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Abstract

Though the use of machine learning (ML) is ubiquitous in astrophysics
and cosmology, many still see the opacity of ML algorithms as a major is-
sue to their scientific utility. One way of addressing this opacity is through
an emerging trend in ML research of “teaching” ML algorithms physical
laws and domain-specific knowledge. “Physics-informed machine learn-
ing” (PIML), as this methodology is called, promises to produce better
predictions and yield more interpretable algorithms. It does so by using
physical principles in the training process and/or by using physical princi-
ples to guide the development of the neural network architecture. In this
chapter, I investigate two uses of PIML in astronomy/cosmology, each a
representative example of the two PIML methods. In both cases, PIML
provides improvements in terms of the predictions and efficiency of ML
algorithms. However, I argue that only in the second case does PIML
offer any improvement in terms of the interpretability of the algorithms.
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1 Introduction

“Physics-informed machine learning” (PIML) has been called “the next
generation of artificial intelligence” by popular media (Andrzejczuk 2023)
and the scientists who use it claim that it can “transform our model-
ing, simulation, and understanding of complex physical systems in vari-
ous science and engineering disciplines” (Chen, Liu, and Sun 2021). PIML
aims to incorporate physical laws and domain-specific knowledge into ma-
chine learning in order to produce better predictions and yield more in-
terpretable algorithms. Domain-specific knowledge, in this context, can
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include symmetry laws, conservation laws, or even the governing dynamics
of a system.

Two means have been proposed for the incorporation of such physi-
cal laws and domain-specific knowledge: by “teaching” machine learning
algorithms this information and/or by designing specialized network ar-
chitectures. In either case, physics-informed machine learning is argued
to yield better predictions in the presence of imperfect or noisy data be-
cause the algorithms are more robust to any small irregularities in the
data (Karniadakis, Kevrekidis, Lu, et al. 2021, 423). More importantly,
though, PIML is thought to be more interpretable because our knowledge
of the physical world is incorporated from the start.

Since their introduction in Raissi, Perdikaris, and Karniadakis (2019),
PIML methods have been developed and used in numerous domains across
the sciences. Some examples of projects include performing parameter
estimation for applications in systems biology (Daneker, Zhang, Karni-
adakis, and Lu 2023), modeling fluid dynamics (Cai, Wang, Fuest, Jeon,
Gray, and Karniadakis 2021), characterizing a crack in the surface of a
material (Shukla, Di Leoni, Blackshire, Sparkman, and Karniadakis 2020),
predicting the many-electron wave equation for applications in quantum
chemistry (Pfau, Spencer, Matthews, and Foulkes 2020), and forecasting
weather/climate processes (Kashinath, Mustafa, Albert, et al. 2021). In
astronomy and cosmology, PIML has been used to, e.g., model the forma-
tion of molecular clouds in the interstellar medium (Branca and Pallot-
tini 2023), solve the radiative transfer equation for supernova simulations
(Chen, Jeffery, Zhong, et al. 2022; Mishra and Molinaro 2021), investigate
astrophysical shocks (Moschou, Hicks, Parekh, et al. 2023), and model
the gravitational fields around small astrophysical objects (Martin and
Schaub 2022a). These last two projects will be the case studies discussed
in detail in the present chapter.

Given the rising use of PIML in various domains, questions about
the prospects of the methodology and whether it fulfills its promise of
increased scientific understanding are pressing. Are physics-informed ML
algorithms truly novel in methodology? In what sense are they the “next
generation of artificial intelligence”? Are they able to overcome the issues
of opacity faced by standard ML algorithms that worry scientists and
philosophers alike? These questions will be the focus of this chapter

I will begin by reviewing some standard uses of machine learning in
astronomy and cosmology (§2). I then turn to philosophical analyses of
the issues raised by ML (§3). With these issues in mind, I present two
case studies (§4). These are representative of the two methods of PIML:
incorporating physical principles into the training of the ML algorithm
and designing a specialized network architecture. In both cases, PIML
improves the predictions and efficiency of ML algorithms. However, I ar-
gue that improvement in the interpretability of the algorithms only occurs
in the second case. This is because the inclusion of physical principles as
part of the training of the ML algorithm is insufficient to ground claims
of increased transparency.
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2 Machine learning in Astronomy and Cos-
mology

The use of machine learning has a long history in astronomy and cosmol-
ogy with some of the first uses dating back to the 1980s (see Miller 1993 for
a review). Given the large amounts of data astronomers typically collect,
early projects primarily used neural networks (NNs) for object classifica-
tion on existent data sets. Occasionally, astronomers took advantage of
the computational speeds offered by ML for real-time applications. For
instance, another early application of ML in astronomy was for detector
event filtering in high-energy telescopes (a kind of classification but used
in real-time to filter events; see Meetre and Norris 1991). Another real-
time application of ML during this time was for adaptive telescope optics,
to quickly adjust telescope mirrors in response to atmospheric distortions
(Angel, Wizinowich, Lloyd-Hart, and Sandler 1990). While projects today
have broadened the scope of the use of ML/NNs, many still use NNs for
image classification-related tasks. Below, I review a few significant, con-
temporary uses of ML in astronomy and cosmology. Though the projects
detailed below constitute only a small sample of the various uses of ML in
astronomy and cosmology today, they provide a sense of the scope of the
use of such methods.1 Understanding the applications of ML in astron-
omy/cosmology will help us understand what issues are relevant to these
fields. Then, we will be able to situate PIML in this context and assess
whether it resolves the pressing issues.

