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There are many things one would say about [the Dedekind cut
corresponding to an irrational number] such as that it is a set of
infinitely many things . . . that one would certainly be most reluc-
tant to impose as a burden on the number itself. (Dedekind letter
to Weber 24 January 1888, quoted by Stein (1988, p. 248).)

The field of differential equations has never been transformed in
a profound way by the intrusion of structuralist methods. (Ab-
stract for the session The Limits of Mathematical Structuralism:
a practice-oriented analysis 17th International Congress on Logic,
Methodology and Philosophy of Science and Technology, Buenos
Aires.)

1. Introduction

Whether the field of differential equations has been transformed by structural-
ist methods depends on what is meant by “structuralist.” Carter (2023, p. 214)
describes narrower and broader scopes for structuralism:

mathematical activities (reasoning or introducing new entities) rely
not only on relations internal to the considered structures; equally
important—as I will show—are “global” relations, the relations be-
ing set up between different structures or mathematical fields.

Section 2 associates narrow scope structuralism with Benacerraf (1965) What
numbers could not be, and broad scope with Dedekind (1872) Continuity and Irra-
tional Numbers. Sections 3–6 describe how functional analysis parallels Dedekind,
and how it is central in differential equations teaching and research. Section 7 de-
scribes the current practice of “definition up to isomorphism.” While practice in
functional analysis certainly does not determine a full metaphysics of mathemati-
cal existence, Section 8 explains in what way and for what reason the practice is
“structuralist.” Benacerraf says any attempt to specify uniquely what numbers are
“miss(es) the point of what arithmetic, at least, is all about” (1965, p. 69). This
paper argues that any similar attempt for the spaces of functional analysis misses
the the point of that subject.

1.1. Sources. We adopt three paradigms for the mathematics: a calculus textbook
Differential Equations and Linear Algebra, Strang (2015); advanced undergrad lec-
tures on Functional Analysis by Stein and Shakarchi (2011); and a research survey,
Lemarié-Rieusset (2024) The Navier-Stokes Problem in the 21st Century. Typical
current mathematics in content, all three are unusually up to date in outlook and
unusually informative on history.

Strang (2015) grew from an inspired reorganization of MIT’s differential equa-
tions course for engineering students. Stein and Shakarchi (2011) is one of four
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volumes from Elias Stein’s radically re-conceived analysis sequence at Princeton.
These celebrated lectures emphasize how problems in the inchoate 19th century in-
sights of Charles Fourier led to current methods (Fefferman et al., 2012; Wikipedia
contributors, 2023b). The title of Lemarié-Rieusset (2024) declares its focus on the
latest methods for one famous equation: Navier-Stokes.

1.2. A timeline of structural methods for differential equations. An outline
of the events creating this mathematics shows structural methods are no abstract
alternative to concrete calculation. They are calculating tools.

1820: Fourier solves important differential equations by using “functions” that
violate the (later) set theoretic definition of function. The most familiar
today is the Dirac delta function δ(t).

1927: Dirac uses δ(t) and other “improper functions” in Quantum Mechanics,
noting they are not functions by the usual mathematical definition (Dirac,
1930, p. 60ff.).

1934: Leray extends Fourier by deep use of topology, creating the modern ap-
proach to Navier-Stokes and many other differential equations.

1936: Sobolev generalizes the use of topological vector spaces (Babich, 2009).
1944: Schwartz organizes all this in a theory of distributions (Barany, 2018).

Tao (2008a,b) puts the current state of the art very concisely.
Today the Dirac delta δ(t) and related “functions” occur as calculating tools in

standard second-year calculus and engineering math textbooks, with examples of
their use but no precise definition. More or less rigorous versions of all the topics
in this list are standard upper-level undergraduate pure and applied math.

