
The measurement in classical and quantum theory

Alexey A. Kryukov

Department of Mathematics & Natural Sciences, University of Wisconsin-Milwaukee, USA

E-mail: kryukov@uwm.edu

Abstract. The Bohigas-Giannoni-Schmit (BGS) conjecture states that the Hamiltonian of
a microscopic analogue of a classical chaotic system can be modeled by a random matrix
from a Gaussian ensemble. Here, this conjecture is considered in the context of a recently
discovered geometric relationship between classical and quantum mechanics. Motivated by
BGS, we conjecture that the Hamiltonian of a system whose classical counterpart performs a
random walk can be modeled by a family of independent random matrices from the Gaussian
unitary ensemble. By accepting this conjecture, we find a relationship between the process of
observation in classical and quantum physics, derive irreversibility of observation and describe
the boundary between the micro and macro worlds.

1. Introduction
Given the fundamental character of the topics discussed in the paper, it is necessary to place
the paper in the context of existing research and to explain prerequisites for the obtained
results. First and foremost, standard quantum mechanics is assumed throughout the paper.
The equation of motion is the usual Schrödinger equation, with no extra terms. In proving
the initial results related to the connection of Schrödinger and Newtonian dynamics, the state
of the system that represents a macroscopic particle is assumed to be constrained to a certain
submanifold in the space of states. This may seem to contradict the Schrödinger dynamics of
the system. However, this step is only used to understand the geometry of the constraint and is
later replaced by a condition on the Hamiltonian of the system. Second, the presented results
are mathematical theorems proved in the paper and therefore, given the assumptions in the
theorems, the results follow rigorously and need not be questioned, unless the validity of the
proof itself is in question. What is open to discussion is the nature of the assumptions and the
physical interpretation of the derived results.

Now, the only assumption of essence used in proving the results is related to a specific form
of the Hamiltonian of a macroscopic particle in natural surroundings and a microscopic particle
under a measurement. This assumption is stated in the conjecture (RM). It claims that the
Hamiltonian of a microscopic particle whose position is measured, as well as a macroscopic
particle in the natural surroundings can be represented by a random matrix from a Gaussian
unitary ensemble and that random matrices considered at different moments of time are
independent. Of course, (RM) is not BGS. In particular, BGS is about stationary states and the
distribution of eigenvalues of the Hamiltonian. On the contrary, (RM) is about a non-stationary
stochastic process on the space of states. At the same time, both conjectures claim that under
certain physical conditions on the system the Hamiltonian of the system can be represented by
a random matrix. This is the point of connection of the paper with the BGS conjecture. It is



important to point out that there is no attempt to prove or disprove the BGS conjecture, or
to justify it in any way in the paper. Rather, the validity of the BGS conjecture confirmed in
numerous observations is used to argue in favor of (RM). One may disagree with the argument,
but given that (RM) is the only assumption of essence used in proving the theorems in the
paper, and the statements of theorems have far reaching consequences to physics, the approach
deserves our full attention.

Finally, what are the results obtained in the paper? How are they related to previous research?
What is the main merit of the paper? The coherent states used in identifying the classical phase
space manifold in the paper are well known and widely used in quantum optics and quantum
physics in general. The fact that when the state is coherent, the motion of the system is closest
to the classical motion and, in the limit, may become identical to it is not surprising. The
literature related to the subject ranges from textbook results in quantum optics, e.g., [1] to
research in quantum gravity (see [2] for a historic context, main ideas and some references). A
semiclassical approximation obtained by constraining the state to remain Gaussian during the
evolution [3] is known to be useful in modeling a range of quantum systems over a time interval.

However, the current paper is not concerned with a semiclassical approximation. It deals with
the full-fledged Schrödinger evolution with the Hamiltonian that satisfies (RM). The state of
the system under such evolution does not stay coherent, but performs a random walk in the space
of states. This walk is used in the paper to find a new link between measurement in classical
and quantum mechanics. Namely, the normal distribution typical for classical observations and
the Born rule valid in the micro-world turn out to follow from the Schrödinger equation with the
Hamiltonian satisfying (RM). It becomes possible to specify on this basis the boundary between
the micro and macro worlds. It becomes also possible to explain irreversibility of measurement.
Other essential results are the derivation of the classical behavior of macroscopic systems and
an explanation of why the cat states of macroscopic systems are not observed in nature. This
in turn provides an explanation of the role played by measuring devices in quantum theory and
how the quantum theory, while remaining linear, may avoid using superpositions of states of
macroscopic bodies.

As stated before, the derived results are mathematical consequences of the assumption (RM).
They are new and are not directly based on previous research. The measurement problem and
physics of measuring devices is of course a topic of significant research of its own. However,
as far as the author is aware, the existing body of literature related to quantum measurement
was never concerned with (RM). The theory of decoherence [4] probably came closest and is
possibly most relevant to the topics considered in the paper. However, in classification of the
decoherence theory, we are dealing here with a “fake” decoherence, as the evolution remains
unitary. Furthermore, the paper deals with evolution of the state and not the density matrix
of a system. The irreversibility of a measurement is the result of the Hamiltonian lacking time-
reversal symmetry rather than a “leakage” of information into the environment. Similarly, the
dynamical collapse theories surveyed in [5, 6] use non-linear modifications of the Schrödinger
equation, while only linear evolution is considered in the paper. Accordingly, we only refer
to general surveys in both of these fields of research with the goal of providing a context for
the derived results. Let us mention the Ornstein-Uhlenbeck process of stochastic relaxation
of Hermitian matrices first considered by Dyson [7, 8]. Although not directly related to the
stochastic process considered here, it provides an interesting example of a process that leads to
the Gaussian ensemble used in the paper.