2.1 Imaging and data processing

Applications of machine learning to imaging are the most common use of
ML in astronomy, especially to identify individual objects. For instance,
ML has been used for the detection of strong gravitational lenses (Metcalf,
Meneghetti, Avestruz, et al. 2019). These are astrophysical objects (like
galaxies) that cause the light from even more distant objects to be bent
as it travels to the Earth. Such objects can be used to probe dark matter
or various cosmological parameters of interest. ML has also been used
to comb through big data sets in search of regularities that indicate the
presence of pulsars (a spinning neutron star emitting radiation from its
poles; Lin, Li, and Luo 2020) or even exoplanets (planets that are part of
other solar systems; Jin, Yang, and Chiang 2022). Such projects involve
sifting through a large amount of astronomical data to look for regularities,
a task that ML is particularly well-suited for.

A more complex application of machine learning to imaging has to do
with astronomical catalogs. These catalogs are created by taking images of
different parts of the sky and matching them up to create a larger image, a
catalog. Typically, astronomers use a “best-fit” model of the constituents
of each image to synthesize them into a catalog. This process involves a
kind of source matching: a source that is identified in one image is found
in another, allowing these images to be lined up. Machine learning has

1See George Stein’s GitHub page (2023) for a more comprehensive listing of various con-
temporary projects using ML in astronomy/cosmology.
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the potential to allow probabilistic cataloging of such images, allowing
one to consider a distribution across the possible constituents of an image
(Brewer, Foreman-Mackey, and Hogg 2013). When images are crowded
and noisy, this kind of probabilistic cataloging can be very valuable.

Along similar lines, machine learning has been used for data process-
ing. Data processing is a complex undertaking for astronomers, especially
given the large amount of atmospheric interference many telescopes are
subject to. Some of the uses of ML for data processing in astronomy
are similar to applications of ML for image analysis. For instance, algo-
rithms like Source Extractor have been developed to detect and extract
foreground sources in an image (i.e., sources that are between the detec-
tor and the object of interest in the image; Bertin and Arnouts 1996).
Other algorithms have been developed to remove sensor artifacts, cosmic
rays, etc. These kinds of algorithms often operate in the data processing
“pipeline” between when data is collected by the instrument and when
the scientist can use the data.

One emerging use of ML in the image analysis context is with multi-
messenger astronomy. Here, astronomers conduct wide-field surveys, sweep-
ing the sky for any objects of interest. If such an object is detected, the
goal is then to use another instrument (often in another frequency) to
analyze the object in more detail. Thus, speed is critical. One must be
able to sift through the data collected by the wide-field survey quickly to
then point another instrument at the object of interest (see, e.g., Narayan,
Zaidi, Soraisam, et al. 2018 for an example of real-time classification of
data from the Large Synoptic Survey Telescope). Much of the research
in this area uses supervised or semi-supervised ML, but there is space to
employ unsupervised methods to detect rare events (see e.g., Li, Ragosta,
Clarkson and Bianco 2021).

2.2 Simulations

A particularly interesting use of machine learning that bridges data anal-
ysis and simulations is in cosmic parameter estimation. Here, the task
is to determine the value for various cosmological parameters, usually
by comparing simulations to observations of the large-scale structure of
the universe. In particular, astronomers and cosmologists require a huge
suite of simulations to perform parameter estimation. This is because one
needs to compare the collected data with possible values of the various
cosmological parameters. Running the suite of simulations is very com-
putationally costly. Therefore, some astronomers and cosmologists have
instead run a small suite of such simulations to train an “emulator,” a
machine learning algorithm aimed at recreating these results for many
different parameter combinations but for a fraction of the computational
cost (see, e.g., Heitmann, Higdon, White, et al. 2009). One then uses
machine learning to pick out what combination/values of parameters best
capture the data. In short, machine learning is being used to interpolate
amongst the various combinations of parameters and the results are then
compared to observations for scientifically interesting results.

In a recent project along these lines, Villaescusa-Navarro and collab-
orators investigate the scales of data required to extract cosmological in-
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formation (2022). They study whether one can use ML methods to ex-
tract cosmological information from data collected on the scale of a single
galaxy. To do so, they train an NN on the output of many simulations,
produced using various values of cosmological parameters. Then, they
provide the NN with data from a single galaxy and ask it to predict the
cosmological model that is consistent with that particular data set. Given
the limited data that Villaescusa-Navarro and collaborators provide to the
trained NN, it must be very sensitive to the impacts of changes in the var-
ious cosmological parameters.

