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Physical systems are characterized by their structure and dynamics. But the physical laws only
express relations, and their symmetries allow any possible relational structure to be also possible in
a different parametrization or basis of the state space. If observers were reducible to their structure,
observer-like structures from different parametrizations would identify differently the observables
with physical properties. They would perceive the same system as being in a different state. This
leads to the question: is there a unique correspondence between observables and physical properties,
or this correspondence is relative to the parametrization in which the observer-like structure making
the observation exists?

I show that, if observer-like structures from all parametrizations were observers, their memory of
the external world would have no correspondence with the facts, it would be no better than random
guess. Since our experience shows that this is not the case, there must be more to the observers than
their structure. This implies that the correspondence between observables and physical properties is
unique, and it becomes manifest through the observers. This result is independent of the measure-
ment problem, applying to both quantum and classical physics. It has implications for structural
realism, philosophy of mind, the foundations of quantum and classical physics, and quantum-first
approaches.

Keywords: Foundations of quantum mechanics; foundations of classical physics; observers; structural realism;
philosophy of mind; emergence; emergent space-time

I. INTRODUCTION

In this article I’ll look into two apparently unrelated
but strongly intertwined questions. The first question is

Question 1. Is there an unambiguous correspondence
between observables and physical properties?

Here by “observable” I mean the operator (on the
quantum state space) or function (on the classical phase
space) representing a physical property.

This question is relevant for various research programs
aiming to recover the three-dimensional space and other
physical properties and structures only from the quantum
structure [4, 11, 31] or only from relations [27].

But we will see that this problem occurs even in stan-
dard Physics. The physical laws alone don’t give an
unambiguous answer, because they only express rela-
tions. This makes them invariant with respect to a large
group of reparametrizations of the state space. In Clas-
sical Physics, these are the canonical transformations.
In Quantum Physics, they are unitary transformations.
This is similar to the invariance of the laws under trans-
formations of spacetime as in Galilean and Special Rela-
tivity, where the conclusion is that even if space and time
were absolute, as long as this doesn’t transpire in the re-
lation, all empirical predictions of relativity are correct.
So what gives physical meaning to observables?

The answer is given by the observers. Observers make
experiments, and establish a correspondence between ob-
servables and physical properties. By “observers” I don’t
necessarily mean observers that “collapse” the wavefunc-
tion or play any role attributed to them to solve the mea-
surement problem. In fact, the same problem appears in

both Classical and Quantum Physics.
But the observers are physical systems, so they should

also be subject to the physical laws. This is often un-
derstood as implying that the observers should be com-
pletely reducible to their constituting relations, to their
structure. We will see that if this were true the observers
would not be able to ascribe uniquely physical properties
to the observables. This leads us to revisiting a second
question, whose answer is usually taken for granted,

Question 2. Are observers reducible to their structure?

The answer to Question 1 depends on the answer to
Question 2. But how can we answer this question?
I will prove that, if the answer to Question 2 were af-

firmative, there would be no correlation between the ob-
server’s memory and the properties of external objects.
In other words, observers would know nothing about the
external world. The reason boils down to the fact that
the symmetry of the state space dissolves any such corre-
lation, by allowing the external world to appear as having
different properties in different parametrizations in which
the structure of the observer is the same. This doesn’t
happen if the only observers are the observer-like struc-
tures from a unique parametrization.
Section §II contains a review of the quantum formal-

ism that will be applied in the rest of the article. Sec-
tion §III reviews the symmetry transformations of the
state space and the physical laws. Section §IV shows
how these symmetries imply that the same structures
can occur in any parametrization of the state space, and
that the same state can appear as different structures in
different parametrizations. I prove the main result in Sec-
tion §V. Some physical aspects of the proof are discussed
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in Section §VI. The article concludes with a discussion of
some of the implications of the result in Section §VII.

II. PHYSICAL LAWS AND STRUCTURES

Any structure of any system in the world, including
the structure of the observers, is presumably a physical
structure. Therefore, here I review the physical struc-
tures and their dynamics, and the formalism used in the
article.

I will use the quantum formalism, because the world is
quantum, and all existing systems are ultimately quan-
tum. But Classical Physics can be expressed in the same
formalism [20], and we will obtain the same result.

The state of a quantum system is represented by a state
vector, a complex vector |ψ⟩ of unit length in an infinite-
dimensional vector space H called here state space. The
state space is a Hilbert space, a special kind of vector
space endowed with a complex scalar product with the
Hermitian property ⟨ψ|ψ′⟩ = (⟨ψ′|ψ⟩)∗, where ∗ is the
complex conjugation. The length of a vector |ψ⟩ from H

is ||ψ⟩| :=
√
⟨ψ|ψ⟩. If Â : H → H is a linear operator,

there is a unique linear operator Â†, called the adjoint of

Â, so that ⟨ψ|Â|ψ′⟩ =
(
⟨ψ′|Â†|ψ⟩

)∗
for all |ψ⟩, |ψ′⟩ ∈ H.