To make the presentation self-contained, simple proofs of the previously published theorems
(A) and (B), and propositions (P2) and (P3) are provided. The reader is referred to the cited
publications for details.



2. The measurement in classical and quantum theory
The linear nature of quantum mechanics poses a persistent problem for reconciliation of the
classical and quantum mechanics. The superposition principle is foreign to classical physics.
We don’t see macroscopic objects in two different places or the cat being alive and dead at the
same time. However, such states are commonplace in the microworld. The notable attempts
to resolve the situation include non-linear modifications of the Schrödinger equation to account
for the transition to states observed in a measurement, the De Broglie-Bohm theory of classical
particles lead by a pilot-wave, an appeal to many coexisting worlds representing the components
of a superposition and the decoherence program aiming to explain how superpositions decohere
to probabilistic mixtures. None of these attempts is generally accepted as successful in resolving
the problem. There is no experimental evidence for needing to modify the Schrödinger equation.
The simultaneous presence of quantum and classical trajectories in the pilot-wave theory seems
redundant. The many-world approach fails to explain the world that is real and unique to us.
The decoherence program derives the laws of probability valid for macroscopic bodies but fails
to account for a specific outcome of a measurement.

On the other hand, the Newtonian and Schrödinger dynamics have a simple relationship that
does not seem to be known nor used in the above-mentioned attempts. Namely, the Newtonian
dynamics can be identified with a constrained Schrödinger dynamics. The latter is similar
to the Newtonian dynamics of a constrained system, e.g., a bead on a wire. However, since
the Schrödinger equation describes the dynamics in a Hilbert space of states, the constraint
is imposed on the state of the system. Consider the subset Mσ

3,3 of the Hilbert space L2(R3),
formed by the states

ϕ(x) = ga,σ(x)eipx/~, (1)

where

ga,σ =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 (2)

is the Gaussian function of a sufficiently small variance 2σ2 centered at a point a in the Euclidean
space R3 and p is a fixed vector in R3. The state ϕ(x) represents a narrow wave packet with
group velocity p/m, where m is the mass of the particle. Let’s identify the set of all pairs (a,p)
with the classical phase space R3×R3 of possible positions a and momenta p of a particle. The
map Ω : (a,p) −→ ga,σe

ipx/~ identifies then the classical phase space with the submanifold Mσ
3,3

of L2(R3). The equivalence classes of states in L2(R3) differing only by a constant phase factor
eiα form the projective space CPL2 . Under the equivalence relation, the embedded manifold
Mσ

3,3 becomes a submanifold of CPL2 , denoted here by the same symbol.
The six-dimensional manifold Mσ

3,3 is embedded into the space of states in a very special way.

There are no vectors in the Hilbert space L2(R3) orthogonal to all of Mσ
3,3. Instead, the points of

Mσ
3,3 represent an overcomplete basis in the Hilbert space [12]. Furthermore, the projective space

CPL2 possesses the Fubini-Study metric, induced by the embedding of CPL2 into the sphere SL2

of unit-normalized states in L2(R3) furnished itself with the induced round Riemannian metric.
For any two vectors ξ, η in L2(R3) tangent to the sphere SL2 and the corresponding vectors
X = (Reξ, Imξ) and Y = (Reη, Imη) in the realization L2R(R3) of L2(R3), the Riemannian
metric Gϕ on the sphere is defined by

Gϕ(X,Y ) = Re(ξ, η). (3)

Perhaps surprisingly, the metric induced on the submanifold Mσ
3,3 of CPL2 with 2σ as a

unit of length turns out to be the ordinary Euclidean metric. In other words, the map
Ω : R3 × R3 −→ CPL2 is an isometric embedding of the Euclidean space into the space of
states. The manifold Mσ

3,3 can be also furnished with a compatible linear structure, making it

isomorphic to the Euclidean space R3 × R3 [9–13].



We can now state the first theorem. Here and later, it is assumed that the value of the
parameter σ is sufficiently small for the linear approximation of the potential V (x, t) to be valid
within intervals of length σ.

(A) The Newtonian dynamics of an arbitrary mechanical system is the Schrödinger
dynamics of that system with the state constrained to the classical phase space
submanifold of the space of states of the system. Furthermore, the Schrödinger
dynamics is the only unitary evolution that reduces under the constraint to the
Newtonian one.

Note that for the purpose of this paper we only need the proof of the first part of the theorem
and only in the case of a single particle. A complete prove can be found in [11].