2.3 Methods of ML

Given the numerous astronomical projects that use ML for imaging-related
tasks, convolutional NNs tend to be the most suitable and commonly used
architecture.2 However, in a review of the state of the field, Dvorkin and
collaborators critique such methods. They note that “...many network
architectures are sequential and recursive, which does not easily allow
parallel computation (to account for the size of cosmological data sets) or
they assume a Markov process, which means that they cannot easily learn
long-range dependencies” (Dvorkin, Mishra-Sharma, Nord, et al. 2022,
13). Thus, they note, there is an opportunity to develop architectures
specifically geared towards the context of cosmology. In particular, they
highlight PIML, noting that such methods “have shown promise in reduc-
ing the dimensionality of the underlying latent space of a network with an
associated reduction in the size of data sets needed to train the network”
(Dvorkin, Mishra-Sharma, Nord, et al. 2022, 13). Besides offering ad-
vances in efficiency, PIML is also thought to improve the interpretability
of ML algorithms. Thus, before considering PIML in more detail, I will
first review the issues of interpretability/opacity that arise with standard
uses of ML.

3 Interpretability of ML

Given the importance of machine learning methods for scientific progress,
many have argued that greater attention needs to be given to better under-
standing these methods. Philosophers, scientists, and computer scientists
alike have turned their attention to this task. The fields of explainable ar-
tificial intelligence (XAI) and interpretable machine learning (IML) both
aim to tackle questions along these lines. Some propose novel ML algo-
rithms for the task while others propose frameworks in which to situate
such questions. Much progress has been made in clarifying what is at
issue, outlining frameworks to think within, and defining key terms in
the debate. I outline some themes from this literature next in order to
ultimately ask whether physics-informed machine learning is responsive
to the demands being made.

2An explanation of why CNNs are well-suited for imaging-related tasks generally is beyond
the scope of this chapter (see Stewart 2019 for such an explanation). Put very briefly, one
can imagine that the architecture of a CNN respects the relationships among the pixels in an
image.
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3.1 Interpretability through transparency

In Lipton’s influential paper, “The Mythos of Model Interpretability,” he
remarks

ML-based systems do not know why a given input should re-
ceive some label, only that certain inputs are correlated with
that label...As ML penetrates critical areas such as medicine,
the criminal justice system, and financial markets, the inabil-
ity of humans to understand these models seems problematic.
(2018, 3)

Lipton reflects that though many propose “interpretability” as a remedy,
few articulate precisely what they mean by interpretability.3 With this
in mind, he outlines five goals one might hold when demanding inter-
pretability: increasing our trust in an ML model, helping support causal
reasoning based on the model, transferring/generalizing the findings of the
ML model to nearby contexts, being an informative component in human
decision-making, and helping facilitate fair and ethical decision making
(2018, 9-12).

Lipton then turns to considering how we might achieve these goals.
The first method he considers for achieving interpretability is transparency.45

Transparency, he argues, can be evaluated at various levels: at the level
of the model, at the level of individual components, and at the level of the
training algorithm (2018, 12). These levels each correspond to their own
notion of transparency: simulatability, which captures the sense in which a
model can be understood as a whole; decomposability, which captures the
sense in which one can understand the various components of the model
individually; and algorithmic transparency, which captures the sense in
which one can understand the learning algorithm itself. Ultimately, Lip-
ton argues that whether one algorithm is more interpretable than another
will turn on what notion of interpretability one subscribes to and what
kind of transparency that might demand. For instance, deep neural net-
works (DNNs) may be algorithmically more complex than linear models,
but the high-dimensional or heavily engineered features of linear models
mean that they may lose simulatability or decomposability respectively.
Thus, in those domains, DNNs may exhibit more transparency and thus
better interpretability.

The importance of specifying what kind of transparency one is inter-
ested in has also been highlighted in the recent philosophical literature.
Creel (2020) argues that transparency is an important goal when consider-
ing opaque, complex computational systems. She presents three avenues
for pursuing transparency: functional, structural, and run. Functional
transparency has to do with the algorithmic functioning of the whole, i.e.,
understanding the high-level logical rules governing the system. Struc-
tural transparency recognizes that algorithms can be multiple realized so

3See also Chapters 7, 8, and 9 in this volume for more on interpretability.
4Lipton also discusses post-hoc methods for increasing interpretability, but they are not

important for the present purposes.
5See Chapters 1 and 2 in this volume for a discussion of issues of opacity. For an alternative

to transparency—computational reliabilism—see Chapter 4 in this volume.
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it asks how the algorithm is realized in the code. Finally, run transparency
asks whether one has knowledge of the program as it was actually run in a
particular instance (Creel 2020, 572-582). With this framework in mind,
let us now turn to evaluating the uses of ML in astronomy and cosmology
and the kinds of transparency they may or may not exhibit.

3.2 Transparency of ML in Astronomy and Cos-
mology

ML algorithms are routinely referred to as “black boxes.” This might
lead us to think that the prospects for transparency when using ML are
rather bleak. However, recall that in many of the uses of ML in astron-
omy/cosmology described above, the ML algorithms are just being used
as statistical tools. It is precisely because they are used as statistical tools
that we need not be worried about issues of transparency. Consider, for
instance, the algorithms used to emulate the results of large-scale struc-
ture simulations. As mere interpolation devices, their results are neither
surprising nor mysterious. They take a coarsely sampled parameter space
as input and fill it in. In cases like this, a particular step in the process
is being black-boxed using machine learning. However, since there is a
well-understood, physically-motivated methodology one can always refer
back to, the scientists could easily open up the black box. This means the
machine learning algorithms can be made to have functional, structural,
and run transparency. The overall functioning of the algorithm follows
clear statistical rules appropriate for interpolation, the structure of the
algorithm is relatively straightforward, and the result of the algorithm in
any particular instance can be investigated. If one were to ask for a more
physical explanation of any particular result, the simulations used to train
the emulator can be appealed to. Put differently, we can distinguish be-
tween the “black-boxing” occurring in this instance—an (unproblematic)
methodological step—and using a black box to provide understanding.
This is a distinction I have argued for in more detail elsewhere (Meskhidze
2023). There, I argue that the case of emulators is an unproblematic use
of methodological black-boxing.