But since all unit vectors are identical under the sym-
metries of the state space, the vector alone is not suffi-
cient to describe the structure and properties of a sys-
tem. The properties are represented by linear operators

Â : H → H, that are Hermitian, i.e. Â† = Â. We call

them observables. The property represented by Â has a
definite value a for a state vector |ψ⟩ if and only if |ψ⟩ is
an eigenvector of Â with the eigenvalue a, that is,

Â|ψ⟩ = a|ψ⟩. (1)

Since Â is Hermitian, it has only real eigenvalues.
In Quantum Physics, for a given state |ψ⟩, only some

of the properties have definite values – any property A

whose observable Â satisfies equation (1) for |ψ⟩ and
some eigenvalue a, which is the value of A.
The state space admits a special basis, consisting of

vectors uniquely identified by the combination of definite
values of positions, components of spin, and internal de-
grees of freedom (d.o.f.s) of different particles. (I use the
word “particles” because I work in the “particle repre-
sentation” based on positions, but these are wavefunc-
tions, not point-particles.) What physical property each
of these d.o.f.s represents is very important, but for sim-
plicity I will denote these values uniformly by q1, q2, . . .,
and the basis vectors by |q1, q2, . . .⟩. The values q1, q2, . . .
are eigenvalues of the operators q̂1, q̂2, . . ., representing
positions, components of spin, and internal d.o.f.s. Each
basis vector satisfies the equation

q̂j |q1, q2, . . .⟩ = qj |q1, q2, . . .⟩ (2)

for each of these operators q̂j and the corresponding
eigenvalue qj . The number and kinds of the operators

q̂j required to “fill the slots” of a vector |q1, q2, . . .⟩ de-
pend on the number and type of particles whose state is
represented by |q1, q2, . . .⟩.
All possible combinations of eigenvalues (q1, q2, . . .) of

the operators (q̂1, q̂2, . . .) form a parameter space C, usu-
ally called position configuration space. Since the number
and kind of the operators q̂j depend on the number and
type of particles, C is not a connected manifold, but a
union of manifolds of various dimensions, each of them
being the parameter space for systems of different num-
bers and types of particles with definite values for the
spin and internal d.o.f.s.
The wavefunction for a state vector |ψ⟩ ∈ H is a com-

plex function ψ : C → C defined by

ψ(q1, q2, . . .) := ⟨q1, q2, . . . |ψ⟩. (3)

With the notation q = (q1, q2, . . .), the wavefunction is

ψ(q) = ⟨q|ψ⟩. (4)

But how exactly are the other physical properties rep-
resented by operators? They all depend of the operators
q̂j and the momentum operators p̂k := −iℏ ∂

∂qk
canoni-

cally conjugate to those q̂k that are position operators,
where ℏ is the reduced Planck’s constant. The operators
p̂k commute with one another and with q̂j for j ̸= k.
All other physical properties depend on the operators q̂j
and p̂k, so they are represented by operators of the form

f̂(q̂, p̂), where q̂ = (q̂1, q̂2, . . .) and p̂ = (p̂1, p̂2, . . .).
The evolution equation is, for any |ψ(0)⟩ and any t ∈ R,

|ψ(t)⟩ = Ût|ψ(0)⟩. (5)

The evolution operators Ût are defined by Ût = e−
i
ℏ Ĥt,

where Ĥ is the Hamiltonian operator. The operators Ût

are unitary operators, that is, they preserve the structure
of the state space H, including the scalar product. An

operator Û is unitary if and only if Û−1 = Û†. Equation
(5) gives the solutions of the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩. (6)

The propagation of the wavefunction on the parameter
space C is therefore given by ψ(q, t) = ⟨q|ψ(t)⟩.
The Schrödinger equation expressed in terms of the

parameters from C, that is, in the basis of position eigen-
vectors

(
|q1, q2, . . .⟩

)
(q1,q2,...)∈C

, has the following form in

terms of the Hamiltonian matrix ⟨q|Ĥ|q̃⟩

iℏ
d

dt
⟨q|ψ(t)⟩ =

∫
q̃∈C

⟨q|Ĥ|q̃⟩⟨q̃|ψ(t)⟩dq̃. (7)

Remark 1 (Physical structures). The wavefunction
ψ(q, t) contains the complete information about the sys-
tem. This is true even if we interpret ψ(q, t) probabilis-
tically and include collapses in its evolution. Therefore,
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an omniscient being somewhat similar to the Laplace de-
mon, let’s call it the metaobserver, should be able to read
everything about the system by examining the patterns
of ψ(q, t). The structure of any system is manifest in
these patterns. For example, the structure of a separable
state of two particles is different from that of an entangled
state, and this is visible in the pattern of the wavefunc-
tion of the separable state because the wavefunction is
factorizable, i.e. the variables qj of the first particle are
separable from those of the second particle.

Remark 2 (Physical space). For a particle, we can
identify as physical space the space parametrized
by (q1, q2, q3) and finitely many additional parame-
ters for the spin and internal d.o.f.s. If there is
another particle with position space (q4, q5, q6), and
the interactions between them depend on the dis-

tance

√
|q4 − q1|2 + |q5 − q2|2 + |q6 − q3|2, this deter-

mines an identification between the spaces (q1, q2, q3) and
(q4, q5, q6). This identification extends to how many par-
ticles exist, as long as they participate in such interac-
tions. In nonrelativistic Quantum Mechanics, this works
because the potential depends on the distance [1]. In
Quantum Field Theory fields interact by local coupling,
which allows the identification between the spaces of the
fields. Also see [31].