Proof. A simple way to prove the theorem is by using the variational principle. The variation
of the functional

S[ϕ] =

∫
ϕ(x, t)

[
i~
∂

∂t
− ĥ
]
ϕ(x, t)d3xdt (4)

with the Hamiltonian ĥ = − ~2
2m∆ +V (x, t) yields the Schrödinger equation for ϕ. For the states

ϕ constrained to the manifold Mσ
3,3, this functional reduces to the classical action

S =

∫ [
p
da

dt
− h(p,a, t)

]
dt, (5)

where h(p,a, t) = p2

2m+V (a, t)+const is the Hamiltonian function for the particle. We used here
the fact that for a sufficiently small σ, the terms V (a, t) and

∫
g2
a,σ(x)V (x, t)d3x are arbitrarily

close to each other. In fact, as σ approaches 0, the terms g2
a,σ form a delta sequence. It follows

that the variation of the functional (4) subject to the constraint that ϕ belongs to Mσ
3,3 yields

Newtonian equations of motion. �
The theorem provides us with a geometric condition for the transition from Schrödinger

to Newtonian dynamics. Note that we are not trying to change the Schrödinger equation by
imposing the constraint. Rather, the upcoming theorems will demonstrate that the constraint
itself can be traced back to the Schrödinger dynamics with a proper Hamiltonian. Theorem
(A) will play an important role in this derivation. To proceed, let us first work on a deeper
understanding of geometry and physics behind the theorem. The reader who is more interested
in the applications of the theorem, may skip propositions (1) and (2) below.

(1) The transition from Schrödinger to Newtonian dynamics can be expressed in terms of
transition from quantum commutators to Poisson brackets. A simple calculation with the above
h(p,a, t) and ĥ, and ϕ in Mσ

3,3 yields the following:

(ϕ, 1
i~ [x̂, ĥ]ϕ) = {a, h}, (6)

and
(ϕ, 1

i~ [p̂, ĥ]ϕ) = {p, h}. (7)

The brackets on the right side of (6) and (7) are the usual Poisson brackets. Consider the linear
vector fields xϕ = x̂ϕ and pϕ = p̂ϕ on L2(R3) associated with the operators of position and
momentum. For a given state ϕ, let x and p be the expected values of the operators on this
state. The components xϕ⊥ = (x̂ − xI)ϕ and pϕ⊥ = (p̂ − pI)ϕ are tangent to the sphere SL2

at ϕ and orthogonal to the fibres {ϕ} of the fibre bundle CPL2 = SL2/S1. Therefore, they are
tangent to the projective space CPL2 itself. Moreover, the vector fields xϕ⊥ and pϕ⊥ constrained
to the submanifold Mσ

3,3 of CPL2 are tangent to it. The integral curves of these fields are lines of



constant position and momentum that provide the coordinate grid in the classical phase space
R3 × R3. This can be seen directly by comparing the right hand sides of the equations

(x̂− xI)ϕ = (x− a)ϕ (8)

and

(p̂− pI)ϕ = − i~
2σ2

(x− a)ϕ, (9)

valid for ϕ in Mσ
3,3, with the gradients ∇aϕ and ∇pϕ. The latter gradients represent vectors

tangent to the lines of constant values of p and a through a point of the projective manifold
Mσ

3,3.
We have the following proposition.

(P1) At any point (a,p) of the phase space R3 × R3, the derivatives da
dt and dp

dt of

a Newtonian motion are projections at the point Ω(a,p) of the velocity dϕ
dt of the

Schrödinger evolution onto the coordinate lines of the phase space submanifold Mσ
3,3.

Proof. Using the Ehrenfest theorem written in terms of the vector fields xϕ⊥ and pϕ⊥ and
(6) and (7), we have for the initial state ϕ in Mσ

3,3 at t = 0:

2Re

(
dϕ

dt
, xϕ⊥

)
= {a, h} =

da

dt
(10)

and

2Re

(
dϕ

dt
, pϕ⊥

)
= {p, h} =

dp

dt
. (11)

�
(2) Furthermore, it is possible to decompose the initial velocity of state of a particle in a

potential V with the initial state in Mσ
3,3 into four physically meaningful orthogonal components.

The two components tangent to the phase space submanifold Mσ
3,3 were already identified with

the usual classical velocity v = da/dt and acceleration w = dv/dt = −∇V/m of the particle.
The other two components orthogonal to Mσ

3,3 are the phase velocity (projection of dϕ/dt onto
the unit vector −iϕ) and the velocity of spreading of the wave-packet (projection of dϕ/dt onto
the unit vector in the direction idϕ/dσ).

(P2) The norm of the total velocity dϕ/dt at t = 0, i.e., the speed of motion of the
initial state ϕ, is given by the formula∥∥∥∥dϕdt

∥∥∥∥2

=
E

2

~2
+

v2

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
. (12)

When the state is constrained to the manifold Mσ
3,3, the first term (the phase velocity

squared) and the last term (the velocity of spreading squared) disappear. The only
surviving terms are associated with the classical velocity and acceleration and the motion
follows the classical Newtonian dynamics in the phase space.

Proof. The decomposition (12) is obtained by projecting the velocity dϕ
dt of state under

the Schrödinger evolution with an arbitrary Hamiltonian ĥ = − ~2
2m∆ + V (x, t) at a point

ϕ = ga,σe
ipx/~ in the classical phase space Mσ

3,3 onto an orthonormal set of vectors specified
by changing the parameters, a,p, σ that define {ϕ} and the phase parameter θ of a possible



constant phase factor e−iθ of ϕ. Calculation of the classical space components of dϕ
dt at an

arbitrary point ϕ in Mσ
3,3 yields

Re

(
dϕ

dt
,− ∂̂ϕ

∂aα

)∣∣∣∣∣
t=0

=
pα

2mσ
, (13)

where the hat here and in other calculations denotes normalization. For the momentum space
components of dϕ

dt at ϕ we similarly obtain, assuming that σ is small enough to make the linear
approximation of V (x) valid:

Re

(
dϕ

dt
,
∂̂ϕ

∂pα

)∣∣∣∣∣
t=0

=
mwασ

~
, where mwα = − ∂V (x)