Another way of distinguishing problematic from unproblematic uses of
ML is through Sullivan’s notion of “link uncertainty.” In “Understanding
from Machine Learning Models” (2022), Sullivan argues that the complex-
ity or black-box nature of a model need not undercut the understanding
that the model can provide. Instead, she argues that this understanding
is undercut when “[t]here is a high level of link uncertainty, that is, a
lack of scientific and empirical evidence supporting the link that connects
the model to the target phenomenon” (2022, 6). To illustrate this point,
she contrasts a DNN that identifies cases of melanoma from images of
moles on skin to a DNN that uses facial recognition to identify an indi-
vidual’s sexual orientation. Since, as she argues, “The level of scientific
justification and background knowledge linking the appearance of moles
to instances of melanoma is extensive,” (2022, 23) the link uncertainty
is greatly reduced. But the link uncertainty between facial features and
sexual orientation is much higher. The transparency of the DNNs in these
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two cases is largely the same and irrelevant to understanding. Thus, what
matters for assessing understanding, on Sullivan’s view, is the degree of
link (un)certainty.

In their review of the recent philosophical discussion about the in-
terpretability of machine learning, Beisbart and Räz discuss Sullivan’s
argument. They note the following consequence of her view: “Black
boxes need not compromise the scientists’ abilities to use a model if they
merely black-box the implementation of the fulfillment of a known task
(e.g. the calculation of a factorial)” (Beisbart and Räz 2022, 5). I agree
with the claim here and would also refer to this process as unproblematic
“black-boxing.” Indeed, in the case of emulators, the link certainty is
well-established; one can always run a simulation to check that the link
between a particular cosmological parameter and the resultant large-scale
structure of the universe accords with the predictions of the emulator.
Therefore, we can conclude that issues of interpretability are not trou-
bling in many of the above-described applications of machine learning in
astronomy and cosmology.

There are some cases in which we do lack the necessary interpretabil-
ity. Consider a simple case of image analysis. We may want to know, for
instance, why the ML algorithm predicts an exoplanet from a set of input
data. In this case, the ML algorithm is “making a decision” with respect
to the image so the kind of statistical explanation proposed above for em-
ulators might not be satisfactory. On Sullivan’s account, this case seems
akin to using moles for melanoma detection: we have clear reason to think
that various aspects of the image correlate with the properties of interest.
We have link certainty. Nonetheless, one might still worry whether the
ML has selected some set of real indicators for the context/object of inter-
est or whether it has captured some spurious correlations. In other words,
though the link may be well-established, unless we are confident that the
ML has captured that link, we might still worry about the interpretabil-
ity and robustness of the results. If, following Lipton, we want our ML
algorithms to support causal reasoning and allow generalizations, we need
enough transparency to ensure that whatever “link” our ML algorithm is
using to make predictions is the “link” we believe exists in the data. Put
differently, while a lack of link certainty does undermine interpretability,
having link certainty (without transparency) does not immediately grant
interpretability.

The limitations of using link certainty to guide understanding can
be made even more pressing with the following considerations. In “Two
Dimensions of Opacity and the Deep Learning Predicament,” Boge in-
troduces a distinction between “h-opacity” and “w-opacity” where the
former concerns how the machine is learning while the latter concerns
what is learned by the machine. On his account, w-opacity is what sets
deep learning apart from other scientific modeling. The features of the
data picked out by the deep learning model correspond to “automatically
discovered insights; complex, non-obvious features that can be abstracted
from the data and allow the machine to discriminate” (Boge 2022, 61).
This framing is helpful for what I am highlighting above: though some
features of interest may exist in the data and the link may exist in the
world, w-opacity undermines our ability to say whether these are the fea-
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tures the algorithm is leveraging. This is, of course, worrisome: there may
or may not be link certainty but we have no way of determining which is
the case. However, Boge presents a more worrisome possibility: that the
ML leverages real links in the data that are, at present, inconceivable to
humans (see also Boge 2023). In such a case, there would be link certainty
in the sense that the ML would be leveraging real links. But we would
not be able to say this as we could not conceive of the very link being ex-
ploited. These are cases in which, perhaps if we had greater transparency,
we would be able to use the ML to make novel discoveries. The implica-
tion is that, in some cases, requiring link certainty would undermine our
ability to make novel discoveries with ML.6

Creel’s discussions of opacity/transparency can help pinpoint where
we want greater clarity. It may not completely resolve the more troubling
cases Boge is worried about, but it will assist in the cases of interest for
the present chapter. On Creel’s taxonomy, what we are worried about
is the functional transparency of the algorithm. An example Creel gives
nicely parallels this discussion. She writes:

...in all but the smallest networks it would be difficult to pre-
dict the outcome without tracing each step or to understand
the behavior of the network, especially if the network includes
feedback loops. More importantly, without further analysis
it would be unclear to the observer why this neural net suc-
cessfully classified an image and to what extent each of the
neurons contributed to the result or why different neural nets
might have different patterns of classification. In this sense,
although we know how the learning algorithm works and what
formal guarantees (if any) we have about its performance, we
do not know how the learned ‘algorithm’ brings about the clas-
sification result. Thus, we lack functional transparency. (2020,
579-580)

To summarize: there are many frameworks for discussing interpretabil-
ity, some highlight transparency while others highlight link certainty.
Here, I have shown that, while appealing, link certainty is insufficient
for interpretability. This is because, without transparency, we cannot be
sure that the link captured by the ML algorithm is the actual link we
expect to exist. Though many uses of ML in astronomy/cosmology are
unproblematic because the ML algorithm is just being used as a statistical
tool, some uses still highlight the need for interpretability. With all this
in mind, we can now turn to physics-informed ML in order to ultimately
ask whether such methods yield more interpretable ML.

6My worries in the present chapter are confined to the first category. For discussion of the
second (i.e., cases when scientists do not have the resources to conceptualize the link being
exploited), see Chapter 19 in this volume. There, Boge and de Regt discuss the prospects of
using ML for discovering novel concepts and phenomena in particle physics and the problems
that arise.
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4 Physics-Informed Machine Learning

4.1 General methodology of PIML

The first projects and papers introducing physics-informed machine learn-
ing claim that the methodology is an improvement over standard ML ap-
proaches. When standard approaches are trained on huge collections of
data, they may make physically inconsistent or implausible predictions
due to biases that might be in the data or because the ML is being asked
to extrapolate beyond the domain represented by the data. Authors ad-
vocating for PIML claim,

...there is a pressing need for integrating fundamental physical
laws and domain knowledge by ‘teaching’ ML models about
governing physical rules, which can, in turn, provide ‘infor-
mative priors’—that is, strong theoretical constraints and in-
ductive biases on top of the observational ones. (Karniadakis,
Kevrekidis, Lu, et al. 2021, 423)

To understand this claim it will be essential to understand the method-
ology of such algorithms. In general, there are two methods for intro-
ducing physics into ML. The first is by including physical constraints or
principles into the learning process, creating a learning bias. Projects in
this vein might train the NN on both the data and a partial differential
equation (PDE) known to model the situation. This is accomplished by
having terms in the loss function for both the alignment of the NN with
the data and the PDE. More specifically, the general form of the solution
is fed into the network and soft penalties ensure that the network finds
the relevant parameters. The second method uses the architecture of the
network itself to incorporate the physical principles. Projects in this vein
tend to be more diverse than those in the previous group. One salient
example involves using graph neural networks to learn the structure of
chemical bonds. There, the success of the architecture for the particular
purpose relies on “their ability to pick up on structures in the graph at
multiple different scales, while satisfying the crucial requirement that the
output be invariant to permutations of the vertices” (Hy, Trivedi, Pan,
Anderson, and Kondor 2018, 1). To better understand these methodolo-
gies, I now turn to describing two case studies, each of which highlights
the use of one of the two methods of PIML in astronomy/cosmology.

4.2 Astrophysical shocks

PIML methods have been used to study astrophysical shocks. Here, I
consider the use of PIML to study the solar termination shock in partic-
ular. The solar termination shock occurs at the edge of a solar system
(at around 100 astronomical units for our solar system, where 1 astro-
nomical unit is the distance between the Sun and Earth). There, streams
of charged particles being released from a sun (i.e., solar winds) interact
with the matter and radiation that exists between star systems in a galaxy
(i.e., the interstellar medium). This causes the particles to slow down sud-
denly. The termination shock is formed as the solar wind goes from super
to subsonic speeds causing compression and heating in the plasma.
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In a recent project, Moschou and collaborators use a physics-informed
neural network (PINN)7 for modeling the solar termination shock in the
presence of a gravitational field (2023). A nice feature of this context is
that a simulation code already exists (PLUTO) that effectively models
astrophysical gas dynamics. The computational expense of using PLUTO
for the full analysis, however, is quite high. Therefore, the authors turn
to machine learning, using PLUTO to generate a synthetic database that
the PINN is trained on.

The inclusion of physical principles in this context comes with the form
of the loss function used. The researchers add two terms to the standard
loss function. One of the new terms captures how close the model is to
satisfying the partial differential equation thought to describe the system.
The other new term corresponds to the initial and boundary conditions.

The PINN is then trained on the synthetic data created by PLUTO
and put to work. Generally, the PINN performs very well and models
shocks effectively. Additionally, it requires only a fraction of the data a
standard NN would (Moschou, Hicks, Parekh, et al. 2023, see §3.2). The
capability of the PINN goes beyond merely speeding up computations
though, as the authors argue. They claim that the PINN can be “used
to discover the underlying physics from data” (Moschou, Hicks, Parekh,
et al. 2023, 6). But what do they mean by this? The “underlying physics”
learned by the PINN in this context is the prediction of a particular pa-
rameter in the PDE being used to model the system. This parameter is
known as the effective polytropic index. The polytropic index describes
the exchange of energy between a gas and the environment.8 In this case,
the researchers are using an effective polytropic index that “mimics the
effects of adding heating in the system” (Moschou, Hicks, Parekh, et al.
2023, 3) but avoids the computational expense of actually calculating the
heating and cooling. The “ground truth” value of this parameter is found
in the PLUTO simulation and the value predicted by the PINN is then
compared to this “ground truth” value. In sum, the discovery of underly-
ing physics by the PINN amounts to being able to predict the value of an
effective parameter occurring in the PDE that is used as part of the loss
function used to train the PINN.