III. SYMMETRIES OF THE PHYSICAL LAWS

When we examine the wavefunction on the parameter
space C, we assume a preferred basis for H, consisting
of vectors of the form |q1, q2, . . .⟩. But it is possible to
change this basis by applying a unitary transformation
(a linear transformation that preserves the structure of

the state space). A unitary transformation Ŝ transforms

any operator Â into another operator Â′ = ŜÂŜ†.

In particular, we get q̂′j = Ŝq̂jŜ
† and p̂′k = Ŝp̂kŜ

†. The

eigenvalues of the operators q̂′j = Ŝq̂jŜ
† form a parameter

space C′, in general different from C, which I will denote

by Ŝ(C). If the transformation Ŝ represents a change

of the reference frame in space or spacetime, Ŝ(C) = C,
although the parametrization will be different. But in

general Ŝ(C) ̸= C.

Any operator f̂(q̂, p̂) is transformed into an operator

f̂ ′(q̂, p̂) = Ŝf̂(q̂, p̂)Ŝ† = f̂(q̂′, p̂′), (8)

where f̂(q̂′, p̂′) depends functionally on q̂′ and p̂′ in the

same way f̂(q̂, p̂) depends on q̂ and p̂.

By changing the basis with Ŝ, the Schrödinger equation

(6) is transformed into iℏ d
dt |ψ

′(t)⟩ = Ĥ′|ψ′(t)⟩, where

|ψ′(t)⟩ = Ŝ†|ψ(t)⟩ and Ĥ′ = Ŝ†ĤŜ. Therefore, a quan-
tum system remains a quantum system under symmetry
transformations.

In the new basis
(
|q′1, q′2, . . .⟩

)
(q′1,q

′
2,...)∈C′ resulting from

changing the basis with the transformation Ŝ, the com-
ponents of the state vector |ψ⟩ are ψ′(q′, t) = ⟨q′|ψ(t)⟩ =
⟨q|Ŝ†|ψ⟩, the Hamiltonian matrix is ⟨q|Ŝ†ĤŜ|q̃⟩, and
equation (7) takes the form

iℏ
d

dt
⟨q′|ψ(t)⟩ =

∫
q̃′∈C′

⟨q′|Ĥ|q̃′⟩⟨q̃′|ψ(t)⟩dq̃′, (9)

which is equivalent with

iℏ
d

dt
⟨q|Ŝ†|ψ(t)⟩ =

∫
q̃∈C

⟨q|Ŝ†ĤŜ|q̃⟩⟨q̃|Ŝ†|ψ(t)⟩dq̃. (10)

We see that the Schrödinger equation and the Hamil-
tonian matrix have the same form in the new basis if and
only if ŜĤ = ĤŜ. This is a special type of symmetry
transformation:

Definition 1. An isonomy (or structural symmetry

transformation) is a symmetry transformation Ŝ that
preserves the form of the physical laws.

If Ŝ is an isonomy, we say that ŜÂŜ† is isonomic with

Â, and that Ŝ(C) is isonomic with C.

A transformation Ŝ is a structural symmetry transfor-
mation if and only if it is a symmetry of the Hamiltonian,

i.e. it commutes with the Hamiltonian operator Ĥ, i.e.

ŜĤ = ĤŜ. Then, ŜĤŜ† = Ĥ, so indeed the dynamics
from (10) follows the same law as that from (7).

Remark 3. For a state vector |ψ⟩, the wavefunction
⟨q′|ψ⟩ on C′ contains, in general, different structures than
the wavefunction ⟨q|ψ⟩ on C. For example, plane waves in
the position space appear as wavefunctions concentrated
at points in the momentum space (the Fourier transform
of the position space), and vice versa. Only Gaussian
wavefunctions appear as Gaussians in both the position
space and the momentum space, though not in all other

parameter spaces. Even if ŜĤ = ĤŜ, the structures on
C′ are in general very different from those on C.
Similarly, the wavefunction ⟨q′|ψ′⟩ on C′, correspond-

ing to another state vector |ψ′⟩ = Ŝ|ψ⟩, looks exactly
like the wavefunction ψ on C. This is because the uni-

tary operator Ŝ preserves the scalar product, so the scalar

product between |q′⟩ = Ŝ|q⟩ and |ψ′⟩ = Ŝ|ψ⟩ is equal, for
all q ∈ C, to the scalar product between |q⟩ and |ψ⟩,

⟨q′|ψ′⟩ = ⟨q|Ŝ†Ŝ|ψ⟩ = ⟨q|ψ⟩. (11)

Then, any structure possible on the parameter space C

is also possible on any other parameter space Ŝ(C).

IV. META-RELATIVITY OF OBSERVERS

We attribute a special, unique physical meaning to
the operators q̂j . But due to its symmetries, the quan-
tum formalism alone doesn’t distinguish them from other
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choices q̂′j . It doesn’t allow any parameter space C to be

special among all possible parameter spaces Ŝ(C). What
breaks the huge symmetry of the state space?

We attribute physical meaning to the operators be-
cause of the experiments. But how would this work?

