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Abstract

In a recent paper (Found Phys 54:14, 2024), Carcassi, Oldofredi
and Aidala concluded that the ψ-ontic models defined by Harrigan
and Spekkens cannot be consistent with quantum mechanics, since all
pure states of these models must be orthogonal to each other according
to their information theoretic analysis, in clear violation of quantum
mechanics. In this paper, I argue that this no-go theorem for ψ-ontic
models is false.

The reality of the quantum state has been a hot topic of debate since
the early days of quantum mechanics. Is the quantum state real, directly
representing the ontic state of a physical system, or epistemic, merely rep-
resenting a state of incomplete knowledge about the underlying ontic state?
In recent years, a rigorous approach called ontological models framework has
been proposed by Harrigan and Spekkens (HS) to distinguish the ψ-ontic
and ψ-epistemic views [1]. Moreover, several important ψ-ontology theo-
rems that establish the reality of the quantum state have been proved in the
framework, two of which are the Pusey-Barrett-Rudolph (PBR) theorem [2]
and Hardy’s theorem [3, 4]. In this background, Carcassi, Oldofredi and
Aidala’s (COA) recent no-go theorem for ψ-ontic models [5] is unexpected
and surprising. If it is correct, it will be a very important new result. In
this paper, I will examine the COA theorem and argue that it is false.1

Before presenting my critical analysis of the COA theorem, I will briefly
introduce the ontological models framework in which the theorem is proved.

1A referee of my recent paper [6] asked me to evaluate COA’s paper in his/her report.
This paper can be regarded as my fulfillment of this task.
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The framework has two fundamental assumptions [1, 2]. The first assump-
tion is about the existence of the underlying state of reality. It says that if
a quantum system is prepared such that quantum mechanics assigns a pure
state to it, then after preparation the system has a well-defined set of physi-
cal properties or an underlying ontic state, which is usually represented by a
mathematical object, λ. This assumption is necessary for the analysis of the
ontological status of the quantum state, since if there are no any underlying
ontic states, it will be meaningless to ask whether or not the quantum states
describe them.

Here a strict ψ-ontic/epistemic distinction can be made. In a ψ-ontic
ontological model, the ontic state of a physical system determines its quan-
tum state uniquely, and the quantum state represents the ontic state of
the system. While in a ψ-epistemic ontological model, the ontic state of a
physical system can be compatible with different quantum states, and the
quantum state represents a state of incomplete knowledge – an epistemic
state – about the actual ontic state of the system. Concretely speaking, the
quantum state corresponds to a probability distribution p(λ|P ) over all pos-
sible ontic states when the preparation is known to be P , and the probability
distributions corresponding to two different quantum states may overlap.

In order to investigate whether an ontological model is consistent with
the empirical predictions of quantum mechanics, we also need a rule of
connecting the underlying ontic states with the results of measurements.
This is the second assumption of the ontological models framework, which
says that when a measurement is performed, the behaviour of the mea-
suring device is only determined by the ontic state of the system, along
with the physical properties of the measuring device. More specifically, the
framework assumes that for a projective measurement M , the ontic state
λ of a physical system determines the probability p(k|λ,M) of different
results k for the measurement M on the system. The consistency with
the predictions of quantum mechanics then requires the following relation:∫
dλp(k|λ,M)p(λ|P ) = p(k|M,P ), where p(k|M,P ) is the Born probability

of k given M and P .
COA’s proof of their theorem based on the ontological models framework

is simple and clear and thus it can be readliy examined. COA analyzed the
information entropy of a mixed state in both ψ-ontic models and QM, and
argued that since they are different, ψ-ontic models are not consistent with
QM according to their information theoretic analysis. The key then is to
examine if the information entropy of a mixed state in these two theories
are really different.

COA considered the mixed state ρ = 1
2(|ψ⟩ ⟨ψ|+ |ϕ⟩ ⟨ϕ|), where |ψ⟩ and

|ϕ⟩ are two pure states. Its quantum information entropy is given by the
von Neumann entropy, namely
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where p = |⟨ψ|ϕ⟩| is the absolute value of the inner product of the two states.
In ψ-ontic models, the two pure states |ψ⟩ and |ϕ⟩ correspond to two

δ probability distributions of ψ-related ontic states or two ψ-related ontic
states λψ and λϕ. That the von Neumann entropy of a pure state is zero in
QM requires that a pure state corresponds to a δ probability distribution of
ψ-related ontic states or a unique ψ-related ontic state in ψ-ontic models;2

otherwise the Shannon entropy for a pure state in ψ-ontic models already
disagrees with the von Neumann entropy of the pure state in QM. Then the
information entropy of a uniform mixture of these two states, λψ and λϕ, in
ψ-ontic models is given by the Shannon entropy:3
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Now it can be seen that the information entropy of a mixed state in
ψ-ontic models and in QM can be the same only when the pure states in
the mixture are orthogonal, namely the inner product of the two pure states
such as p in Eq. (1) is zero. Since the information entropy of a general
mixed state (in which the pure states in the mixture are non-orthogonal) in
ψ-ontic models and in QM are different, COA concluded that the ψ-ontic
models cannot be consistent with quantum mechanics.