Despite their success, PINNs still face challenges. One discussed by
Moschou and collaborators has to do with the convergence of the PINN.
The inclusion of two additional terms in the overall loss function used
to train the PINN makes the convergence of the NN trickier. Whereas
the convergence of standard NN is well-studied, the convergence of these
PINNs with multifaceted loss functions is not. As Moschou and collabora-
tors write, “The neural network optimizer might have to deal with losses
that differ by several orders of magnitude which makes the minimization
task and reaching a unique solution challenging” (2023, 15).9 Issues with

7I will be using PIML and PINN interchangeably going forward; PINNs are a subset of
PIML just as NNs are a subset of ML.

8For natural fluids, the polytropic index (γ) falls between 1 and 5/3 (where 5/3 is the index
for an ideal gas). Here, they use an effective polytropic index γ < 5/3.

9They note that some (Jin, Cai, Li, and Karniadakis 2021, in particular) have tried to
address this issue by using adaptive weighting algorithms to more effectively minimize the
loss function and find convergence. Adaptive weighing does introduce additional model hyper-
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the convergence of the cost function and questions about what to include
in the cost function will arise with the next case study as well.

4.3 Gravitational fields around small bodies

Another context in which PINNs have been applied is to study gravita-
tional fields around small astronomical bodies. Here, I consider a three-
part project by Martin and Schaub. They began by first applying these
methods to predict the gravitational field around the Earth and Moon
(Martin and Schaub 2022b) before turning to small astrophysical bodies
(Martin and Schaub 2022a; Martin and Schaub 2023). Their approach
goes beyond the previous example of PINN: it alters the network archi-
tecture as part of the “physics-informed” aspect of the model. I begin by
detailing the problem at issue and then outline the implementation of the
PINN.

Suppose you want to take soil samples from the surface of an aster-
oid. Doing so requires that you land a spacecraft on its surface. Landing
a spacecraft on the surface of an asteroid, though, is no easy feat. It
requires being able to accurately model the gravitational field around an
irregularly-shaped object, a field whose potential is described by Laplace’s
equation. One common method of modeling the gravitational field around
objects like asteroids and comets—of solving Laplace’s equation—is to use
spherical harmonic functions (see, e.g., Bucha and Sanso 2021). While
spherical harmonics may provide an exact, analytic solution to the prob-
lem, they are not suitable when one is close to the body of interest (e.g.,
approaching the surface) because they diverge. Indeed, as noted by Martin
and Schaub, the divergence of the spherical harmonics “poses a problem
for irregularly shaped objects, like asteroids, where spacecraft may operate
at substantially lower radii than the Brillouin sphere” (2022a, 46).1011

Traditional ML, NNs in particular, has been applied to this problem.
However, the nature of the problem makes the use of NNs difficult: one
would need a large amount of data at various altitudes for each astro-
nomical body to capture any surface irregularities. Additionally, there
are various physical constraints the researchers know that could be used
to guide solutions to the problem. For instance, any derived gravitational
potential must be a solution to Laplace’s equation. However, there is no

parameters that have to be set up by the researchers. However, these hyper-parameters have
to do with the convergence of the network, not the physical problem at issue. Nonetheless,
Moschou and collaborators are not convinced that this method will be sufficient. As evidence,
they cite another study (Fuks and Tchelepi 2020) that aimed to solve a non-linear hyperbolic
equation. Fuks and Tchelepi explored many NN algorithms and architectures for their PINN
but could not find convergence until they switched the equation form to a parabolic one.
This leads Moschou and collaborators to believe that no matter what algorithm is being used
to minimize the loss function, it cannot “address the fundamental problems in the PINNs
optimization procedure” (2023, 15).

10The “Brillouin sphere” is the sphere encompassing all the field-generating mass. It is
within this sphere that the spherical harmonic functions diverge.

11At low altitudes, such as those used for touch and go or landing maneuvers, one can
use alternative representations (like the polyhedral gravity representation). However, these
have their own issues (e.g., they assume uniform density and are typically computationally
expensive).
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way of incorporating this kind of knowledge into a traditional NN. As
Martin and Schaub put it,

Traditional neural networks are not trained with these physics
properties in mind. Instead, they prioritize predicting an ac-
curate acceleration from a position vector, irrespective of the
more fundamental properties. In this sense, the network will
be trained agnostic to the fact that the gravity field it rep-
resents produces conservative forces, and the underlying po-
tential must be sufficiently smooth and continuous for sensible
dynamics. (2022a, 9)

With these kinds of considerations in mind, Martin and Schaub turn to
a physics-informed approach. As mentioned above, they begin by applying
their methods to the gravitation field around the Earth and Moon (Martin
and Schaub 2022b) and then generalize (Martin and Schaub 2022a; Martin
and Schaub 2023). They begin with a relatively simple model that is
similar to the first study. Their methodology evolves over the course of
the three papers though, allowing this to serve as an example of how to
incorporate physics-informed principles in the architecture of the NN.