Suppose that the wavefunction ⟨q|ψ⟩ on C contains
observer-like structures performing experiments. If they
are conscious, they would consider that the parameters
qj correspond to positions in the physical space.

Let C′ = Ŝ(C) be another parameter space, parame-

trized by the eigenvalues of q̂′j = Ŝq̂jŜ
†. On C′ there

are wavefunctions ⟨q′|ψ′⟩ that also contain observer-like

structures. For example, if |ψ′⟩ = Ŝ|ψ⟩, the structures

from ⟨q′|ψ′⟩ are identical to those from ⟨q|ψ⟩, and if Ŝ

commutes with Ĥ, they evolve identically.
Then, if observers are reducible to the structures, no

experiment can tell them in what parameter space they

live. It could be C or any other parameter space Ŝ(C).

Proposition 1. Observer-like structures from different
parameter spaces identify different physical spaces.

Proof. Observer-like structures from different parameter
spaces C and C′ use different sets of operators q̂ and q̂′

to represent positions in space. Then, the identification
of the physical space from Remark 2 leads to different
results. The parameter spaces C and C′ coincide only if
the operators q̂′ commute with all q̂, and this happens
when they are all functions of q̂ independent of p̂. Oth-
erwise, from Remark 2, the resulting physical spaces will
be different.

Consequently, they perceive the same state as differ-
ently structured with respect to the physical space.

Remark 4. Note that even if there is an objectively
unique physical space, even if its associated observables
are ontologically special, whatever this means, Proposi-
tion 1 implies that observer-like structures from C and C′

still identify different physical spaces. What is physical
space to an observer-like structure on C, to an observer-
like structure on C′ it appears as a space consisting of
other three d.o.f.s, associated to different physical proper-
ties. And the same happens for all other observables.

Let’s extract these findings in the form of a principle.

Principle 1 (Meta-Relativity). Observer-like structures
on any two parameter spaces C and C′ agree upon the
laws of physics if and only if C and C′ are isonomic. But
in general they disagree about the physical properties
associated with the observables and about the physical
space.

Neither the relations that we can extract from experi-
ments nor the theory can determine the physical meaning
of the operators. The physical meaning of the operators
is relative to the parameter space, in the sense that ob-
servers from a parameter space C have a different physical
interpretation of the operators compared to the observers

from another parameter space C′. But all observers from
the same parameter space agree upon the physical mean-
ing of the operators.
Principle 1 is very similar to the Principle of Relativity.

For isometric coordinate transformations in space from
(x, y, z) to (x′, y′, z′), different observers agree upon the
physical laws. But there is no way to tell that the coor-
dinates (x, y, z) are special compared to (x′, y′, z′). The
Poincaré transformations that appear in Special Relativ-
ity are particular structural symmetry transformations.
Principle 1 extends the Principle of Relativity, so I

chose to name it “the Principle of Meta-Relativity”. But
it extends the Principle of Relativity only for structures,
not for their physical meaning. Principle of Relativity
remains true about the physical meaning of spacetime.
All we can access by intersubjectively verifiable experi-

ments are the relations. Relations allow us to build math-
ematical models of the world. The nature of the relata
is outside the realm of intersubjectively verifiable exper-
iments. This truth was noticed in one form or another
by various philosophers, notably Poincaré [24] and Rus-
sell [28], and it is called epistemic structural realism [21].
Epistemic structural realism seems to apply to science,
because

1. No intersubjectively verifiable experiment can go
beyond the relations.

2. No theoretical model can go beyond relations. Log-
ically consistent theories admit faithful mathemat-
ical models in terms of mathematical structures
[5, 15]. But mathematical structures themselves
are nothing but sets and relations [13], and the el-
ements of the sets are characterized exclusively by
the relations in which they participate.

Remark 5. Even if (q̂1, q̂2, . . .) have a special ontic sta-
tus compared to other choices (q̂′1, q̂

′
2, . . .), this can’t be

assessed by intersubjectively verifiable empirical means.
These means can only establish that different observer-
like structures from the same parameter space assign the
same physical properties to the observables.
If there were objective means to determine (q̂1, q̂2, . . .)

as the preferred properties, then we would be able to ob-
tain them from the abstract state vector |ψ⟩ and the ab-

stract Hamiltonian Ĥ, where “abstract” means that they
are not expressed in a preferred basis or parametrization.
In the case of the Hamiltonian, this means its spectrum,
including the multiplicities. But it’s impossible to obtain
them uniquely [31, 37].
We can claim that the properties represented by the

operators (q̂1, q̂2, . . .) associated to our parameter space
are ontologically “more real” than other possible choices
(q̂′1, q̂

′
2, . . .). But this doesn’t solve the problem, since all

operators f̂(q̂, p̂) are “as real” as q̂j and p̂k. In particular,
any other choice (q̂′1, q̂

′
2, . . .) is “as real” as (q̂1, q̂2, . . .),

because any q̂′j is also a function q̂′j = q̂′j(q̂, p̂).

Remark 6. Even if there are some unknown hidden
structures that break the symmetry so that (q̂1, q̂2, . . .)
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are special compared to (q̂′1, q̂
′
2, . . .) the problem remains.

