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Abstract

Adonai Sant’Anna made some criticisms to the theory of quasi-sets and in
particular he asked why there is no a theory of quasi-sets that does not presuppose
the existence of atoms. In this paper we present a sketch of such a theory. In
between the text, we make some comments on Sant’Anna’s arguments and try to
answer at least part of them.
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I would like to point out that (. . . ) [set theory] is rather an extrapolation of
common-place physics, where we can distinguish things, count them, put
them in some order, etc. New quantum physics has shown us models of
entities with quite different behaviour. Even ’sets’ of photons in a
looking-glass box, or of electrons in a nickel piece are much less Cantorian
than the ’set’ of grains of sand. (. . . ) We should consider the possibilities of
developing a totally new language to speak about infinity. [set theory is
known as the theory of the infinite]

Yuri I. Manin [Manin, 1976]

1 Introduction
Quasi-set theory was proposed to cope with collections of things that can be completely
indiscernible without turning to be ‘identical’, the same thing. The clear motivation for
such a theory is quantum physics, where in the standard interpretation, quantum entities

*Partially supported by CNPq.
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are considered as completely indiscernible and in some situations (such as in bosonic
condensates) where there is not even in principle something that can discern them. As
the Nobel Prize winner Frank Wilczek said, “in the quantum world we need unifor-
mity of the strongest kind: complete indistinguishability.” [Wilczek and Devine, 1987,
p.135]

The first theory of quasi-sets (‘qsets’ for short) was developed in 1990 (see [Krause, 1992])
and ever since them it has being improved; see [Krause et al., 2005, French and Krause, 2006]
and [de Barros et al., 2024], [Wajch, 2023] for a more recent development.

The theory is not immune to criticisms. One of the most important is concerning
the attribution of quasi-cardinals to a collection of indiscernible things; some people
think that for attributing a cardinal to a collection of entities, the involved elements
must present identity. Another criticism concerns the nature of the quantifiers; if some
element of a collection of indiscernibles has a certain property, due to their indiscerni-
bility, all of them would have the property as well. The references and the answers to
these questions can be found in [Krause, 2024a, Krause, 2024b]. Here we address to
other kind of criticisms.

Adonai Sant’Anna (I shall consider his more recent paper [Sant’Anna, 2023] where
other references can be found)1 put some remarks about the version of the Axiom of
Choice used in the theoryQ (see [French and Krause, 2006, French and Krause, 2010])
and asked why there is no a theory of quasi-sets that does not presuppose the existence
of atoms. His challenge has motivated us to develop such a theory, which is sketched
here. In between the text, we make some comments on Sant’Anna’s other arguments
and try to answer at least part of them.

Some details about Q seem to be in order since they will be considered below.
The theory is compatible with the existence of two kinds of ur-elements, the m-atoms
and the M-atoms. Notice that there are no postulates asserting that these entities do
exist; as in may formulations of ZFA (Zermelo-Fraenkel with Atoms [Suppes, 1972]),
atoms are simply admitted to exist but are not postulated to exist. The M-atoms play
the role of the ur-elements of ZFA, and the m-atoms are conceived so that the defined
notion of extensional identity does not hold to them. But, for the ‘classical’ entities, this
identity coincides with the identity ascribed by the Standard Theory of Identity (STI) of
classical logic ([Mendelson, 1997] for the ‘first-order’ theory of identity). The theory
has a primitive unary functional symbol qc so that if x is a quasi-set (qset for short),
then qc(x) denoted the quasi-cardinality of x. Here we shall introduce a ‘finitistic’
version of this notion.

With these remarks in mind, we can start by presenting the theory NQ, a version
of Q but any reference to atoms.