2. Two scopes for structuralism

Structuralist philosophy of mathematics pursues “the image of mathematics as
revolving around the concept of structure” (Corry, 2004, p. 337). This image is
more or less true to different areas of mathematics at different times. The contrast
between narrow and broad scope structuralism already occurs in Benacceraf’s What
numbers could not be which opens by quoting R.M. Martin:

[T]he mathematician focuses primarily upon mathematical struc-
ture . . . seeing how one structure is “modelled” in another, or in
exhibiting some new structure and showing how it relates to previ-
ously studied ones. . . . (Martin quoted by Benacerraf 1965, p. 47)

This is broad scope structuralism. When it refers to entirely isomorphism invariant
means we will call it “Dedekind structuralism.” We could as well associate it with
Emmy Noether, or category theory, or many others. To be clear, Noether not only
produced mathematics, she taught a structuralist conception of how it should be
produced. One of her great students wrote of “Noether’s principle: base all of
algebra so far as possible on consideration of isomorphisms” (Krull, 1935, p. 4).

Benacerraf refocuses the question in a narrower way:

[In] an abstract structure [. . . ] the ‘elements’ of the structure have
no properties other than those relating them to other ‘elements’ of
the same structure. (1965, p. 70)

Call this “Benacerraf structuralism.” This image of structural relations holding
only among the elements of one structure is faithful to some current mathematics:



STRUCTURALISM IN DIFFERENTIAL EQUATIONS 3

(1) Strictly elementary arithmetic. (But not even introductory number theory.)
(2) Axiomatic geometry. (But not analytic or differential geometry.)
(3) Some model theory.

It is not true to much undergraduate mathematics, let alone research.

2.1. Dedekind’s continuum, and functional analysis. Dedekind defined the
real numbers by beginning with the rational numbers, and saying irrational real
numbers correspond to cuts on the rational numbers:

Whenever, then, we have to do with a cut (A1, A2) produced by no
rational number, we create a new, an irrational number α, which
we regard as completely defined by this cut (A1, A2); we shall say
that the number α corresponds to this cut, or that it produces this
cut. (Dedekind, 1872, p. 15)

The irrational number α is assigned no properties except what follows from being
greater than any rational number in A1 and less than any in A2. Dedekind explicitly
refuses to say irrational numbers are cuts, because that would assign them irrelevant
set theoretic properties. But his whole understanding of irrational numbers—like
every analyst’s then or now—rests on knowing which rational numbers are less than
a given irrational α, and which are greater. So Dedekind’s real numbers do not have
only properties “relating them to each other.” He defines them in relation to the
antecedently assumed rational numbers Q, which form an indispensable structure
themselves. Dedekind defines all his number systems, from the natural numbers N
through Q and R only up to isomorphism, but each in relation to the ones before.1

So Dedekind is structuralist, but not Benacerraf structuralist.
Of course Dedekind also knew—like every analyst then or now—irrational num-

bers can be specified by Cauchy sequences of rational numbers. This follows from
his definition of irrationals as corresponding to cuts. Dedekind just refuses to say a
real number is a cut on the rational numbers, or is an equivalence class of Cauchy
sequences of rational numbers. Cuts and sequences are equally indispensable to
working with real numbers and neither has a claim to be what real numbers are.
Mathematicians today often prefer an explicitly isomorphism invariant higher-order
definition: Let the real numbers R be any complete ordered field.

These three treatments of the real numbers are closely analogous to the structural
methods of functional analysis.

3. A remarkable, slightly illegal function

Now we meet a remarkable function δ(t). This “delta function” is
everywhere zero, except at the instant t = 0. In that one moment
it gives a unit input. . . . This “impulse” is by no means an ordinary
function. (Strang (2015, p. 23).)

Since Fourier’s 1822 Analytic Theory of Heat, a central tool for solving differential
equations has been the Dirac delta function δ(t). Fourier did not use the symbol δ
but worked with this integral expression for a function of the variable t:∫ q=∞

q=0

cos(q · t) dq.

1Ferreirós (2007, Ch. VII), see also Ferreirós and Reck (2020). Reck (2023) reviews other
interpretations including by Dedekind’s “philosophical critics.”
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Fourier’s critics were more right than wrong when they called this expression non-
sense.2 But Fourier applied standard rules of calculus just as if this integral did
mean something. He got impressive, independently verifiable solutions to difficult
differential equations. Today nearly no one ever sees this ill-defined integral.3

Textbooks now introduce δ(t) as a function with δ(t) = 0 for t ̸= 0, and δ(0) so
high that the area under the graph is 1. They refer to δ(t) as “impulse input” and
warn it is not an ordinary function. Strang (2015, p. 98) calls it “slightly illegal.”
No function in the set theoretic sense has the required properties.