If we don’t have empirical access to those hidden struc-
tures, they are useless. And if we will be able to access
them, we will have to complete our theory. But the new
theory will also be relational, so it will have its own large
symmetry group, hence it will have the same problem.

For example, consider that we add point-particles with
definite positions, as in the pilot-wave theory [2]. Then,
the symmetry transformations are canonical transforma-
tions of the phase space of point-particles, done in tan-
dem with unitary transformations of the pilot wave. The
classical system of point-particles can be described using
the quantum formalism (see Corollary 1), coupled with
the quantum system of the pilot wave. Therefore, the
quantum formalism and the discussions from this arti-
cle still apply, and adding point-particles can’t avoid the
conclusion.

V. ARE OBSERVERS REDUCIBLE TO
STRUCTURES?

Given that there is no physical way to determine if an
observer-like structure is special compared to an isomor-
phic structure from another parameter space, Principle
of Meta-Relativity leads to the following question:

Question 3. Are the observer-like structures from all
parameter spaces conscious?

A more specific variant of Question 3 is the following
one. If the wavefunction on a parameter space C contains
observer-like structures that are conscious, and if isomor-
phic structures can be found on another parameter space
C′, are the latter structures conscious as well?
If consciousness is reducible to structures, the Princi-

ple of Meta-Relativity implies that all observer-like struc-
tures in all parameter spaces are conscious. But if it turns
out that not all observer-like structures in all parameter
spaces are conscious, this would mean that there is more
to consciousness than just the structure.

Theorem 1. If observers were reducible to structures,
they would know nothing about the external world.

Proof. I will prove the theorem in three steps:
Step 1.1. Show that for any observer-like structure

whose memory is correlated with its environment, there
are parameter spaces on which the wavefunction of the
same state contains identical observer-like structures, but
whose environment can appear to be in any possible
state. In particular, if an observer-like structure knows
that the value of a property of the environment is a and
it really is a, there is an identical observer-like structure
with the same structure, but for whom that property of
the environment can have any other possible value a′.

Step 1.2. Show that the transformation connecting the
two parameter spaces can be chosen to commute with the
total Hamiltonian, so that the evolution law for the two
observer-like structures is the same.

Step 1.3. Show that the alternative parameter spaces
with different environments are uniformly distributed, so
that there is no correlation between the memory of a
generic observer-like structure and its environment.
The observer is a subsystem of the universe. We can

represent the state of the universe by

|ψ⟩ = |ψω⟩|ψε⟩, (12)

where |ψω⟩ ∈ Hω represents the observer, |ψε⟩ ∈ Hε

represents the rest of the world, and H ∼= Hω ⊗ Hε.
The following proof can be adapted easily for an observer
entangled with the environment.
The parameter space decomposes as a Cartesian prod-

uct C ∼= Cω × Cε, on which the wavefunction is

ψ(qω, qε) = ψω(qω)ψε(qε), (13)

where qω ∈ Cω and qε ∈ Cε.
Since the observer can only access directly her own

present state of mind, it is sufficient that the state vec-
tor |ψω⟩ represents the brain of the observer. However,
to humor anyone who would object to this, let us as-
sume that |ψω⟩ represents a more extended system that
contains the observer. For example, suppose that |ψω⟩
represents a room in which the observer presently is.

Step 1.1. The observer’s memory contains information
about various properties of various external systems. For
example, if she remembers that in the corner of her
kitchen there is a table, her memory contains information
about the approximate size of the kitchen and the table,
and their relative position. So our observer expects that,
if she goes to the kitchen, she will find these to be true.
Since the state of the external objects is characterized by
their physical properties, let us choose such a property,

represented by an observable Âε (seen as an operator on

the entire space H), so that |ψ⟩ is an eigenvector of Âε

with eigenvalue a.
Now consider another state |ψ′⟩ = |ψω⟩|ψ′

ε⟩, in which
the observer has the exact same structure, but so that

|ψ′⟩ is an eigenvector of Âε with a different eigenvalue
a′. The wavefunction of |ψ′⟩ on the parameter space C
is ψ′(qω, qε) = ψω(qω)ψ

′
ε(qε). According to Remark 3,

there is a unitary transformation Ŝ that maps |ψ⟩ into

|ψ′⟩. On the resulting parameter space C′ := Ŝ
(
C
)
, |ψ′⟩

has the same form as |ψ⟩ on C.

Step 1.2. Now I will prove the existence of a state |ψ′⟩
in which the observer has the same structure but the
property Âε of the environment has the value a′, and
the two states |ψ⟩ and |ψ′⟩ can be related by a unitary

transformation Ŝ that commutes with the Hamiltonian.
In [36] Lemma 1 it was shown that such a sym-

metry transformation exists, if the observable Âε has
eigenspaces of the same dimension, and for every eigen-
value a, −a is also an eigenvalue. Then, there is a unitary

transformation Ŝ commuting with Ĥ so that Ŝ|ψ⟩ = |ψ′⟩.
This extends easily to a generic observable Âε and two
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eigenvalues a ̸= a′ of different multiplicities. We can al-