2 A theory of quasi-sets without atoms
In this section we sketch a theory of quasi-sets without assuming the possibility of
existence of atoms; we call ‘NQ’ such a theory (for ‘new’ quasi-set theory). The
underlying logic is classical first-order predicate logic without identity. The specific

1Some near point were also posed by Eliza Wajch [Wajch, 2023], but her arguments will not be considered
here.
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primitive symbols are standard symbols for Peano Arithmetics (PA), namely, 0, S ,
+, ·, = and < (with all the standard notions and definitions),2 the binary predicates ∈
(membership) and ≡ (indiscernibility, or indistinguishability), and a binary functional
symbol qc. Individual variables for quasi-sets (‘qsets’) are denoted by x, y, z, . . . and
the natural numbers are denoted by n,m, p, . . .; symbols for punctuation are used as
usual. The axioms are those presented below plus some first-order formulation of PA
[Shoenfield, 1967, p.22] (or [Franco de Oliveira, 2004, Chap.4] for a formulation in-
volving all the chosen symbols) and those of the classical first-order calculus without
identity ([Mendelson, 1997]). Notice from the start that we do not want to take arith-
metics from inside the theory of qsets; PA will act as a ‘step theory’ for providing us
natural numbers that are not ordinals in the same sense that tensor calculus is a step
theory for General Relativity. In other words, our natural numbers are 0, S 0, SS 0 and
so on, and not something like ∅, {∅}, {∅, {∅}}, etc. We use n,m, s, p, . . . for variables
ranging over natural numbers.

If x is a qset and n is a natural number from PA, the term qc(x, n) intuitively says
that the qset x has quasi-cardinal (q-cardinal) n, and this stands for the quantity of
elements of x; we shall be restricted to qsets with a finite number of elements also (that
is, their q-cardinals are natural numbers).3 We present the specific postulates of the
theory NQ with comments.

1. Axioms for ≡ This postulate says that the indiscernibility relation has the proper-
ties of an equivalence relation, that it, it is reflexive, symmetric and transitive.

So, if x is a qset, we may form the quotient qset x/≡ whose elements are equivalence
classes of indiscernible elements of x. When we write (∃y ∈ x/≡)α we mean ∃y(y ∈
x/≡ ∧ α, being α a formula; the same holds for ‘∀’, that is, (∀y ∈ x/≡)α means ∀y(y ∈
x/≡ → α).

2. Weak Extensionality Axiom (WEA) This axiom states that qsets with the same
quantities of indiscernible elements are indiscernible. This is expressed in terms of the
quasi-cardinalities of the equivalence classes by the indiscernibility relation this way:
for each equivalence class in x/≡ with q-cardinal n there exists an equivalence class in
y/≡ with the same q-cardinality and whose elements are indiscernible from those of x/≡
and reciprocally:

∀x∀y
(
(∀z ∈ x/≡)(∃w ∈ y/≡)(qc(z, n)→ qc(w, n))

∧(∀w ∈ y/≡)(∃z ∈ x/≡)(qc(w, n)→ qc(z, n))→ x ≡ y
) (WEA)

The intuition is to capture the idea that we could write ‘H2SO4 ≡ H2SO4’ or that
‘H2O ≡ H2O’. In what respects chemistry, the case of isomers deserve further clarifi-
cations, since involves the notion of form, which is difficult to treat set-theoretically.

2Note that identity (=) is introduced only for the natural numbers in PA.
3We have borrowed this notation from [Wajch, 2023].
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Remark An important remark is in order. As we have said before, the natural num-
bers which are being used for expressing the q-cardinals of the qsets are taken from
the Peano Arithmetics we have added to the theory. Of course the theory will enable
us to prove that there exists a model of PA within NQ, but this is another thing: these
natural numbers (of the model) will be, as usual, ordinal numbers (the finite ordinal
numbers). We do not wand that the q-cardinals are ordinals since this would imply
that there is a bijection between the qset and the ordinal, something that implies that
the elements of the qset can be discerned from one another. The attentive reader could
argue against this claim by saying that if we have a qset with three indistinguishable
things, in defining a bijection from this qset to {0, S 0, SS 0} we are discerning them
after all. But this is not what the attribution of a natural number to a qset means; notice
that qc(x, n) does not require that such a bijection exists. It is a primitive notion whose
operational behaviour is given by the axioms.

So, I beg the reader to pay attention to this: the existence of q-cardinals does not
imply identity or discernibility of the elements of the qset. The notation qc(x, n) simply
states that the qset x has n elements in the same sense that we can day that a neutral
Helium atom has two electrons without any way to tell which is which (that is, defining
a bijection from the ‘set’ of electrons to the von Neumann’s ordinal 2 = {0, 1}.