Textbooks give one step further precision by an integral equation implicit in
Fourier’s work. For all functions g :R→R:

(1)

∫ t=∞

t=−∞
g(t) · δ(t) dt = g(0)

This has successfully taught math, physics, and engineering students to use δ(t).
But this “integral sign”

∫
cannot mean the familiar Riemann (or less familiar

Lebesgue) integral. With no definition of this
∫
, students just gain intuition from

examples using Equation 1. Filling it out rigorously is a good bit of work which is
done by Stein and Shakarchi (2011, p. 100f.) for example.

An alternative approach motivates δ(t) by infinite sequences of curves like the
sequence begun in Fig. 1. These are normal or Gaussian curves with mean 0, and
successively smaller standard deviation. So the area under each curve is 1, and
they eventually become vanishingly small everywhere but t = 0.

Figure 1. Smooth functions approaching δ(t).

Intuitively, think of these curves as approaching or converging to the graph of
δ(t). But geometrically they converge to the x-axis plus a vertical line up the y-
axis, and that is not the graph of a function. It takes a good bit of work to spell
out the correct, relevant sense of convergence using topological vector spaces. But
then this can be made a rigorous definition of δ(t). See Stein and Shakarchi (2011,
p. 146 Ex. 4).

2See (Lützen, 1982, p. 113) and many references to Fourier in (Kline, 1972).
3Related well-defined integrals show δ(t) is the Fourier transform of 1 (Strang, 2015, Exam-

ple 5, p. 441).
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3.1. Remarkable weak derivatives.

This was the great talent of Schwartz: to give a simple idea that
works. (Bourbaki member Pierre Cartier 2021)

These methods would not work if they did not well match relevant intuitions,
including intuitions of the calculus. One key to using the Dirac delta function
is that this “function” has a derivative, written δ′(t).

Certainly δ′(t) is not a derivative of δ(t) in the sense of limits of difference
quotients the way Calculus I classes define derivatives. It cannot be that, since δ(0)
has no specifiable value to begin with. Rather, δ′(t) is a derivative in a symbolic
sense as some (but not all) familiar rules of calculus apply to it. It is introduced by
the same means we just used for δ(t): It is motivated verbally, it has a suggestive
integral equation, and smooth curves can approach δ′(t). All three ways are made
rigorous by topological vector space methods the same as for δ(t). See Section 5.

Putting it in words, δ′(t) = 0 for t ̸= 0. This makes perfect sense since δ(t) is
constant when t ̸= 0. But let t approach 0 from the negative side. From its value
of 0 for t < 0, δ′(0) first rockets up to infinity, then down to negative infinity, and
then returns to 0. All this action happens over the single point t = 0. Clearly
this is not possible for any function from R to R as defined in set theory. Since it
cannot be a set theoretic function, but it follows (many of) the calculating rules for
a derivative, it is called a weak derivative of δ(t).

To visualize δ′(t), picture the infinitely high and narrow limit of smooth curves
as in Figure 2. These smooth curves are the derivatives of normal curves. As δ(t)

Figure 2. Smooth functions approaching δ′(t).

is a kind of limit of ever higher narrower normal curves, so δ′(t) is that kind of first
high then low narrow limit of their derivatives.

The integral equation for δ′(t) says, for all functions g :R→R with a well defined
derivative g′(t):

(2)

∫ ∞

−∞
g(t) · δ′(t) dt = −g′(0)

Any reference on δ(t) will explain the negative sign in Equation 2. In short, this
makes (many of) the usual rules of calculus work in this broader context.
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4. Numerical methods using weak derivatives

Given a differential equation F (u) = 0 for a function u, we may want numerical
estimates of values u(a), u(b), u(c), . . . at specified points a, b, c, . . . .

(1) Practical applications always need specific calculated values u(a), u(b), u(c). . . .
(2) If exact solutions for u are unknown, numerical approximations may be a

good way to explore the problem.

Numerical methods are extremely important, extensively developed, and often ex-
tremely reliable; but the pitfalls and the general theory are extremely intricate. See
discussion by Sterrett (2023).