∂xα

∣∣∣∣
x=a

. (14)

The components (13) and (14) are tangent to Mσ
3,3 and orthogonal to the fibre {ϕ}. The

component of the velocity dϕ
dt due to change in σ (spreading) is orthogonal to the phase space

Mσ
3,3 and the fibre {ϕ}, and is equal to

Re

(
dϕ

dt
, i
d̂ϕ

dσ

)
=

√
2~

8σ2m
. (15)

The component of the velocity parallel to the fibre {ϕ} is the expected value of energy divided
by ~:

Re

(
dϕ

dt
,− d̂ϕ

dθ

)
=

1

~
(iĥϕ, iϕ) =

E

~
. (16)

Calculation of the norm of dϕ
dt = i

~ ĥϕ at t = 0 gives∥∥∥∥dϕdt
∥∥∥∥2

=
E

2

~2
+

p2

4m2σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (17)

which is the sum of squares of the found components. This completes a decomposition of the
velocity of state at any point ϕ in Mσ

3,3. �
Similar results are true for systems of n particles [11]. In this case, the transition to classical

Newtonian dynamics happens when the state of the system is constrained to the phase space
submanifold Mσ

3n,3n = Mσ
3,3 ⊗ ... ⊗ Mσ

3,3 in the space of states of the system. That is, the
constrained state is the product of states of the n particles in the system with the state of each
particle constrained to a copy of Mσ

3,3. Although not directly used in the paper, the results
(1) and (2) provide an insight into the theorem (A) and help a deeper understanding of the
upcoming theorems.

(3) The identification of the classical phase space of a particle with the manifold Mσ
3,3 yields

a useful metric relationship. Let Mσ
3 denote the submanifold of Mσ

3,3 of the Gaussian states

ga,σ =
(

1
2πσ2

)3/4
e−

(x−a)2

4σ2 . The map ω : a −→ ga,σ, ω(R3) = Mσ
3 identifies the submanifold Mσ

3

of CPL2 with the classical space R3. We then have the following proposition.

(P3) Let θ(ga,σ, gb,σ) be the distance from ga,σ to gb,σ in Mσ
3 in the Fubini-Study metric

on the space of states CPL2 and let (a − b)2 be the square of the Euclidean distance
between the corresponding points a and b in R3. Then

e−
(a−b)2

4σ2 = cos2 θ(ga,σ, gb,σ). (18)



Likewise, for arbitrary states ϕ = ga,σe
ipx/~ and ψ = gb,σe

iqx/~ in the classical phase
space Mσ

3,3, the distances in the Euclidean phase space and the space of states are related
by

e
− (a−b)2

4σ2
− (p−q)2

~2/σ2 = cos2 θ(ϕ,ψ). (19)

Proof. The metric relationship (18) follows from the inner product of two states in Mσ
3 :

(ga,σ, gb,σ) = e−
(a−b)2

8σ2 . (20)

This expression squared is equal to the right hand side of (18) by the definition of the Fubini-
Study distance between states in CPL2 . The result (19) is obtained in a similar way by evaluating
the Fourier transform of a Gaussian function along the way. �

The relation (18) implies an important connection between probability distributions of
multivariate random variables valued in the classical space and the space of states. Namely,
consider a random variable ϕ with values in the space of states CPL2 . Because the classical
space Mσ

3 is a submanifold of CPL2 , we can restrict ϕ to take values in Mσ
3 . We then have the

following theorem.

(B) Suppose the conditional probability of ϕ given that ϕ is in the classical space is
described by the normal distribution. Suppose the probability P of transition between
any two states depends only on the distance between the states. Then P is given by the
Born rule, i.e., P = |(ϕ,ϕ0)|2, where ϕ0 is the initial and ϕ is the observed state. The
opposite is also true: For states in the classical space the Born rule yields the normal
distribution of the observed position.

So, the normal probability distribution is the Born rule in disguise!
Proof. In fact, (18) establishes the needed connection between the normal distribution and

the Born rule for the states in Mσ
3 . By assumption, the probability of transition between states

depends only on the Fubini-Study distance between them. Since the Fubini-Study distance
between states in Mσ

3 takes on all possible values, the validity of the Born rule for the states in
Mσ

3 signifies its validity for arbitrary states. See [10] for details. �
These results establish a deep connection between Newtonian and Schrödinger dynamics and

between the classical space and classical phase space, and the submanifolds Mσ
3 and Mσ

3,3 of the
space of states. Based on these results we put forward the following embedding hypothesis:

(EH) The constructed mathematical embedding of the classical space and classical phase
space into the space of states and the resulting identification of Newtonian dynamics
with the constrained Schrödinger dynamics are physical. That is, the classical space,
phase space and the Newtonian dynamics of a system are not only fully derivable from,
but also physically originate in the Schrödinger dynamics in the Hilbert space of states
of the system.

The hypothesis asserts that the provided mathematical derivation of the classical Newtonian
dynamics from the Schrödinger dynamics of the system is the true physical correspondence
between classical and quantum systems.

Let us point out that this embedding hypothesis is not required for validity of the theorems
in the paper. For this, the mathematical isometric embedding of Mσ

3,3 into CPL2 is sufficient.
Viewed this way, the results that will be derived can be considered curious mathematical
consequences of the already verified isometry of the embedding and a single forthcoming
conjecture (RM). The next few paragraphs preceding (RM) can be then looked at as a physical
motivation of the conjecture. Whatever point of view is preferred by the reader, the results will
provide an advance in our understanding of the transition from quantum to classical theory and
of the process of measurement.