3. Schema of separation Let α be a formula and x a qset. The schema says that we
can ‘separate’ those elements of x that satisfy the given formula to form a new qset y;
in symbols,

∀x∃y∀z(z ∈ y↔ z ∈ x ∧ α(z)). (Sep Schema)

For instance, given a neutral Sodium atom whose eleven electrons are thought of as
forming a qset, we can ‘separate’ eight of them to form the subqset of those electrons
in the second energy level.4 Notice that despite we have the property they must obey,
given by their quantum numbers, we do not have any means to specify which of the
eleven electrons are these eight; electrons are not ‘things’ we can put our finger on.
The most we can say is that there are eight electrons in the second energy level, but no
particular identity is given to them.

The qset got from x by the Separation Schema throughout the formula α is denoted

[z ∈ x : α(z)].

Theorem 1 There exists a qset with no elements.
Proof — Let x be a qset and α the formula defined by α(z) ↔ z . z. Using the

Separation Schema and considering that the indiscernibility relation is reflexive, we
get the required qset.

4. The q-cardinal of the empty qset Any qset with no elements has q-cardinal zero:

∀x(qx(x, 0)↔ ∀y(y < x)).

4We recall that the electronic configuration of a Sodium atom reads 1s2 2s2 2p6 3s1.
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We cannot prove that there is just one empty qset since the proof would require
identity, which is not being considered here (except in the metalanguage). But this does
not impede us of denoting any empty qset with the usual symbol ‘∅’. The important
thing is that they are indiscernible from one another by WEA and that their q-cardinal
is zero. So, when we speak of the empty qset, we are speaking of any one of them.

5. Axiom of union Given qsets x and y, there exists a qset z denoted by x∪y such that
for any w, w belongs to z iff it either belongs to x or belongs to y. We can generalise this
axiom by stating that for any qset x there exists a qset

⋃
x such that for any z, z ∈

⋃
x

iff there exists y ∈ x and z ∈ y.

Let x and y be qsets and α a formula defined as α(z) iff z ∈ x ∧ z ∈ y. Applying
the Separation Schema in x ∪ y, we get the qset of all elements that are in both x and
y; this qset is the intersection of x and y. The definition can be generalised to

⋂
x in an

obvious way.

6. Axiom for q-cardinals

∀x∀y(qc(x, n) ∧ qc(y, 1) ∧ x ∩ y ≡ ∅ → qc(x ∪ y, n + 1)).

The meaning of this axiom is quite obvious: we can increase the quasi-cardinal of
a qset by carefully chosen a new element.

Definition 1 (Sub-qset) x ⊆ y B ∀z(z ∈ x→ z ∈ y).

This definition also deserves some care. How can we know if a qset x is a sub-qset
of the qset y? By the definition, when all elements of x are also elements of y. But
in order to know if some z ∈ x also belongs to y, we need to find in y some element
that is identical to z, and this requires identity. So, the most the theory enables us to
do is to suppose that x is a sub-qset of y and leave the proof to the particular theory
to which NQ is being applied, for instance, chemistry. In this discipline, using the
above example of the Sodium atom, we can say that there is a subqset of the qset of the
electrons whose elements are those electrons of the second energy level.

The next two axioms will give us more ways for argumentation about sub-qsets.

7. Axiom of the power qset Let x be a qset. Then there exists a qset termed P(x)
such that for all z, z ∈ P(x) iff z ⊆ x and further, being qc(x, n), then the q-cardinal of
P(x) is 2n.

8. Axiom for q-cardinals If the q-cardinal of a qset x is the natural number n, then
x has a sub-qset with q-cardinality p for any p ≤ n. In symbols, we can write

∀x∀n(qc(x, n)→ (∀p ≤ n)(∃y ⊆ x)(qc(y, p))).

Theorem 2 If qc(x, n) and the elements of x are indiscernible, then all sub-qsets of x
with the same q-cardinality are indiscernible.

Proof — Immediate consequence of WEA.
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This result brings interesting consequences. For instance, let qx(x, n), that is, the
qset x has n elements and suppose they are indiscernible. How many possibilities we
have of distributing the n elements in p ≤ n sub-qsets (‘states’)? A simple reasoning
will convince you that the number is done by the formula which expresses the Bose-
Einstein statistics, namely,5

C
n+p−1
n =

(n + p − 1)!
n!(p − 1)!

.

We can fortify the theory with axioms corresponding to the axioms of infinite,
regularity, replacement and choice.