Numerical methods for differential equations often use weak derivatives in the
sense of our Section 3.1 rather than classical derivatives (Evans, 2010, p. 8 and
much passim). The widely stated reason for this in the literature is that numerical
approximations normally are patched together from individually smooth pieces, but
with “kinks” where different pieces join. They are not classically differentiable at
the “kinks,” but do have weak derivatives. Section 6 returns briefly to this.

5. Function spaces

Rigorous versions of generalized functions like δ(t) and δ′(t) are due to Sobolev
and Schwartz using function spaces.4 Tao (2008b, p. 210) says the elements of
function spaces “are functions.” But in that same series of articles Tao states he
uses “function” in a wider sense than functions as defined in set theory (2008a,
p. 185). The elements of function spaces most often are not functions in the set
theoretic sense. They are always intuitively like functions defined in set theory, the
way δ(t) and δ′(t) are intuitively like set theoretic functions from R to R. And all
function spaces are structurally related to spaces of set theoretic functions. We can
see an example:

There is a function space called C∞
c (R) containing those set theoretically defined

functions f :R→R which are infinitely differentiable and have f(x) = 0 for all x
outside some finite interval. It carries a topology we will not define.

The point for us is that C∞
c (R) has a dual space D′(R) whose elements are

definable in basically three ways:

(1) Continuous linear functions from the space C∞
c (R) to R.

(a) This officially defines D′(R) for Stein and Shakarchi (2011, p. 100).
(b) Compare defining R by Dedekind cuts on the rational numbers.

(2) Equivalence classes of suitable sequences of functions in C∞
c (R).

(a) Stein and Shakarchi (2011, p. 146 Ex. 4) shows this can define D′(R).
(b) Compare defining R by equivalence classes of Cauchy sequences of

rational numbers.

(3) Up to isomorphism by more abstract properties.
(a) Compare defining R as a complete ordered field.

Elements of D′(R) are called Schwartz distributions on R no matter which def-
inition of D′(R) is used. This is often shortened to just distributions. The Dirac
delta function δ(t) can be precisely defined as the Schwartz distribution on R which

4Andrei Rodin points out the early history is poorly known and may go back to Nikolai Gunter
in Saint Petersburg in 1916. That would be valuable to know but current practice traces to Sobolev

and Schwartz.
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satisfies Equation 1. Authors often use distributions without specifying which def-
inition they mean. The definitions of D′(R) agree up to isomorphism so they all
work alike exactly as the definitions of R all work alike. Section 7 returns to this.

The space of Schwartz distributionsD′(R) is one of many, many different function
spaces used in functional analysis. These are not Benacerraf structures, since the
elements of one function space are not only related to the elements of that space.

They are Dedekind structures: They are defined, in practice, up to isomorphism.
And the elements of a function space are defined by relations to each other, and
to the elements of a few other related structures. In our example, the elements of
D′(R) are related to the real numbers R and to elements of the more basic function
space C∞

c (R).
This barely touches the surface of current functional analysis. But be assured

the more advanced reaches are no less structural than this!

5.1. Aside on Dedekind cuts as order-preserving functions. Some readers
may enjoy a fuller account of Item 1b above, comparing Dedekind cuts to continuous
linear functions. The point is:

A Dedekind cut gives the same information as a continuous order-
preserving function from Q to the ordered set {0, 1} (with 0 ≤ 1,
and topology making {0} open and {1} closed).

This rarely comes up outside textbooks on order-theory. But it is not hard.
Partitioning Q into a lower part A1 and an upper part A2 is just the same

as giving an order preserving function Q → {0, 1} mapping A1 to 0 and A2 to
1. Dedekind (1872, p. 13) notes each irrational number corresponds to one such
partition of Q, while each rational number q corresponds to two since q might be the
greatest element of A1, or the least element of A2. We can remove this ambiguity by
requiring that part A1 of a Dedekind cut must have no greatest element. In other
words A1 must be open in Q. And this is exactly the same as requiring Q→{0, 1}
to be continuous for this topology on {0, 1}.

So the real numbers R can be defined (up to isomorphism) as continuous order
preserving functions Q→{0, 1}. Schwartz distributions commonly are defined (up
to isomorphism) as continuous linear functions C∞

c (R)→R.