To validate the hypothesis, or to motivate the forthcoming conjecture, let us show that
the hypothesis is consistent with all observed classical and quantum phenomena. This involves
showing that all observable classical phenomena can be derived from the corresponding quantum
phenomena by constraining the state to the classical phase space submanifold in the space
of states. This also involves physically explaining the constraint itself. Now, an arbitrary
deterministic classical motion is described by the Newtonian equations of motion. The theorem
(A) demonstrates that these equations follow from the Schrödinger equation with the constraint.
Therefore, given the constraint, the hypothesis is consistent with an arbitrary deterministic
classical motion. To validate the hypothesis, it remains then to: (1) verify its consistency for
the motion of particles described in statistical mechanics, specifically, for the Brownian motion,
and (2) explain the origin of the constraint from the Schrödinger dynamics itself. The rest of
the paper will be dedicated to these two tasks.

Instead of diving into the subject of a quantum version of the Brownian motion, note that
a macroscopic Brownian particle in a medium can be considered a classical chaotic system.
For instance, the motion of the particle through an appropriate lattice of round obstacles
provides a classical chaotic realization of the Brownian motion [14]. A lively discussion of
the stochastic, deterministic chaotic, and regular characterizations of the Brownian motion can
be found in [17–19]. With the view that the Brownian particle in a medium is a chaotic system
comes the applicability of the BGS-conjecture to the system [16]. It asserts that the Hamiltonian
of the corresponding quantum system can be represented by a random matrix.

Random matrices were originally introduced into quantum mechanics by Wigner [15] in a
study of excitation spectra of heavy nuclei. Wigner reasoned that the motion of nucleons within
the nucleus is so complex that the Hamiltonian of the system can be modeled by a random
matrix from an ensemble that respects symmetries of the system but otherwise contains no
additional information. It was later discovered that correlations in the spectrum of random
matrices possess a remarkable universality in being applicable to a large number of quantum
systems. That includes nuclear, atomic, molecular and scattering systems, chaotic systems with
few degrees of freedom as well as complex systems, such as solid state systems and lattice
systems in the field theory. This wealth of experimental evidence suggests that all quantum
systems whose classical counterpart is chaotic exhibit random matrix statistics. This is the
essence of the BGS-conjecture.

As mentioned, from the possibility to attribute chaotic character to Brownian motion and
the BGS conjecture it follows that the Hamiltonian of the quantum analogue of the Brownian
motion at any time is given by a random matrix. On the physical grounds, we can also claim
that the random matrices that represent the Hamiltonian at two different moments of time must
be independent. This leads us to the following conjecture:

(RM) The quantum-mechanical analogue of the Brownian motion can be modeled
by a random walk of state in the space of states of the system. The steps of the
random walk without drift satisfy the Schrödinger equation with the Hamiltonian
represented by a random matrix from the Gaussian unitary ensemble (GUE). The
matrices representing the Hamiltonian at two different times are independent and belong
to the same ensemble.

Note that the Schrödinger equation with the Hamiltonian represented by a random matrix
describes evolution of the state and not of the density matrix for the system. In that sense, it
is analogous to the Langevin equation for the position of a Brownian particle rather than the
diffusion equation for the probability density function. Note also, that even though both, (RM)
and BGS conjectures deal with random matrices, they should not be confused with each other.
In particular, while BGS deals with spectra of Hamiltonians, (RM) defines a non-stationary
stochastic process. A mathematically inclined reader may skip the motivation for (RM) and



consider it an assumption used in the forthcoming theorems. In fact, this is the only important
assumption needed for validity of the theorems in the paper.

First of all, let us prove that the random walk in (RM) yields the Brownian motion in R3.
More precisely, we have the following theorem.

(C) The random walk described in (RM) but conditioned to stay on the submanifold
Mσ

3 in the space of states yields a random walk on R3 that approximates the Brownian
motion of a particle in a medium.

Proof. In fact, a general Schrödinger evolution with Hamiltonian ĥ can be thought of as a
sequence of steps connecting the points ϕt0 , ϕt1 , ... in the space of states. For small time intervals
∆t = tk − tk−1, the state ϕtN at time tN is given by the time ordered product

ϕtN = e−
i
~ ĥ(tN )∆te−

i
~ ĥ(tN−1)∆t...e−

i
~ ĥ(t1)∆tϕt0 . (21)

Suppose the evolution of the state ϕ of a particle is constrained to the classical space submanifold
Mσ

3 . The points ϕt0 , ϕt1 , ... belong then to the submanifold Mσ
3 and the steps can be identified

with translations in the classical space. This is to say that for each k, the operator ĥ(tk) acts as

the generator of translation by a vector ξk in R3, so that ĥ(tk) = ξkp̂, where p̂ is the momentum
operator. Because all operators of translation commute with each other, the equation (21) yields
the following expression:

ϕtN (x) = ϕt0(x− ξ1∆t− ξ2∆t− ...− ξN∆t). (22)

That is, the initial state is simply translated by the vector

d =
N∑
k=1

ξk∆t (23)

in R3. Now, the probability distribution of steps − i
~ ĥ(tk+1)ϕtk in the tangent space TϕkM

σ
3

must be the conditional probability distribution of steps for the Hamiltonian satisfying (RM)
under the condition that the steps take place in TϕkM

σ
3 . From the properties of the random

matrix, it follows that ξk are independent and identically normally distributed random vectors,
so that the equation (23) defines a random walk with Gaussian steps in R3. This is known to
approximate the Brownian motion in R3 and yield the normal distribution of the position vector
d at any time t, proving the claim. �

Note that the theorem would not be true if the Hamiltonian were a random matrix in the
Gaussian orthogonal ensemble in place of the unitary ensemble. In fact, the momentum operator
in the proof is Hermitian but not orthogonal. Now, the Gaussian unitary ensemble corresponds
to systems that are not invariant under time reversal [20,21]. Therefore, the fact that we obtained
in (C) a diffusion process on the submanifold Mσ

3 is tied to the fact that the Hamiltonian is not
invariant under time reversal.