ways choose instead of Âε another observable
̂̃
Aε having

the same eigenspaces, but different eigenvalues, so that

a = −a′. Then if a state is an eigenstate of
̂̃
Aε, it is also

an eigenstate of Âε, and we can deduce the eigenvalue

of Âε from the eigenvalue of
̂̃
Aε. Depending on whether

the eigenspace of Âε corresponding to the eigenvalue a
is smaller, equal, or greater than the eigenspace corre-
sponding to the eigenvalue a′, there are three cases. By
a space “smaller” than another space I understand here
that there is a unitary transformation mapping the first
space into a strict subspace of the second space. If the
eigenspaces are equal, we can apply Lemma 1 from [36].
If one of them is smaller than the other, we choose the ob-

servable
̂̃
Aε to commute with Âε and so that the states

|ψ⟩ and |ψ′⟩ are contained in eigenspaces of
̂̃
Aε of the

same dimension. To make sure that
̂̃
Aε contains the nec-

essary information to find out the eigenvalues of Âε from

those of
̂̃
Aε, we can choose

̂̃
Aε to be finer, in the sense

that all its eigenspaces are included in eigenspaces of Ã.
Therefore, we can apply Lemma 1 from [36], and ob-

tain that there is a structural symmetry transformation Ŝ
mapping |ψ⟩ to |ψ′⟩. We don’t need to perform the mea-
surement, the whole point is only to prove the existence

of a structural symmetry transformation Ŝ mapping |ψ⟩
to |ψ′⟩.
Step 1.3. We need to find out the probability measure for
the possible alternative wavefunctions ψε(q

′
ε) of the envi-

ronment resulting from a structural symmetry transfor-
mation from ψ. Since with any wavefunction ψε all other
wavefunctions ψ′

ε are equally present on different param-
eter spaces, this measure has to be the uniform measure
invariant to the allowed unitary transformations. Any
other measure would break the unitary symmetry of the
state space, and would introduce preferred parameter
spaces by a sleight of hand.

Let us find out the probability as the ratio between the
measure of “favorable cases” and the measure of “all pos-
sible cases”. Denote by µ≈, respectively µ̸≈, the measure
of the set of unit vectors |ψ′

ε⟩ ∈ Hε resulting from a struc-
tural symmetry transformation from ψ that are consis-
tent, respectively inconsistent with the observer’s mem-
ory. The probability that the memory of the observer-
like structure contains accurate data about the external
world is

µ≈/(µ≈ + µ̸≈). (14)

As seen above, the measure µ is uniform. This implies
that the probability from equation (14) is the same as
the probability that the observer-like structure guesses
the values of the properties of the external world by pure
chance. In other words, there is no correlation between
the observer’s state and the environment, so the observer
knows nothing about the external world.

Let us take a more concrete look. The observer-like
structure’s memory encodes the knowledge that the prop-
erty Aε has a definite value a. The same physical prop-
erty Aε relative to C′ is represented by the observable

Â′
ε = ŜÂεŜ

†. Therefore, on C′, the property of Aε is a′,
not a, as the observer-like structure would think. The ob-

servable Âε represents a different physical property on C′,
whose value is indeed still a, but as known from Propo-
sition 1 and Principle 1, for observer-like structures on
different parameter spaces, the same observable repre-
sents a different physical property. So the observer-like
structure on C′ associates Aε with the value a, but its
parameter space C′ associates it with the value a′.
Because the same observer-like structure ψω(qω) can

have any possible environment ψε(q
′
ε) = ψ′

ε(qε), with
uniform probability, its memory contains zero informa-

tion about the value of Âε.
However, perhaps we shouldn’t consider as “all pos-

sible cases” all possible environments resulting from a
structural symmetry transformation from ψ, but only

those for which Âε has a definite value. Even restricted
like this, the probability still has to be uniform, because
together with any eigenvector |ψε⟩ ∈ Hε, any other eigen-
vector |ψ′

ε⟩ ∈ Hε is equally obtainable by a structural
symmetry transformation. We see that if all structures
identical with the observer’s structure were conscious re-
gardless of their parameter space, the probability (14)
would be the same, so the observer would know about

the property represented by Âε exactly what is allowed
by random guess.

So indeed if observers were reducible to structures,
they would know nothing about the external world.

Remark 7. One may think that on C′ we should con-

sider the observable Âε instead of Â′
ε = ŜÂεŜ

†. Then,

Âε|ψε⟩ = a|ψε⟩ remains true regardless of the basis, and
it may seem that the knowledge encoded by the observer-
like structure on C′ is valid. But we should not forget
that the starting point was that the observer-like struc-
ture determines the physical meaning of the observables.

For example, if Âε represents on C the coordinate x of an
external object, and its value is a, on C′ the coordinate
x of the object appears to be a′, and it is represented by

Â′
ε, not by Âε. Indeed, Â′

ε|ψε⟩ = a′|ψε⟩, as Proposition
1 says. The observable Âε will have the same value, but
it will represent another property, and not the position
of the object.

Remark 8. In this article, by “observer” I don’t neces-
sarily mean somebody making a quantum measurement.
Although any observer inevitably makes quantum obser-
vations, the result doesn’t rely on the measurement prob-
lem. The following Corollary should clear any doubt.

Corollary 1. Theorem 1 is true in a classical world too.