9. Axiom of regularity We can formulate it as follows:

∀x(x . ∅ → ∃y(y ∈ x ∧ y ∩ x ≡ ∅)) (Regularity)

10. Axiom of infinity There exists a qset that have all the natural numbers as ele-
ments.

11. Axiom of pairing Given the qsets x and y as elements of a qset z, there exists a
qset whose elements are those elements of z that are indiscernible from either x or y;
we denote this qset by [x, y]z. Notice that the q-cardinality of the ‘pairing’ qset may be
greater than two.

One of the cute remarks given by Sant’Anna is that without the restriction to el-
ements of z, the simple qset [x, y] would be a proper class. He is right. This was
corrected in [French and Krause, 2010] and used accordingly since them.

Definition 2 (Singleton) If x ∈ z, the ‘singleton’ of x (relative to z) is the qset [x]z

defined this way:
[x]z B [x, x]z (Singleton)

The q-cardinality of [x]z may be greater than one. As just remarked, the reference to
the qset z is essential for on the contrary, something like [x], the qset of all indiscernible
from x, would be what we could call a proper qclass.

Remark This postulate has also interesting consequences. Let x ⊆ y and take z as
the qset y \ x (the difference of qsets, see the definition below) and suppose yet that
the elements of y are indistinguishable. Thus, how can we know which elements of
y belong to z? There is no ‘objective’ way to know that. But this is the same as
questioning how can we know if some particular electron (if we could take one) belongs
or not to a neutral Lithium atom or if some proton belongs to it; these questions have
no sense. We simply know that there are three electrons and three protons there and
this is enough; if our chose electron is in Mars and the Lithium atom is in the Moon,

5This result was previously discussed in [Sant’Anna et al., 1999]; see also [French and Krause, 2006,
§7.6].
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then surely our electron will be not in the atom, but we need care in dealing with a
so quick conclusion.6 What imports in quantum phyeics is that there are the kinds of
things we are dealing with and their quantities, and the theory of quasi-sets enables us
to consider this idea quite cutely. In the same vein, we can suppose that if there exists
some element of y that does not belong to x, then the qset z is not empty and this is
enough once the elements of y are indiscernible.

Definition 3 (Strong singleton) Let x ∈ z. A strong singleton of x relative to z is a
subqset of z whose element is indiscernible from x and whose q-cardinal is one. We
denote it by JxKz. If some qset y is a strong singleton, we write S(y).

In standard set theory, where STI holds, the strong singleton of x would be its
singleton set {x}. But this presupposes identity: x is the only element of {x}. Since
we are not considering the notion of identity, we cannot specify which is the only
element of a strong singleton; what indicate that there is just one is its q-cardinal (but
see below). But if all elements of z are indiscernible and JxKz and JyKz, then JxKz ≡ JyKz.
The existence of strong singletons comes from the axiomatics; suppose qc(z, n) with
n ≥ 1. Then, by Axiom 8, there exist (at least) one subqset of z with q-cardinality one.
Furthermore, it is consistent with the theory to suppose that the q-cardinal of the qset
of all strong singletons of z is n; we cannot differentiate them, but they count as more
than one, so as bosons in a BEC or electrons in an atom.

An important remark concerns strong singletons. Eliza Wajch insist (private cor-
respondence) that we cannot prove that a strong singleton has just one element. My
answer is as follows. What we cannot do is to know which particular element belongs
to a strong singleton JxKz, say to ascribe it a proper name which act as a rigid designa-
tor.7 The only thing we can advance is that its element belongs to z and is indiscernible
from x. But since the q-cardinal of JxKz is one, I suppose we can reason, at least in the
metamathematics, that it has just one element.

12. Axiom for q-cardinals

∀x∀n(qc(x, n)→ (∀y ⊆ x)(qc(y, 1)→ qc(x \ y, n − 1))).

This axiom says that we can ‘eliminate’ and element of the qset x by admitting the
existence of the qset y, despite we cannot identify the eliminated element. The situation
is similar to what happens, say, when we ionise a neutral Helium atom. The He atom
has two electrons and by given it some amount of energy, we can expunge one of the
electrons getting a cation He+ and we could write qc(He+, 1) while qc(He, 2). But
nothing can tells us which electron was expunged.