6. What Fourier’s “functions” do for differential equations

Generalized functions u solving some differential equation are studied numeri-
cally as described in Section 4, or when set theoretically defined solutions do not
exist or are not yet known. The Navier-Stokes equation has been studied this way
for 90 years. As another use, a differential equation may depend on some input
function. Then the general solutions for arbitrary inputs may be well organized
around the special solution with the Dirac delta δ(t) as input.

6.1. Leray’s weak solutions to Navier-Stokes. The Navier-Stokes equation
expresses Newton’s law F = ma for the flow of viscous fluids.5 Its widespread use
in physics and engineering relies on coarse approximations and ad hoc corrections
because the math is so hard (Patton, 2023; Sterrett, 2023).

5Introductions emphasizing pure mathematics are: Fefferman (2008), Lemarié-Rieusset (2024,
opening chapters), McLarty (2023), Wikipedia contributors (2023a). The huge engineering and

physics literature on Navier-Stokes is beyond the scope of this paper.
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The equation posits three forces on a flowing fluid: viscous drag within the flow,
fluid pressure, and an external force such as gravity. The 2-dimensional case models
a fluid layer of negligible depth and it has been completely solved (Fefferman, 2008).
For 3-dimensional flow, you can win a $1, 000, 000 Clay Millennium Prize without
finding a single solution just by settling the existence of smooth solutions.

Prove or refute: The 3-dimensional Navier-Stokes equation has a
smooth global solution for every smooth initial condition (see details
in Fefferman (2000)).

Here a smooth global solution means a function in the set theoretic sense, with
well-defined derivatives at every point meeting the equation. Current work on this
is heavily based on Leray’s 1934 result: The 3-dimensional Navier-Stokes equation
has a global solution in Fourier’s sense for every smooth initial condition.

These are called weak solutions. A weak solution could be a function in the set
theoretic sense. Or it could be a generalized function which verifies many rules of
calculus in a symbolic way while not being a function set theoretically (or at least
not current known to be one).

Leray (1934) took advantage of two facts:

(1) “Functions” in Fourier’s sense include all smooth functions, even all con-
tinuous functions, but there are far more functions in Fourier’s sense (as
there are more real numbers than rational).6

(2) The key point: Spaces of (what I have called) Fourier’s “functions” have
good topological properties that the related spaces of set theoretically de-
fined functions lack. This is precisely analogous to the continuous real line
R supporting techniques of calculus that do not work for the discontinuous
rational line Q.

Leray found a nice kind of approximate solutions to the 3-dimensional Navier-
Stokes equation, and gave an innovative topological argument showing suitable
sequences of these approximations converge to weak solutions.7

6.2. Fundamental solutions.

The most important solution to a linear differential equation [is]
the fundamental solution. In engineering [it is called] the impulse
response. (Strang, 2015, p. 78).

Strang expands on fundamental solutions throughout his book. For a theoretical
introduction see Stein and Shakarchi (2011, p. 125–34). Lemarié-Rieusset (2024,
p. 715) notes they are central to his discussion of classical solutions to Navier-Stokes.

Suppose a savings account pays 3% yearly interest compounded continuously.
Let y(t) be the amount in that account at time t measured in years. Then the
derivative y′(t) is the rate of change of the balance at time t and it is a sum of two
terms:

(3) y′(t) = 0.03 · y(t) + f(t).

6Leray’s solutions are measurable functions and are often treated as distributions as a conve-
nient more general context. See the introduction to Chapter 5 of Lemarié-Rieusset (2024).

7The proof is non-constructive. While Leray’s solutions have good properties beyond being
weak solutions, striking work by Albritton et al. (2022) confirmed the expectation that they are
not unique.
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Here 0.03 ·y(t) is the interest on the balance of y(t), and f(t) is the rate of deposits
or withdrawals made at time t. Mathematically f is called the input function.

The fundamental solution to Equation 3 is just the solution with δ(t) as input.
That means there are no deposits or withdrawals at any time except t = 0 when
the balance y(0) instantaneously jumps to 1. Then the balance for t ≥ 0 grows
exponentially at the rate of interest:

(4) y′ = 0.03 · y(t) + δ(t) with solution

{
y(t) = 0, for t < 0;
y(t) = e0.03·t, for t ≥ 0.

