

In the state with the eigenvalue E0 = 0 the helicity is 0, i.e. the spin is
perpendicular to the direction of propagation n(p). The associated eigenvector
u0(p) describes a movement parallel to n(p), i.e. a longitudinal wave. In the
states with E± = ±cp the helicity is ±1, that is, the spin is parallel or antipar-
allel to n(p). Both associated eigenstates are perpendicular to n(p), and also
perpendicular to each other [the relation

(
ua(p), ub(p)

)
= δab holds true for

a inner product defined by (a, b) =
∑
k a
∗
kbk]. The movement therefore takes

place in a plane perpendicular to n(p) and describes a transverse wave.
The transition from the original particle picture to the present quantum

picture led in a certain way to a simplification, insofar as only three directions
of the original continuum of possible directions of velocity have now survived.
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On the other hand, at first glance, a difficulty of intuitive interpretation arises
in that the operators of spin and velocity are proportional to each other. The
velocity operator therefore has the ”wrong direction”, so to say. However,
the velocity is described by the eigenstate belonging to the operator of the
velocity, and not by the operator itself. Therefore, the quantum mechanical
state corresponding to the original particle state [v parallel to n(p)] is given by
the longitudinal contribution G0

n(x, t) associated with the eigenvalue E0 = 0.
To eliminate the term G0

n(x, t) from Eq. (71) it is sufficient to postulate
the validity of the relation

∂Gn
∂xn

= 0. (72)

The longitudinal state is not compatible with this requirement due to the
relation n(p) = u0(p), while the transversal states automatically fulfil this
condition. After separating the real and imaginary parts, (72) leads to the
transversality conditions

∂E

∂r
= 0,

∂B

∂r
= 0 (73)

for the real-valued physical fields E and B. The conditions (73) play a special
role; as is well know, it is sufficient to ensure their validity at a single (initial)
time. This special role is also visible in the formalism of second quantization.

The absence of the longitudinal mode for massless particles can also be
shown using Lorentz invariance; the same is true for the parallelism between
the velocity operator and the spin operator [18]. It is satisfying that the
HLLK provides an alternative and completely independent explanation for
these facts.

7 Maxwell’s equations, classical or quantum

We have already identified the system of Eqs. (64),(65),(73) with Maxwell’s
equations, but we may ask ourselves whether this identification is the only
possible one within the framework of our theory.

In section 4 we introduced a density whose physical meaning and dimension
was not specified. The formalism of HLLK yields the same field equations
for all these densities. However, the physical meaning and dimension of the
associated fields is determined by that of the densities; the dimension of the
density coincides with the dimension of the square of the fields. Eqs. (64),(65)
imply the conservation law

1

2c

∂

∂t

(
E2 + B2

)
+

∂

∂r
(B×E) = 0. (74)

It follows that the density E2 + B2 integrated over whole space is a conserved
quantity. If we interpret the fields E, B as electrodynamical fields, then this
density is an energy density. In order to derive Maxwell’s equations, one must
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therefore take a non-probabilistic quantity, namely an energy density, as the
original density.

This choice is consistent with the interpretation of Maxwell’s equations
as classical equations, where classical means the same as non-probabilistic.
The HLLK thus provides the basis for a ”second quantization” in the sense of
the quantization of a classical field. As will be discussed in the next section,
the process of HLLK can be thought of as a generalized quantization. If this
terminology is accepted, the field quantization becomes a second quantization
in the literal sense.

Regardless of the fact that there is no true probability density in Maxwell’s
equations, the 3-component quantity ψ introduced in section 6.2 (or a general-
isation of it) is called the “wave function of the photon” by some authors [19];
this terminology has been criticised by other authors [20]. The question is
not of paramount importance in view of the fact that numerous quantum-like
structures can be found in Maxwell’s equations, especially in the formulation of
Eq. (60). These structures also became visible in the course of our derivation.