6Really, in considering the joint system formed by the two electrons (one in Mars and another in the
Moon), the wave-function is anti-symmetric and when we take its square to obtain some probability, an
interference term does appear, which rigorously cannot be eliminated except for some practical purposes.
To ignore the interference term, as physicists usually do in their ‘practical physics’ provide good results, but
it is something similar to disregard infinitesimals in the earlier calculus; as George Berkely has shown, the
results may be fine, but the logical foundations become weird; see [Krause, 2024a] for a discussion.

7This is an expression that came from Saul Kripke meaning a label that identifies an entity as that entity
in every possible world where it exists. Proper names are supposed to play this role.
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Definition 4 (Difference of qsets) Let x and y qsets so that x ⊆ y. Then the difference
y \ x is defined as a qset whose elements are the elements of y that do not belong to x.8

Theorem 3 (‘Unobservability’ of permutations) Let x be a sub-qset of y and w ∈ x.
If z ∈ y, z ≡ w but z < x, then

(x \ JwKy) ∪ JzKy ≡ x.

Proof: If qc(x, n), then qc(x \ JwKy, n − 1) by the Axiom 12. But qc(JzKy, 1) and so
qc(x \ JwKy ∪ JzKy, n) by the Axiom 6. Since w ≡ z, then JwKy ≡ JzKy and the theorem
follows.

This is another polemic result of the theory of quasi-sets. The theorem is saying
that if we ‘exchange’ an element of x by an indiscernible one, the resulting qset is
indiscernible from the original. This is analogous to the He atom of the above example.
Suppose we ionise it by expunging one electron and later we make the cation to absorb
an electron turning a neutral atom again. What is the difference between the new neutral
atom and the original one? No one can tell us! They have exactly the same properties:
they are indiscernible.

Sant’Anna criticises this result by saying that the theorem is not true in any permu-
tation model ofQminus the Axiom of Choice and minus the a-cardinals axioms. Well,
as he emphasises, the proof depends on the notion of q-cardinal. Thus, if one drops
the corresponding axioms as he did, the theorem cannot be proven and it would be a
mistake to say that it is false. Notice that in no permutation model there are m-atoms as
posed by the theory of quasi-sets Q; what one can achieve in such models is atoms that
pretend to play the role of m-atoms of Q, but which behind the curtain are revealed to
be individuals of ZFA. The wolf with a sheep face.

We think that we can reason as follows. For simplicity, take a reconstruction
of Fraenkel’s original second permutation model. In ZFA, let x = {a, a} be one of
Fraenkel’s cells [Fraenkel, 1967]. In the suitable permutation model, π(a) = a, being π
an automorphism of the model, got from any permutation of the atoms. Hence the two
elements are indiscernible within the model. Let x′ = x \ {a} and then x′′ = x′ ∪ {a}. It
follows that x = x′′. These operations can be done because the elements are individuals
endowed with identity, so we can identify a as being the same atom in both situations.
This exactly what the above theorem is saying but using the indistinguishability relation
instead of equality. I don’t see why the theorem would be so problematic.

Side remark One question may intrigue the attentive reader. If α is a formula what-
ever and some x satisfies α, does any y ≡ x satisfies it as well? In other words, does
indiscernibility entails substitutivity? Notice that if this were true, since it is reflexive,
it would be standard identity. So, we need to prove that this is not the case. An example
is enough for that.

Let us consider a strong singleton x whatever whose only element is denoted by
y, so we can take α as y ∈ x. Of course we cannot know which entity is y, but since
qc(x, 1), we know (in principle) that there is nothing else there. Suppose that z ≡ y; can

8Usually the difference between sets y and y is denoted by y − x.
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we conclude that z ∈ x as well only because z (whatever it is) is indiscernible from y?
Of course not. This would entail that x would contain as elements every indiscernible
from y and so its quasi-cardinality would not be one. In other words, from y ∈ x
and z ≡ y we cannot conclude that z ∈ x. So, the indiscernibility relation is not a
congruence, being distinct from the standard identity relation.

Since we are preparing the theoryNQ for applications in the quantum domain, we
think that we do not need, in principle, of a version of the Replacement Schema; any-
way, we think that if necessary it can be assumed exactly as inQ [French and Krause, 2006,
§7.2.4], [de Barros et al., 2024]. More relevant seem to be a ‘troublesome’ version of
the Axiom of Choice.