In order to find where the above proof goes wrong, we need to understand
why the quantum information entropy of a mixed state is given by the von
Neumann entropy, which, unlike the classical information entropy, relates
to the inner product of the pure states in the mixture. First, for a mixture
of orthogonal states ρ =

∑
i pi |ψi⟩ ⟨ψi|, where |ψi⟩ are certain orthogonal

bases, the von Neumann entropy is just the Shannon entropy for a classical
mixture. That is, the von Neumann entropy is H(ρ) = −

∑
i pilnpi. Next,

for a mixture of non-orthogonal states whose density matrix is equal to
ρ =

∑
i pi |ψi⟩ ⟨ψi| (where pi are determined by the inner product of the

non-orthogonal states4), its von Neumann entropy is equal to the Shannon
entropy of the above mixture of orthogonal states.

Then, Why? The reason is as follows. First, in QM orthogonal states
can be distinguished by experiments with certainty, while non-orthogonal

2Even if there are hidden variables besides the quantum state (in which case a pure
state will correspond to a general probability distribution of ontic states that include both
the unique ψ-related ontic state and other hidden variables), they cannot be measured
in principle and thus no information about them can be obtained. This means that the
existence of hidden variables does not change the information entropy of a pure state as
given by the Shannon entropy for the unique ψ-related ontic state.

3Note that COA gave a different formulation of the Shannon entropy in their paper
[5]. But their result is the same as the one given here. In my view, the formulation given
here is simpler and clearer.

4The appendix of COA’s paper gives a clear illustration of this result [5].
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states cannot be distinguished by experiments with certainty. Thus, for a
mixture of orthogonal states, the von Neumann entropy is the same as the
Shannon entropy, since the orthogonal states in QM can be distinguished
with certainty, just like the classical states in a classical mixture. Next, since
the non-orthogonal states, unlike the classical states, cannot be distinguished
with certainty, the von Neumann entropy for a mixture of non-orthogonal
states is different from the Shannon entropy for a classical mixture. In other
words, the Shannon entropy requires that the states in the mixture should
be distinguishable in experiments with certainty. Finally, since two mixed
states in QM which have the same density matrix cannot be distinguished
by experiments (which means that the information we can obtain from them
must be the same), the von Neumann entropy of a mixture of non-orthogonal
states, whose density matrix is equal to the density matrix of a mixture of
orthogonal states, is equal to the von Neumann entropy of the mixture of
orthogonal states, which is also the same as the Shannon entropy of the
mixture of orthogonal states.

Based on the above analysis of the origin of the von Neumann entropy
in QM, we can see where COA’s proof of their no-go theorem for ψ-ontic
models goes wrong. The issue lies in that COA implicitly assumed that
in ψ-ontic models, the two ontic states λψ and λϕ, which are represented
by two non-orthogonal states |ψ⟩ and |ϕ⟩, are classical states that can be
distinguished by experiments with certainty. Only by this assumption, can
the information entropy of a uniform mixture of these two states be given
by the Shannon entropy. It is this result that contradicts QM, in which
the information entropy of a uniform mixture of two non-orthogonal states
is given by the von Neumann entropy that is different from the Shannon
entropy. However, this assumption is not part of the ψ-ontic models de-
fined by HS, and as argued above, it is not consistent with QM either. In
order that an ψ-ontic model is consistent with QM, it should additionally
assume that the ontic states represented by non-orthogonal states cannot
be distinguished with certainty (which is an assumption about the dynam-
ics), and thus the information entropy of a uniform mixture of these states
should be given not by the Shannon entropy, but by the von Neumann en-
tropy (when further considering the fact that two mixed states that have the
same density matrix cannot be distinguished by experiments). Therefore,
COA did not successfully prove that the ψ-ontic models are inconsistent
with quantum mechanics. What they proved is merely that the ψ-ontic
models with an additional wrong assumption about the distinguishability
of non-orthogonal states are inconsistent with quantum mechanics. When
replacing this wrong assumption with a correct assumption about the indis-
tinguishability of non-orthogonal states, the ψ-ontic models can agree well
with quantum mechanics in giving the same information entropy of a mixed
state.

To sum up, I have argued that Carcassi, Oldofredi and Aidala’s recent no-
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go theorem for ψ-ontic models is false. However, the reality of the quantum
state still deserves to be studied once again.
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