By the extension of a random walk on R3 to the space of states CPL2 , we understand a walk in
CPL2 that satisfies (RM) and that reduces to the original random walk on R3 when conditioned
to stay on Mσ

3 . From (C), we know that an extension of the walk with Gaussian steps on R3

exists. We claim that such an extension is unique. In fact, because the random walk conditioned
to stay on Mσ

3 must be Gaussian, the entries of the matrix of the Hamiltonian associated with the
directions tangent to Mσ

3 at a point are distributed normally. But the probability distribution
of a single entry of the matrix defines the corresponding Gaussian unitary ensemble. Because
of that, the random walk with Gaussian steps in R3 defines a unique random walk satisfying
(RM). In what follows, the random walk of the state of a particle in (RM) will always be



assumed to be this unique extension of the random walk with Gaussian steps that approximate
the Brownian motion of the particle. We are free to make this choice as long as the resulting
extension satisfies our needs. At the same time, this choice makes sense physically, because a
displacement of the particle in R3 results in the like displacement of its state in Mσ

3 , tying the
two motions together.

The theorems (A) and (C) prove the consistency of the hypothesis (EH) for the deterministic
Newtonian dynamics and the Brownian motion. Our goal now is to explain the origin of the
constraint to the classical space and phase space submanifolds in the Hilbert space of states. For
this, we need to establish properties of the random walk on the space of states in the conjecture
(RM) and establish its applicability to the process of measurement.

(D) The probability distribution of steps of the random walk specified in (RM) is
isotropic and homogeneous. That is, for all initial states {ϕ} in the space of states

CPH , the vector dϕ = − i
~ ĥϕdt is a normal random vector in the tangent space

T{ϕ}CP
H , with spherical distribution. The probability of reaching a certain state during

the walk depends only on the distance between the initial and the final state.

Proof. To prove the theorem, note that because for any t the matrix of ĥ is in GUE, the
probability density function P (ĥ) of ĥ is invariant with respect to conjugations by unitary

transformations. That is, P (U−1ĥU) = P (ĥ) for all unitary transformations U acting in the
Hilbert space of states. Also, for all unitary transformations U that leave {ϕ} unchanged and
therefore all U that act in the tangent space T{ϕ}CP

H , we have

(U−1ĥUϕ, v) = (ĥUϕ, Uv) = (ĥϕ, Uv), (24)

where v is a unit vector in T{ϕ}CP
H . It follows that

P (ĥϕ, v) = P (ĥϕ, Uv), (25)

where P is the probability density of the components of ĥϕ in the given directions. By a proper
choice of U , we can make Uv to be an arbitrary unit vector in T{ϕ}CP

H , proving the isotropy
of the distribution. On the other hand, for all unitary operators V in H and a unit vector v in
T{ϕ}CP

H , we have

P (ĥϕ, v) = P (V −1ĥV ϕ, v) = P (ĥV ϕ, V v). (26)

Because V ϕ is an arbitrary state and V v is in the tangent space T{V ϕ}CP
H , we conclude with

the help of (24) that the probability density function is independent of the initial state of the

system, proving the homogeneity of the distribution. The components of the vector ĥϕdt are
independent, because the entries of the matrix of ĥ are independent. It follows that − i

~ ĥϕdt is
a normal random vector with spherical distribution. Finally, because different steps of the walk
are independent, the probability of reaching a certain state during the walk may depend only
on the distance between the initial and the final state. �

The fact that the components of the vector ĥϕdt are independent signifies that the probability
distribution of steps conditioned to take place in Mσ

3 is the same as the probability distribution
of these steps without the condition. In particular, the random walk obtained in (C) is the usual
random walk on R3, independent of the embedding of R3 into CPL2 .

Let us show now that conjecture (RM) provides a consistent approach to the process of
observation of the position of a single particle in the classical and quantum mechanics alike.

(E) The Schrödinger evolution with the Hamiltonian that satisfies (RM) models the
measurement of the position of a particle in classical and quantum physics. Namely,
under the constraint that the random walk that approximates the evolution of state



takes place on the submanifold Mσ
3 , the probability distribution of the position random

vector is normal. Without the constraint, the probability to find the initial state ϕ0 at
a point ϕ is given by the Born rule. The transition from the initial to final state is
time-irreversible.

Proof. In fact, according to (C), the random walk that satisfies (RM) but is conditioned to stay
on Mσ

3 is the random walk with Gaussian steps on R3. The latter random walk considered over
the time interval of observation yields the normal distribution of the position random vector. On
the other hand, according to (D), the probability P of reaching a state ϕ from the initial state
ϕ0 by means of a unconstrained random walk that satisfies (RM) depends only on the distance
between the states. From (B), it then follows that P is given by the Born rule: P = |(ϕ,ϕ0)|2.
Also, the choice of the Gaussian unitary ensemble corresponds to time-irreversible systems [21].