13. The Axiom of Selection of Indiscernibles This postulate was termed ‘Axiom of
Choice’ in [French and Krause, 2006] and ‘Axiom of Quasi-Choices’ in [de Barros et al., 2024].
Due to the criticisms, which we find debatable, we prefer to change its name once again
so that avoiding (so we hope) any association with the standard Axiom of Choice, de-
spite the similarities. It simply states that some selections are possible in the theory.

The idea is quite simple and can be explained as follows. Suppose you have a qset
whose elements are also qsets (since there are no atoms) but non-empty and without
common elements (pairwise disjoint), say an imaginary collection of electrons, protons
and neutrons. Then we wish to assume that there exists a qset whose elements are
indiscernible from an element of each of the elements of the given qset, that is, a
collection with one electron, one proton and one neutron.

In more specific talking, let x be a qset so that if y and z are elements of x, then
they are not empty (that is, not indiscernible from an empty qset) and y ∩ z ≡ ∅. Then
there exists a qset u of the same q-cardinality than x such that for any w ∈ u, there
exists an element s belonging to some element y of x that is indiscernible from w. The
requirement that the q-cardinality of u is that of x grants that we are taking one element
of each element of x.

We can formulate the axiom this way, where |x| stands for the q-cardinality of x:

∀x(∀y∀z(y ∈ x ∧ z ∈ x→ y ∩ z ≡ ∅)→ ∃u(qc(u, |x|) ∧ ∀w(w ∈ u→

∃y(y ∈ x ∧ ∃s(s ∈ y ∧ s ≡ w))))
(AQC)

The intuitive account of this axiom is so evident that it looks strange to question it.
Anyway, formally of course things may be different.

Sant’Anna introduces a permutation model of ZFA which he says is a model for Q
minus choice and minus the axioms for q-cardinals (of the theory Q). Then he states
that the Axiom of Choice ofQ is not true in his model; notice that he is not speaking of
the above axiom. Well, if the Axiom of Choice of Q is false in Sant’Anna’s model, the
conclusion if of course that the model does not model the Axiom of Choice of Q, end-
point. But he goes further. He defines another permutation model in which the axiom
is true. Since it is supposed to be independent of the remaining axioms ofQ, this would
be not a surprise; all he has done, if his results are correct, is that the Axiom of Choice
of Q is independent of the remaining axioms (supposed consistent). Notwithstanding,
Sant’Anna’s conclusions says that “within the context of permutation models, quasi-set
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theory [that is, Q] is either inconsistent or equivalent to ZFU + Axiom of Choice [he
means ZFA], provided that there are no micro-atoms [m-atoms]”. This is grounded on
the conclusion that in his new model, there are no m-atoms. The reason is not clear
to me. In fact, the assertion is not clear firstly because ZFU (or ZFA) involves already
an Axiom of Choice; so, which is the axioms being added to ZFU in his supposition?
Secondly, the theory Q is consistent with the existence of m-atoms, yet it does not pos-
tulate their existence. So, if there are no m-atoms, of course the theory collapses into
ZFA, but this is a well-know result put already in [French and Krause, 2006]. The in-
teresting fact is the supposition that they exist; this is what links the theory to quantum
physics.

3 Models: just a sketch
The signature of NQ is the tuple

⟨0, S ,+, ·,=, <, ∈,≡, qc⟩.

So, in order to model the theory, we need to find interpretations to these symbols
so that the axioms are satisfied. A question enters here, one which no philosopher I
know has discussed it yet; it can be put simply this way: where these interpretations
are constructed? It would be quite strange to construct a model for NQ in a set theory
like ZFC or ZFA, since in thees theory all entities are endowed with identity and can
always be discerned from one each other, even if at least in principle (atoms of ZFA
inclusive). This move can be formally done, but would distort the ideas of NQ.9 So,
there are two open possibilities: to construct an informal semantics, grounded on the
natural language and to construct a formal semantics in the theory of quasi-sets Q.

The formal semantics can be elaborated on the following grounds. The notions cor-
responding to PA are interpreted in the standard model of PA that can be constructed
in the ‘classical’ part of Q, that is, that part that does not involve m-atoms. The mem-
bership relation and the indiscernibility relation are interpreted in their corresponding
relations restricted to qsets only. It is easy to see that such a structure models NQ.