To solve Equation 3 for any input f(t), think of f as a “sum” of continuously
many successive impulses where the value f(t) is the magnitude of the impulse
at time t. Then the solution with input f is the “sum” of continuously many
successively shifted impulse solutions with these variously sized impulses.8

This method applies widely:

(1) The fundamental solution to any linear differential equation with constant
coefficients and an input function, is the solution for input δ(t).

(2) Any linear partial differential equation with constant coefficients can be
treated by a multi-variable analog of Equation 4 using a multi-variable
version of δ(t).

The Navier-Stokes equation is not linear so it has no fundamental solution. But
the method of fundamental solutions is so productive that a major part of Navier-
Stokes research rests on fundamental solutions to related linear equations.

7. Working up to isomorphism

Dedekind had no such term as “structuralism.” He expressed his view imag-
istically or philosophically, in terms of creating new objects, and Frege criticized
Dedekind at length for this (Hallett, 2019). Still today mathematicians rarely dis-
cuss “structuralism.” But now they have precise, standard techniques for defining
structures “up to isomorphism” and working with them that way.

Today mathematical isomorphism is always sorted.9 Two topological vector
spaces might be isomorphic as vector spaces, but not in any topologically continuous
way, so they are not isomorphic as topological vector spaces.

Section 5 said the three approaches to the real numbers “all work alike.” Pre-
cisely, they all imply R is a complete ordered field. And there is only one complete
ordered field, up to isomorphism of ordered fields.

A statement φ(F ) about ordered fields F is invariant under isomorphism of
ordered fields if and only if φ(F1) agrees with φ(F2) whenever F1 and F2 are iso-
morphic as ordered fields. Intuitively such a statement just talks about the algebra
and the order on F and not about any set theoretic construction. Two typical ex-
amples suggest why these are the mathematically important statements about an
ordered field: a real number α has a square root if and only if 0 ≤ α; and every up-
per bounded subset of R has a Least Upper Bound (LUB). These are isomorphism
invariant as they refer only to ordered field properties.

8Strang (2015, p. 78) gives a fully worked example. Then, because readers “may feel uncertain
about working with delta functions,” he gives three ways to verify the result.

9The sort can be clear from context. Group theory usually (not always) uses isomorphism
of groups. More intricate contexts use multiple sorts of isomorphism and the sorts have to be
specified.
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Beginning analysis books like Tao (2016) often specify one set theoretic construc-
tion of the real numbers. But they teach students to discuss R in terms invariant
under isomorphism of ordered fields. Then it becomes rigorously irrelevant whether
R was defined by Cauchy sequences, or cuts, or simply as a complete ordered field.
All those definitions imply exactly the same isomorphism invariant theorems. No-
tably, each of them implies real numbers can be specified by Dedekind cuts on Q and
can be specified by Cauchy sequences on Q. It is rigorously irrelevant to standard
theorems of analysis what the real numbers are set theoretically.

Section 5 sketched three approaches to distributions. All are useful and of-
ten used. But usually none is taken to specify D′(R) uniquely. All are taken
to define D′(R) uniquely up to isomorphism of topological vector spaces extending
C∞

c (R). Everything Lemarié-Rieusset (2024) says about distributions is invariant
under those isomorphisms. So Lemarié-Rieusset never chooses one set theoretic
construction of distributions. It would be rigorously irrelevant for him to do so.

8. What is structuralism and what is it good for?

Two philosophic questions stand out:10

(1) In what sense is “Dedekind structuralism” structural? Like Zermelo Fraenkel
(ZF) set theory it defines some structures in terms of others, and Benacerraf
(1965) took ZF definitions to typify non-structural methods.

(2) Is “definition up to isomorphism” conceptually rigorous? Or is it a fast and
loose practice that “the philosophical logician . . . , sensitive to matters of
ontology” can correct? (Quoting Martin in (Benacerraf, 1965, p. 47).)

8.1. Structuralism through relevant concepts. Dedekind structuralism, un-
like ZF, describes structures only up to isomorphism and only by relation to other
specifically relevant structures. A structuralist account defines distributions by
relation to real numbers and to (set theoretically well defined) differentiable func-
tions. These relations are used in all calculations with distributions. And they are
explicitly relations. They do not say what distributions are.