�
Note that the normal distribution of the position agrees with observations in the macro world.

It is also consistent with the central limit theorem applied to describe the cumulative effect of
uncontrollable fluctuations from the mean in a series of measurement outcomes. It follows that
the model satisfies the basic properties of observation of the position in classical and quantum
mechanics.

Quantum mechanics does not explain how and when the deterministic Schrödinger evolution
is replaced by probabilistic evolution, whose outcomes obey the Born rule. It does not explain
why macroscopic bodies are never observed in superpositions of position eigenstates. The
wave-function collapse models [5, 6] aim to answer these questions by introducing a non-linear
stochastic modification of the Schrödinger equation. It is assumed that the modified equation
must be non-linear to be able to suppress superpositions of states. It is also assumed that
the modified equation must vary with a change in the observed quantity. However, here the
Born rule was derived from the linear Schrödinger equation with the Hamiltonian satisfying
(RM). Moreover, it was derived for all observed quantities at once, without needed to change
the equation of motion. Is there a contradiction?

The modified Schrödinger equations in the collapse models make the state of the system
converge to an eigenstate of the measured quantity, usually the position of a particle. An
equation like that must break an arbitrary initial superposition of states, so it must be non-
linear. Under the Schrödinger evolution with the Hamiltonian satisfying the conjecture (RM),
the state of the system does not converge to a position eigenstate. The equation does not
suppress superpositions. It makes the state wander around the space of states and ensures that
the probability of reaching a particular neighborhood in the space is given by the Born rule.
That explains why the two approaches do not contradict each other.

We are now ready to investigate why the state of a macroscopic body is confined to the
classical space submanifold of the space of states. The key to this is that the Brownian motion
and the motion of state under a measurement are now derived from the same dynamics. We
know that large particles do not experience a Brownian motion. That is because the total force
acting on any such particle from the particles of the medium is nearly zero. As a result, in
the absence of an external potential, the particle remains at rest in the medium. A similar
mechanism explains why the state of a particle may be confined to the submanifold Mσ

3 :

(F) Suppose the Hamiltonian of a particle in the natural surroundings satisfies the
conjecture (RM). Then, the state of the particle is constrained to the submanifold Mσ

3

precisely when the induced Brownian motion of the particle described in (C) vanishes.
More precisely, under (RM), the boundary between the quantum and the classical occurs
for particles that satisfy the following two conditions. The particles must be sufficiently
large in size so that their Brownian motion in the natural surroundings is observable.
At the same time, the particles must not be too large, when the Brownian motion



trivializes, the state initially in Mσ
3 becomes constrained to Mσ

3 and the Schrödinger
evolution becomes Newtonian motion.

Proof. Recall that the spaces Mσ
3 and R3 are metrically identical. Recall also that the random

walk in (RM) is the unique extension of the random walk in R3 that approximates the Brownian
motion of the particle in the surroundings. Consider a particle whose initial state is in Mσ

3 .
Suppose the particle is sufficiently large in size so that the Brownian motion of the particle in
the natural surroundings is negligible. Therefore, the motion of state in the directions tangent to
Mσ

3 is negligible. From (D), we know that for the Hamiltonian satisfying (RM), the probability
distribution of steps of the random walk in the space of states of the particle is isotropic. Because
the probability of steps in the directions tangent to Mσ

3 vanishes, the same holds true for any
other direction tangent to the space of states at the same point. Therefore, in the absence of an
external potential, the motion of state of the particle in the space of states is trivial. When an
external potential is applied to the particle, the two middle terms in the decomposition (12) may
appear. However, these terms can only contribute to the motion of state in the direction tangent
to the classical phase space submanifold Mσ

3,3. Therefore, the state will remain constrained to
the submanifold. The theorem (A) asserts then that the particle in such a state will move in
accord with the Newtonian dynamics.

On the contrary, suppose the particle is sufficiently small, but not too small, so that the
interaction between the particle and the surroundings cannot be ignored and results in a
noticeable Brownian motion of the particle. By the isotropy of the probability distribution
of steps of the random walk of state, a displacement of the particle away from Mσ

3 is then
equally likely. Such a displacement would mean that the particle is now in a superposition of
states of different positions. If a is the initial position and l is the observed displacement of
the particle in Mσ

3 during the measurement, then the states ga,σ and ga+l,σ are distinguishable
in the experiment. It means that the superpositions of these states can be observed as well,
indicating that we are dealing with a quantum system. �

We see how the properties of the Hamiltonian in the conjecture (RM) are responsible for
the fact that the state of a macroscopic particle driven by the Schrödinger dynamics with this
Hamiltonian is constrained to the classical phase space manifold. One might be tempted to say
that the resulting “freezing” of the state is in agreement with the quantum Zeno effect for the
particle whose position is continuously measured. However, the essential difference is that the
result is derived here from the unitary evolution generated by a random Hamiltonian without
ever needing to involve the projection operators.