Proof. Koompan and von Neumann showed how to for-
mulate Classical Physics using the quantum formalism



7

[20, 39]. But there are some differences. The momentum
operators p̂j are not the form −iℏ ∂

∂qj
, they are indepen-

dent of q̂j and commute with them. The resulting param-
eter space C is the classical phase space, containing both
qj and pk as generalized coordinates. The physical states
are represented only by basis vectors |q,p⟩. The wave-
functions are localized at points (q,p) ∈ C. On the state

vectors |q,p⟩, all observables f̂(q̂, p̂) have definite values.
Because the state always remains classical, the evolution

operators Ût from equation (5) always map basis vectors
to basis vectors. The symmetry transformations of the
phase space, called canonical transformations, are repre-
sented only by unitary transformations that map basis
vectors to basis vectors.

Since these restrictions don’t affect the proof of Theo-
rem 1, the result applies to classical worlds too.

Corollary 2. The parameter space supporting observers
is unique up to spacetime and gauge symmetries.

Proof. The proof of Theorem 1 shows that only in some
parameter spaces the wavefunction ψε of the external
world corresponds to the memory of the observer rep-

resented by ψω. Any unitary transformation Ŝ as in
the proof of Theorem 1 introduces an ambiguity in some
physical properties. Then, as in the proof of the The-
orem, the observer is unable to know these properties.
The observer’s memory contains information about a
very limited number of properties, so it doesn’t fix the
wavefunction ψε of the external world. Consequently,
the parameter space Cε is far from being completely de-
termined. However, the observer can make experiments
to determine any physical property of a system. This
means that all observable properties should be accessible
to the observer, given the right experiments. Therefore,
the properties that can’t be known to the observer even
in principle have to be “nonphysical”, i.e. dependent on
the reference frame or the gauge. The properties that can
be known identify a unique parameter space supporting
observers, up to spacetime and gauge symmetries.

Theorem 1 answers Question 2 negatively, and, based
on this, Corollary 2 answers Question 1 affirmatively.

VI. DISCUSSION

We take for granted the existence of a unique corre-
spondence between the operators representing properties,
and the physical properties themselves. But we have seen
that, if all observer-like structures were observers, ex-
periments couldn’t ensure uniquely this correspondence.
This correspondence is absent from the theoretical de-
scription too. It only seems to be part of the theory
because we give different names to the various operators,
we label them with different symbols, and we all follow
the convention, so we agree with one another about their
meaning. The uniqueness of this correspondence is en-
sured by the fact that only observer-like structures from

a particular parameter space can be observers, which is
proven in Theorem 1. Without this, no observer would
be able to know anything about the external world.
We also take for granted that our memory holds correct

information about the external world automatically, just
because we interacted with it in the past. This predis-
position may make the proof of Theorem 1 more difficult
to understand. But the evolution equations of physics
are reversible, and if we remember our past interactions,
we should equally remember our future interactions. Or
rather there should be no relation between the content
of our between memory and the external world at all,
because all state vectors |ψω⟩|ψε⟩ are equally “legal” un-
der the laws of physics. The states containing brains
with memories that don’t correspond to facts about the
external world are as “legal” as those with reliable mem-
ories, and even overwhelmingly outnumber them. With-
out special conditions that ensure the reliability of our
memories, most observers would fluctuate ephemerally
into existence by accident and then dissipate ([8], p. 65).
The chance of not being a Boltzmann brain would be
practically zero.
Fortunately, the initial state of the universe was ex-

tremely special. Penrose estimated how special it was:

one in 1010
123

[23]. The Boltzmann entropy was ex-
tremely low, and it increases steadily in time, ensuring
the validity of the Second Law of Thermodynamics [3, 9].
This is believed to also ensure the relative reliability of
our memories. And even though, as shown in [33], reli-
able memories require more fine tuning of the initial state
than just starting in a low-entropy state, we live in such
a friendly universe. Our memories about the properties
of external systems are reliable because we are part of a
universe in such a select state.
But this is not true of most states in which the universe

could be, including most states resulting from its ac-

tual state by unitary transformations Ŝ. No matter how
friendly our universe appears on our parameter space, it
will not appear friendly at all to the observer-like struc-
tures from most alternative parameter spaces. Therefore,
if observers were reducible to structures, any observer
should expect that in the very next moment the universe
containing it will turn out to be crazy. There would be
rare instances when the observer-like structure survives
for a brief period of time, and even then, in most cases,
it would experience a surrealist reality. Every time when
this doesn’t happen to us is a subtle reminder that we
are more than the structure.

VII. IMPLICATIONS

It is sometimes believed that the state vector and the
Hamiltonian are sufficient to recover everything else, the
space structure, the tensor product structure (necessary
for the existence of subsystems), and the correspondence
between observables and physical properties. This seems
to be needed by various quantum-first approaches to
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Quantum Gravity, see [4] and other references in [31]. In
[31, 34, 37] it was shown that this is impossible, and there
are infinitely many physically distinct but isomorphic
structures. Any quantum-first approach is extremely am-
biguous, resulting in infinitely many solutions represent-
ing physically different worlds. But we could hope that
this ambiguity is harmless and consistent with the em-
pirical data. However, Theorem 1 shows that this isn’t
true. If it were true, the observer-like structures would
not be able to know anything about the external world.
This would contradict the most basic empirical facts and
would make science impossible.