Notice that such a construction is not merely defining a model forQ withinQ, since
there are differences betweenQ andNQ. But, of course, it seems that such a semantics
is merely repeating things already said in Q. But, since no other theory can be found
admitting things like m-atoms without attributing them identity, the only alternative
would be to consider an informal semantics.

Of course the most interesting semantics for any theory of quasi-sets is the informal
one. We have delineated it in the case ofNQ in the previous discussion of the axioms,
but turn to it again now. The motivation is, as said already, quantum physics, but we
are free to imagine a situation involving absolutely indiscernible objects out of the
quantum realm.

9For instance, the standard presentation of quantum mechanics presupposes Hilbert spaces which demand
bases. But there are models of ZFA where there are vector spaces with no basis or vector spaces with basis of
different cardinalities [Jech, 1977]. Can we chose a model like these ones to consider quantum mechanics?
There are other situations where things show that we would pay attention to the metamathematics.
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The natural numbers can be assumed as we do when reason about mathematics.
The membership relation means ‘to be an element of’ as usual. The indiscernibility
relation is the most controversial one. Can we assume that there are indiscernible en-
tities? In our standard metaphysics, which has influenced classical logic and standard
mathematics, so as classical physics, indiscernible things can be relative to one or to a
bundle of properties, say when two objects share an equivalence relation, or absolute,
when they share all possible properties and relations. In this last case, says our Leib-
nizian metaphysics, they are identical, that is, the same object. Indiscernibility entails
identity, understood in the sense of sameness.

But, as Yuri Manin (and others) has suggested in the quotation put in the epi-
graph, quantum physics has presented us entities with a completely different behaviour.
Bosons can share the same quantum state and in such a situation, there are no differ-
ences among them, not even in principle, for instance when we take a Bose-Einstein
Condensate (BEC) [Ketterle, 2007]. This is reflected in their obedience to Bose-Einstein
statistics. So, if we represent a BEC as a collection of entities in a framework encom-
passing STI, they would be distinct things and would present differences, contrary to
what the quantum theory says. Thus, we have a strong motivation to introduce Q and
NQ.

Concerning fermions, since they obey Pauli’s Exclusion Principle, they cannot
share the same state, hence one may say that there will be always a ‘difference’ be-
tween two fermions, so that they cannot be completely indiscernible even when sharing
an entangled state. This brings a challenge. The challenge is that despite they present
a difference, one cannot take, say, two electrons (which are fermions) and (using Her-
mann Weyl’s example) state ‘this is Mike’ and ‘that is Ike’ in such a way that these
names act as rigid designators [Weyl, 1950, p.241]. As Weyl said, “one cannot demand
an alibi of an electron.” That is, it is impossible that electrons retain their identities so
that one electron could say ‘I am Mike’, while the other would say ‘I am Ike’ in differ-
ent contexts. Any permutation between Mike and Ike will be not differentiated by the
measurement of any observable; this is exposed in the Principle of Indistinguishability,
which reads

⟨ψ|Â|ψ⟩ = ⟨Pψ|Â|Pψ⟩ ,

where ψ is the state of the system, Â is an Hermitian operator standing for some mea-
surable quantity, and P is a permutation operator. The expression ⟨ψ|Â|ψ⟩ stands for
the expectation value of the measurement of the observable while the system in in
state ψ; the rule says that this value does not change after a permutation of the enti-
ties involved in the system. So, even being fermions there are no detectable physical
differences among them when they are of the same kind. But, if we are in a standard
set theory such as ZFC or ZFA, even if there are no ‘physical’ differences, there are
the logical ones, for instance to belong to their unitary sets. The discussion whether
‘logical’ properties count in discerning quantum entities is interesting and discussed in
[Krause, 2024a]. Consequently, it would be a categorical mistake to assume that they
can form sets in the sense of standard set theories, which are collections of distinct
(hence distinguishable) things. In our opinion, the best way to represent collections of
them is by using qsets.
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4 More on Sant’Anna’s conclusions
As seen before, Adonai Sant’Anna introduced permutation models for the theory Q
minus the Axiom of Choice and minus the axioms for q-cardinals of such a theory
[Sant’Anna, 2023]. We agree that this can be done but such models are built in a
theory where identity holds for every entity;10 despite in the model some atoms are
made invariant by automorphisms, standing for indiscernible things, when you leave
the model you realise that even these atoms are individuals endowed with identity; re-
call that the whole universe of ZFA is a rigid structure since every entity in the universe
has its singleton set which belongs to the universe.11 So, it is not correct to say, as
Sant’Anna did, that the axioms of ZFA do not distinguish among atoms. This sentence
is surely reproduced from T. Jech’s book [Jech, 2008, p.45], but should be read with
some care. When Jech states that, he is referring to permutation models; thus, inside
the models really the postulates do not distinguish among atoms (at least between ‘con-
jugate’ atoms) since they are constructed precisely for this aim; they are deformable
structures, enabling the existence of nontrivial automorphisms. Consequently, these
permutation models do not help us in representing entities that are indiscernible and
cannot be identified by any means, as it seems to be the case of quantum systems in
several situations, for the whole ZFA universe, being rigid, will enable the distinction
when we are not confined to a permutation model.