As already mentioned, the interpretation of the density, which is first intro-
duced in the phase space, is completely arbitrary in the HLLK, and has no
influence on the form of the final field equations in the configuration space.
However, if a probability interpretation is assigned to the density, then one
has to fulfil the additional condition that the integral of the density over the
whole space must be equal to 1 (a similar operation exists also in the case of a
particle density). For example, using the formalism introduced in I, II, we can
also derive a classical Schrödinger equation where the square of the absolute
value of the wave function has the meaning of a particle density. Conversely,
instead of the classical Maxwell equations derived here, we can also derive a
”quantum mechanical” equation, for a three-component complex quantity φ,
with associated fields b and e. These fields satisfy Eqs. (64),(65),(73) and, in
addition, must satisfy the probabilistic normalisation condition∫

d3x
(
b2 + e2

)
= 1, (75)

with the integration extending over all space. The relation between this
quantum-mechanical Maxwell wave function and the above classical wave func-
tion was found by Good [17],[20]. He also showed that the expectation values
of Maxwell’s theory have the correct quantum mechanical form when using
this wave function.

These questions are relevant for the problem of second quantization, the
introduction of an occupation-number formalism for a first-quantized theory,
or the equivalent problem of quantizing a classical field [21]. The additional
complication that the relevant dynamical variables are not the fields but the
potentials must also be taken into account [22]. We do not want to discuss
these questions, which are outside the scope of this paper, but mention that
the HLLK provides a basis for both types of second quantization. We hope
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to return to these questions in a later paper, after the derivation of the Dirac
equation.

8 Discussion

In I-IV Schrödinger’s equation (and the entire formalism of QT as regards
single particles) was derived with the help of the HLLK. In the present work,
the complete set of Maxwell’s equations was derived using the same method.
It was thus possible to derive the two differential equations that are probably
the most important in the field of fundamental physics with the help of this
method.

These two equations are quite different in their physical meaning. We know
from an enormous number of observations that the predictions of Schrödinger’s
equation are probabilistic in nature whereas the predictions of Maxwell’s
equations are deterministic, in the sense that they can be tested with the help
of forces in single experiments. Schrödinger’s equation thus belongs to QT,
while the electromagnetic field is regarded as the prototype of a classical field
par excellence; at least as long as one excludes experiments with very low
intensity from consideration.

The HLLK was originally constructed to derive QT within the framework
of a probabilistic world view. The fact that the same method can now be
used to derive a deterministic (fundamental) system of classical field equations
requires a reassessment of the significance of this method. One can define the
HLLK as a generalized quantization method that starts from a continuum of
particle trajectories, performs a projection onto the configuration space, and
introduces a new natural constant in the course of this projection. In the case
of QT, this new natural constant is ~, while in the case of Maxwell’s equations
it is the speed of light c.

This double success leads to the speculative question whether possibly all
fundamental fields of physics can be defined on the basis of such a generalized
quantization defined by the HLLK. It leads, in short, to the question of whether
all fundamental fields are quantum fields in this sense. This would also mean
that all fundamental fields of physics can be traced back to an associated
particle system. With regard to the dichotomy mentioned at the beginning of
this paper, it would mean that the particle concept is more fundamental than
the field concept.

The natural constants generated in the course of the projection to the
configuration space, ~ and c, both have the physical meaning of a realistic
limitation or - which is the same thing - the elimination of an unrealistic ideali-
sation. Let us explain what we mean by that. Classical particle physics contains
the unrealistic assumption that measurements with infinitely high accuracy
are possible. The HLLK quantization that leads to Schrödinger theory elimi-
nates this unrealistic assumption and creates an accuracy limit ~. As regards
the massless case, let us consider the structure of Galilean space-time. Here
we find the unrealistic assumption that infinitely large velocities are possible.



A reconstruction of Maxwell’s equations 23

The HLLK quantization eliminates this unrealistic assumption by generating
the Maxwell field - and with it a modified, relativistic space-time structure
characterised by a maximum velocity c.

We find here a new ordering principle for the relation between different
physical theories: Theory B is better than theory A if an inadmissible ide-
alisation of theory A no longer occurs in theory B. In the present work, we
have derived - following a path opened by Holland [9] - Minkowski space
from Galilean space with the help of this ordering principle. We can now
transfer classical mechanics (for particles with non-zero mass) into Minkowski
space according to the well-known method. This relativistic mechanics still
suffers from the inadmissible idealisation that measurements with infinitely
high accuracy are possible. We expect that the elimination of this inadmissi-
ble idealisation with the help of the HLLK quantization will lead to the Dirac
equation.
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