Theorem 1 also rejects the thesis that physical prop-
erties are purely relational, as proposed by Rovelli [27],
since this also implies that observers would know nothing
about the external world.

Proposals like the above may come from the implicit
assumption that ontic structural realism, the thesis that
only the structure exists, that there are only relations and
no relata, is true [21]. This is also endorsed by material-
ism or physicalism, positions that don’t admit ontology
having phenomenal (that is, sentiential or experiential)
powers. Theorem 1 shows otherwise: not all isomorphic
structures are created equal. Epistemic structural real-
ism proposes that even if things have a nature of their
own, this is inaccessible to us through science (see Sec-
tion §IV). But Theorem 1 shows that, without grounding
our knowledge into something in addition to the struc-
tures, we would know nothing. Something makes only
some of the isomorphic observer-like structures be ob-
servers. So whatever breaks structural realism, this is
manifest through the observers, to the observers.

But what is an observer? In this article I had in mind
the human observers as a directly verifiable example fa-
miliar to all of us. An observer-like structure is any struc-
ture isomorphic with the structure of an observer. But
to restrict observers to humans would be anthropomor-
phism, so if there is a way to characterize observers in
a non-anthropomorphic way, we should adopt it. But
whatever the definition of an observer is, such an observer
must have a structure. And regardless of the character-
istic of the structure of the observers, Theorem 1 shows
that not all structures isomorphic with it are observers.

This article makes no claim to define or elucidate what
kind of structure a system must have to be a conscious
observer. This problem belongs to other fields, from Neu-
roscience to philosophy of mind. But the results from
this article inform these fields that observers, whatever
they are, are not reducible to their structure. For exam-
ple, the computational theory of mind proposes that the
mind is reducible to a computation [6, 25]. If “compu-
tation” means what is understood in Computer Science,
this is already rejected [35], and if it also means the inter-
nal structure of the machine implementing it, this would
contradict Turing universality [35] and Theorem 1. Func-
tionalism [22] proposes that the mind reduces to the way
it functions. If by “function” we understand structure
and its dynamics, this is in conflict with Theorem 1. Illu-

sionism proposes that phenomenal consciousness, expe-
rience itself, is an illusion of the computation or function
of the structure [7, 10]. Even if we go down to the brain’s
finest structural details, as in the identity theory [29], we
can’t avoid Theorem 1. The structure of a Carbon atom
or even of any particle can exist in any possible parameter
space, hence the problem remains. In this sense, Theo-
rem 1 shows that the observer-like structures from other
parameter spaces are philosophical zombies [18, 19], dis-
proving thus the materialist thesis that the ontological
substrate can’t have phenomenal effects. On the other
end of the spectrum we find the proposals that the mind
is not reducible to structure. Panpsychism proposes that
even the elementary particles have such mental properties
[12]. A naive rejection of panpsychism is that it adds new
properties unknown in physics, and this should lead to
different predictions than, for example, Particle Physics.
But this article shows that such properties correspond
in fact to the already known physical properties. Corol-
lary 2 shows that this correspondence has to be unique
(up to Poincaré and gauge symmetries), and it should
go down to the complete set of basis observables. This
implies a full identification between mental and physical
properties, suggesting a form of monism. Neutral monism
proposes that the intrinsic nature of things appears ex-
ternally as physical properties, and internally as mental
properties [28]. Idealism [14, 16, 17, 30] is a monistic
position that identifies the physical properties and the
physical laws as the structure and dynamics of a funda-
mental consciousness. Another position is dualism [26],
stating that both matter and mind are fundamental and
either interact or mirror one another. This would unnec-
essarily duplicate both the ontology and the structures,
so it would be redundant. A monistic position wouldn’t
have this problem. Whatever the explanation is, it should
take into account that observers are not reducible to their
structure. Corollary 2 shows all physical properties are
grounded in sentience, in a way that goes beyond the
experience of individual observers, making them agree
with one another and with the external world about the
physical meaning of the observables. There is an es-
sentially unique parameter space supporting observers,
and observer-like structures from other parameter spaces
are philosophical zombies. This difference seems to elude
both the theoretical description and the intersubjectively
verifiable experiments. However, as shown by Theorem 1
and Section §VI, this is revealed empirically by the fact
that at any instant we could turn out to be observers
in a crazy surrealistic world completely unrelated to our
memories, but every time we find ourselves in a friendly
one. As if the universe is so friendly that it reassures us
at every instant about this fact. Indubitably, structure
remains important, and trying to characterize the struc-
ture of conscious systems is essential in advancing our
understanding of observers.

The existence of an ontologically special basis beyond
structure and relations was conjectured previously be-
cause it allows reasoning about the self-location of the
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observer in a way that leads to the Born rule [32] and en-
dows the Many-Worlds Interpretation with genuine prob-
abilities and a local ontology [38]. Other proposals that
don’t use a fixed ontic basis fail to get the Born rule ([38],
Proposition 1, §6). Theorem 1 justifies conjecturing such
ontic differences, by showing that this is unavoidable.
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