Martin and Schaub begin with minimal physical constraints: they only
include one additional term into the PINN loss function. This term cor-
responds to the equation describing the relationship between the gravita-
tional potential and the acceleration (a = −∇U). They limit the mod-
ifications they make to the loss function for two reasons. First, further
constraints undermine the convergence of the PINN. Second, other con-
straints would likely not be of the same order-of-magnitude and would
require rescaling to be incorporated into the loss function (discussed in
more detail below).

In the second paper of the series, Martin and Schaub aim to incorpo-
rate further physical principles in the PINN. To do so, they adopt a modi-
fied network architecture. This change also helps with the issue regarding
the convergence of the loss function mentioned in the previous case study.
Instead of a fully connected network (in which every neuron in one layer
is connected to every neuron in the previous and the next layer), Martin
and Schaub adopt an architecture proposed Wang, Teng, and Perdikaris
(2021) that uses recent developments in neural attention mechanisms.
Essentially, they introduce transformers that project the inputs into a
higher-dimensional feature space. As Wang, Teng, and Perdikaris note,
this: “(i) explicitly accounts for multiplicative interactions between dif-
ferent input dimensions, and (ii) enhances the hidden states with residual
connections” (2021, A3069). These architectural modifications alleviate
issues of convergence that otherwise arise with multi-faceted loss func-
tions.

The final iteration of Martin and Schaub’s PINN is presented in (Mar-
tin and Schaub 2023). There, they reflect that previous iterations of
their algorithm “use a cost function which inadvertently leads models to
prioritize low-altitude field points, where the accelerations are largest”
(2023, 2). In order to address this issue and various other performance
issues, they have again redesigned the architecture of the network, rescal-
ing the output of the NN, changing the loss function, and including more
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physically-informed principles. I detail some of these changes below. The
important takeaway here is the degree of control they have over the com-
ponents of the PINN architecture and how this enables them to develop
understanding.

One of the reasons low-altitude field points were prioritized is because
the gravitational field is small at high altitudes, so small that the field
values encroach on machine precision. To address this issue and deprior-
itize the low-altitude predictions, Martin and Schaub rescale the output
of the NN before it is used in the loss function (2023, 10). Another
effect of the gravitational field values being so much larger at low alti-
tudes than at high altitudes is that the error values are also much larger.
Therefore, the standard error used in these contexts (a percentage er-
ror) prioritizes low-altitude predictions. To account for this, they switch
from using mean percent error to using root mean squared error (2023,
7). Finally, Martin and Schaub re-introduce the spherical harmonic func-
tions for performance, “fus[ing] an a-priori gravity model with the neural
network solution” (2023, 9). In terms of the final performance, the first it-
eration of the PINN already performed better than the spherical harmonic
representation. However, it still required a large data set. In comparison,
the third generation converges reliably and quickly with a small training
set (2023, 13-14).

In sum, this series of three papers introduces and develops a PINN
for predicting the gravitational field around small astrophysical bodies.
As Martin and Schaub improve their PINN, they increase the number of
physical principles incorporated in their PINN, alter the network archi-
tecture to better suit the problem at hand, and reintroduce the form of
the solution they expect.

5 Discussion

The two case studies presented above are characteristic examples of the
two approaches taken in physics-informed machine learning: incorporating
physical principles into the training of the ML algorithm and using the
network architecture to capture some physical properties of the system.
We can now ask whether these algorithms are in fact more interpretable
than standard ML methods.

Let us begin with the first case study. One can imagine training a
standard NN to learn on the same synthetic data that Moschou and col-
laborators used to train their PINN. Such an NN would be able to simi-
larly predict the polytropic index of some new data. Now, the question is
whether the PINN is in a substantially better position than such an NN.

Most simply, one might argue that, because of the input physics, the
improved efficiency of the PINN ought to correspond to an improvement
in interpretability. In particular, one might claim that because PINN
requires fewer nodes, hidden layers, etc. compared to NN for the same
performance, it is easier to interpret. I would argue, however, that when
we have tens of thousands of nodes or more, even an order of magni-
tude fewer does not seem significant to transparency. More importantly,
recalling Creel’s taxonomy of the types of transparency from §3.1, it is
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clear that the kind of transparency at stake when considering the num-
ber of nodes, the weights, etc. of these algorithms is run transparency.
Though run transparency may be important for some purposes, it does
not help with the overall interpretability of the network, i.e., its functional
transparency.

Do the physical principles used to train the algorithm themselves pro-
vide improvements to the functional transparency? While the addition
of physical principles improves the performance of the algorithm, I argue
that they have no effect on the functional transparency, and thus inter-
pretability, of the algorithm. To understand why, consider the difficulties
both teams of researchers encountered when adding terms to the loss func-
tions that represented the physical principles. They worried weighting of
the various terms and the convergence (or lack thereof) of the network.
If one wanted to argue that the functional transparency is increased with
the addition of physical principles, understanding how those principles
are being leveraged would be critical. However, the developers of these
algorithms do not (yet) have a clear sense of how the algorithm is priori-
tizing the various components of the loss function. Though improvements
are being made with further research, it seems too early to say whether
PINNs are leveraging and respecting these physical principles.