No statement in our three paradigm sources places numbers or distributions in
the transfinite cumulative hierarchy that uniquely identifies each ZF set. Dedekind
structuralism admits no question of uniquely identifying the elements of any struc-
ture. The kind of sets that Benacerraf (1965) says numbers cannot be, our argument
says distributions also cannot be.

8.2. Epistemology: trusting these concepts.

Socrates: [There are] people you would not care to trust (pisteuō)
claiming they are good practitioners, if they cannot show some
example of their skill—some work well carried out—once and many
times. (Plato, Laches 185e–186a, at www.perseus.tufts.edu)

It is a testimony to mathematical progress that, where Frege and Russell found
Dedekind’s idea of “new creations” wrong, Martin only says 1960s structural math-
ematics leaves philosophers wanting to know more:11

10Thanks to an anonymous referee for posing these sharply.
11On Frege and Russell see Hallett (2019); Heis (2020).
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The philosophical logician. . . . will not be satisfied with being told
merely that such and such entities exhibit such and such a math-
ematical structure. He will wish to inquire more deeply into what
these entities are. . . . he will wish to ask whether the entity dealt
with is sui generis or whether it is in some sense reducible to (or
constructible in terms of) other, perhaps more fundamental enti-
ties. (Martin quoted by Benacerraf 1965, p. 47)

Martin was wrong if he thought structuralist mathematics neglects set theoretic
constructions. Section 5 gave two set theoretic constructions for distributions from
Stein and Shakarchi (2011). But Stein and Shakarchi do not offer either construction
as ontology. They use both. They take the construction by linear functions as
definitive (item 1a of our Section 5). But this makes no difference after their
Chapter 3. The construction by sequences of curves is definitive for Lighthill (2008,
p. 10f.).

Lemarié-Rieusset (2024) uses distributions without knowing or caring whether
the reader defines distributions by linear functions, or sequences of smooth func-
tions, or any other definition. Those constructions all define the space of distribu-
tions up to isomorphism. The theorems in (Lemarié-Rieusset, 2024)—and essen-
tially all books on differential equations on that level—are isomorphism invariant.
Those books use distributions rigorously without choosing between the construc-
tions.

The mathematicians are right from the viewpoint of fruitfulness, logical rigor,
and conceptual coherence. Philosophers could valuably tease out the social versus
individual epistemology (De Toffoli, 2023). How do structural methods help indi-
viduals? How do they help organize and coordinate the community? But in plain
fact we have two centuries of fruitful, successful, rough and ready use of “general-
ized functions” like δ(t) from Fourier to Dirac and on, made rigorous for the past
80 years by the structural function space methods of Sobolev and Schwartz. That
record exhibits both the heuristic value and the epistemic reliability of structural
methods, tested from many pure and applied perspectives.

9. Conclusion

It is a long road, both in the history of mathematics and in today’s undergrad
math curriculum, from calculus through current progress on Navier-Stokes. Our
sources show extensive structural work well carried out, meeting Socrates’ demand
for trusting good practitioners. Not only are the theorems true. The vast work
of conceiving, stating, proving, communicating, and applying them is well carried
out. A philosopher like Martin (as quoted by Benacerraf) is free to ask what
distributions are specifically, not just up to isomorphism. But the question is
rigorously irrelevant to our paradigm sources Strang (2015); Stein and Shakarchi
(2011); Lemarié-Rieusset (2024). It misses the point of what functional analysis
is all about. Without settling all philosophical questions about “structuralism,”
existing mathematical practice does show philosophers can trust the epistemology
and ontology of current, working, Dedekind-structural, functional analysis.
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Albritton, D., Bruè, E., and Colombo, M. (2022). Non-uniqueness of Leray solutions
of the forced Navier-Stokes equations. Annals of Mathematics, 196(1):415–55.

Babich, V. (2009). On the Mathematical Works of S.L. Sobolev in the 1930s, pages
1–9. Springer New York, New York, NY.

Barany, M. (2018). Integration by parts: Wordplay, abuses of language, and modern
mathematical theory on the move. Historical Studies in the Natural Sciences,
48:259–299.

Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74:47–73.
Carter, J. (2023). Mathematical practice, fictionalism and social ontology. Topoi,

42(1):211–220.
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