As an example, let us find the displacement of a particle of radius 1mm in still air in normal
conditions. The estimate of the diffusion coefficient of a macroscopic spherical particle of radius
1mm in still air in normal conditions is based on the Stokes-Einstein relationship

D =
kBT

6πηr
, (27)

where D is the diffusion coefficient, r is the radius of the particle, η is the dynamic viscosity, T is
temperature of the medium and kB is the Boltzmann constant. Using the room temperature and
the known value of dynamic viscosity η ∼ 10−5N · s/m2, we get D ∼ 10−12m2/s. The variance

of the x-coordinate of position of the particle is given by x2 = 2Dt. If we scatter visible light
off the particle to determine its position, the time interval of observation can be estimated to
be as short as 10−13s. This amounts to the displacement of the order of 10−12m. The accuracy
of measurement is limited by the wavelength λ ∼ 10−5m. The Fubini-Study distance between
Gaussian states that are 10−12m apart in Mσ

3 with σ ∼ 10−5m is calculated via (18) and is about
10−7rad. These displacements are too small to be observed in the described experiment. The
state of the particle remains “frozen”. The particle is constrained to Mσ

3 and no superpositions
of states of a different position of the particle can be observed.



Consider now a system consisting of a microscopic particle P and a macroscopic device D
capable of measuring the position of P . The particle and the device form a two-particle system
whose state belongs to the product Hilbert space H = HP ⊗HD. We have the following result.

(G) Suppose the initial state of the system consisting of a microscopic particle and a
macroscopic device in the natural surroundings is a product state with the state of the
device in the manifold Mσ

3 . Suppose also that the conjecture (RM) holds true. Then,
during the evolution, the state of the system remains in a product form with the state
of macroscopic device confined to Mσ

3 and evolving classically.

Proof. Consider the motion of the corresponding classical system. Let say, D is a cloud chamber,
small enough to be considered a material point, when treated classically. The macroscopic device
interacts with the surroundings. It also interacts with the particle. However, in classical physics,
the effect of the particle on the device can be neglected. It follows that we can apply (RM)
to the device itself. The interaction of the device with the surroundings results in a Brownian
motion of the device. When the device is sufficiently large, its Brownian motion is trivial and
the device is at rest in the lab system. By applying (RM), we conclude that the state of the
device positioned initially in Mσ

3 can be treated independently of the state of the particle and
is at rest in the space of state CPHD . On the other hand, a small macroscopic particle placed
in the medium of the chamber would undergo a Brownian motion. By applying (RM) to this
case, we conclude that the state of the corresponding quantum system will perform a random
walk in the space CPHP . According to (E), the probability to find the particle at a particular
point of R3 during the walk is given by the Born rule.

The conjecture (RM) is valid by assumption. Using the conjecture, we managed to predict the
evolution of states of the device and the measured particle. This can only be the case when the
state of the particle-device system remains separable throughout the evolution. Furthermore,
according to (F), the state of the device will be confined to the submanifold Mσ

3 and in the
presence of an external potential will be evolving in accord with the Newtonian dynamics. Under
these conditions, the system remains in a product state with both factors being able to change.
In particular, the position of the particle can be mechanically recorded with no entanglement
between the particle and the device ever appearing or needing to appear in the process. �

3. Implications for the notion of objective reality
Theorem (G) provides an explanation of the issue of an apparent inconsistency of the description
of quantum mechanics by macroscopic observers. The issue was pointed out first by Wigner [22]
and has picked up a significant interest in recent times. Wigner has demonstrated that the rules
of quantum mechanics applied universally may lead to contradictory accounts of observations
performed by two observers. In his thought experiment [22], an observer (Wigner’s friend) makes
a measurement on a system and another observer (Wigner himself) observes the laboratory,
where his friend performs the measurement. The contradiction is seen in the observers getting
two different states after the friend has performed the measurement, but before the result is
communicated to Wigner. This, as well as more recent thought experiments based on a similar
scenario [23], raise the question of when the collapse of the state actually occur, what does the
consciousness of the observers have to do with the collapse, and, ultimately, is there such a thing
as an objective reality that all observers can agree on.

A possible reason for the contradiction in the accounts of Wigner and the friends in the
Wigner’s friend-type thought experiments is the assumption that a macroscopic observer or the
whole lab may exist in a superposition of classical states. Without this assumption the no-go
result in [23] doesn’t hold and the original Wigner’s friend paradox disappears. Note that the
experiment reported in [24], in which the photons played the role of an observer is consistent
with this conclusion. The reality as “described” by microscopic particles is different than the



one the macroscopic observers are aware of. Consequently, many researchers, including the
authors of [23] think that quantum mechanics is not directly applicable to macroscopic bodies.
This is also the thinking behind the modifications of the Schrödinger equation with the goal of
suppressing the unobserved superpositions, and accounting for the transition to classicality and
the measurement results [5, 6].

The results proved in this paper offer an alternative solution to the problem. The Schrödinger
evolution may still be valid for macroscopic bodies, but we need to be careful in identifying the
Hamiltonian of the corresponding system. Because of the unavoidable interaction of macroscopic
bodies with the surroundings, the Hamiltonian cannot have the same form as before. In some
ways, the macroscopic bodies are constantly “measured” by the surroundings. At the same time,
measuring a microscopic particle requires proper conditions. For instance, the needed conditions
may be provided by a photographic plate, a cloud chamber, or a high-intensity radiation. It was
assumed here that the Hamiltonian of a macroscopic particle in the natural surroundings and
of a microscopic particle whose position is measured is represented by a random matrix that
satisfies (RM). This assumption turned out to be sufficient to explain why no superpositions
of classical states of macroscopic bodies are observed, to obtain irreversibility of a measurement
and to derive the Born rule. Without superpositions of macroscopic observers and the lab, the
observations by Wigner and the friends become consistent and objective reality is restored.
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