However, I do not believe the situation is worrisome. We may not
have the transparency required to tell whether PINNs are levering these
physical principles in the way we expect, but we also do not need it.
To understand this claim, recall the discussion of emulators presented in
§3.2. There, a particular step of the methodology was being “black-boxed”
when scientists used ML methods like emulators. The first case study of
PIML is akin to the use of emulators. Here, like in the case of emulation, a
particular step of the method is being “black-boxed.” However, one knows
the physical principles underlying the problem and, if needed, could use
a first-principles-style simulation for the same goal. Put differently, one
has an interpretable simulation to fall back on for explanatory purposes.
We need not require the ML algorithm to serve explanatory purposes; like
emulators, its purpose is to make computations faster and more efficient.

We can also analyze the situation with respect to link certainty. Should
we be worried about whether the PINNs are using the “right” link? Since
what we are predicting is the value of the effective polytropic index—
not some further detail of the underlying physics—, it does not matter
whether our ML algorithm is leveraging the right link or not. The PINN
is just a statistical tool. And, again, because the background physical
principles are well-understood, if needed, we could always revert to more
of a first-principles kind of analysis.

In sum, the methodology of the PINN in this first case does not present
any novel strides in interpretability/transparency. But this is in part be-
cause one need not be worried about the interpretability/transparency of
the ML algorithm in the first place. If one treats the original ML algo-
rithms akin to how one treats emulators—as statistical tools—such ques-
tions about interpretability do not arise. Of course, there may be other
reasons to adopt the PIML methods (e.g., they are better suited to noisy
data and more efficient), but these reasons are irrelevant to considerations
of the interpretability of the algorithms.
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Let us now consider the second case study. I argue that this case study
is an example in which the physics-informed nature of the ML helps with
its interpretability. This is because 1) the goal is different and 2) the
methodology the researchers adopt is different. Martin and Schaub’s over-
all goal is to predict the gravitational field close to an astronomical body.
In this case, at least in the first two generations, the PINN is not bound
by any particular physics. Though a physical principle is introduced, it
is not predicting some particular parameter (like the polytropic index).
Instead, it is predicting the gravitational field across the surface of the
body. While the spherical-harmonic representation might be the best for
analytic calculations, their PINN is not subject to this representation. As
Martin and Schaub write,

Such an approach allows the PINN to efficiently learn custom
and physically motivated basis functions which represent the
natural features in the gravitational potential of a planetary
body (e.g., craters on the Moon or mountain ranges on the
Earth) rather than imposing basis functions like spherical har-
monics which are inefficient at capturing these idiosyncratic
and often discontinuous features. (2022a, 3)

Clearly, this is a different goal from the previous case study. This dif-
ferent goal guides the methodology. Like in the first case study, Martin
and Schaub introduce a physical principle in their loss function. However,
their iterative methodology—the fact that they consider how the loss func-
tion behaves, adjust the architecture to ensure convergence, and later, in-
corporate further physical principles—raises the likelihood that the PINN
is leveraging that loss function and respecting the physical principles in-
corporated. And, as Martin and Schaub input more physical principles (a
low-fidelity analytic model, boundary conditions, adjust the loss function
to allow the network to be more sensitive at high-altitudes), the inter-
pretability of the PINN improves further. Some of these changes are of
course possible with standard NN models. However, the physics-informed
NNs and the architectural flexibility they provide allow the researchers to
have a better handle on the performance of the PINN overall.

We can again consider the situation in terms of link certainty and
whether the PINN has leveraged the right link. In the previous case, the
physical principles did not meaningfully impact the interpretability of the
model. However, there, it did not matter whether the PINN leveraged the
link we knew to exist between the data and the polytropic index. Here,
there is a link between the data and the gravitational field and we want
the NN to leverage that link. In adjusting the architecture of the network,
our belief that the algorithm is leveraging that link increases. This is be-
cause our understanding of the algorithm is increasing as we investigate
various components of it and its performance. Thus, the PIML methods,
and the ability to iteratively adjust them, do present an improvement in
transparency. This is important because, unlike in the first case, we do
not have a first-principles style argument to fall back on. Our analytic
models fail in the domains that the PIML is being used. To summarize,
this second case study offers a case in which we have link certainty and we
want functional transparency to ensure our ML algorithm is indeed lever-
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aging that link. PIML methods—the inclusion of physical principles and
iterative adjustment of the network architecture—increase our confidence
that the ML algorithm is indeed leveraging that link.

6 Conclusion

Is PIML really the “next-generation of artificial intelligence”? Is it as
“transformative” as proponents would have us believe? PINN algorithms
likely do outperform standard ML techniques by introducing physical prin-
ciples into their loss functions. In terms of their interpretability, there are
many contexts in which we need not be worried about the interpretabil-
ity of the algorithms in the first place; in such contexts, PINNs seem to
be in just the same situation as traditional NN. In cases where greater
transparency is desired, PINN methods—ones that adjust the network
architecture to reflect physical principles—can offer improvements.
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