Furthermore, concerning the standard permutation models of ZFA− (ZFA minus
Regularity), one usually start with an infinite set A of atoms and construct a hierarchy
indexed by ordinals by positing P0(A) B A, P1(A) B P(A) ∪ P(P(A)), etc. (see
[Jech, 2003, p.250]). But here we can return to an already posed question, namely,
where these models are constructed? Even if you assume naı̈ve set theory, the fact that
A is a set says already that its elements are distinct from one another, and you need to
use the power set operation, which makes sense only for sets. That is, despite you make
the trick saying that inside the model the atoms are indiscernible, really they are not!
In 1922, Fraenkel, when constructed one of his models to prove the independence of
the Axiom of Choice from the remaining axioms of ZFA (that time termed ‘ZFU’, the
‘U’ meaning Urelemente, atoms), assumed “a denumerable infinite number of distinct
objects (. . . ), none of which is considered as a set” (my emphasis) [Fraenkel, 1967],
that is, atoms. Of course Fraenkel’s paper can be said to have just an historical value,
but the above argument prevails even today: A, the set of atoms, is a set. So, we
conclude that permutation models can save the day FAPP (for all practical purposes,
in John S. Bell’s expression), but are not useful to cope with a metaphysics of non-
individuals.

10Another approach admitting proper ‘quasi’ classes is presented in [Wajch, 2023] and developed ‘from
the scratch’.

11Of course, if the unitary sets did not belong to the universe, maybe we would have no other means to
discern one object from another. This is what happens, for instance, with the additive group of the integers
Z = ⟨Z,+⟩, which is not rigid since h(x) = −x is an automorphism of the structure. So, for instance, 3 and
−3 are indiscernible within the structure, but not in the whole universe of sets. By the way, a set such as {3}
does not belong to the universe of the structure. But, in this particular case, the structure can be made rigid
by adding the binary relation <. A strong result concerning standard set theories is that every structure can
be extended to a rigid one by adding new predicates and relations so that if we report to the whole ‘universe
of sets’, say the von Neumann’s hierarchy of well-founded sets, we realise that everything has identity.
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So, Sant’Anna’s questionings, such as “the mere existence of permutation mod-
els [like those he has suggested] compromises the intended interpretation of quasi-set
theory as [a possible formalisation of] a world [which] admits the existence of non-
individuals” cannot be accepted at all! The permutation models, as argued before, one
could say, at least can save the phenomena, or can be used FAPP but does not cope with
the intended metaphysics, which is the main aim of the theory of quasi-sets. Further-
more, Sant’Anna claims things like this: “why can’t we pursue another way [to cope
with quantum entities]?” Of course one can do that, and this can be done, as is well
known, for instance, taking Bohmian mechanics where the particles are individuals en-
dowed with identity [Tumulka, 2022]. But no one of these attempts cope with truly
indiscernible things, this being understood as entities that are taken as indiscernible
from the start, as suggested by H. Post a long time ago [Post, 1973] and not made
indiscernible a posteriori, by hand.

So, taking into account that the theory of quasi-sets was proposed to formally ex-
press a metaphysics of non-individuals (in the above sense), one can accept it or not,
but it would be a mistake to criticise it for not doing what it was not proposed to do.
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