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Spontaneous collapse models use non-linear stochastic modifications of the Schrödinger equation
to suppress superpositions of eigenstates of the measured observable and drive the state to an
eigenstate. It was recently demonstrated that the collapse of the wave function under observation can
be modeled by the linear Schrödinger equation with a Hamiltonian represented by a random matrix
from the Gaussian unitary ensemble. The matrices representing the Hamiltonian at different time
points throughout the observation period are assumed to be independent. Instead of suppressing
superpositions, such Schrödinger evolution makes the state perform an isotropic random walk on
the projective space of states. The probability of reaching a particular final state is then given by
the Born rule. Here, we apply this method to study the dynamics of a two-state system undergoing
measurement. It is shown that in this basic case, the state undergoes the gambler’s ruin walk that
satisfies the Born rule, providing a suitable representation of the transition from the initial state to
an eigenstate of the measured observable.

I. POPULAR SUMMARY

The superposition principle of Schrödinger mechanics
is foreign to Newtonian mechanics. Macroscopic objects
are not observed in two different places, and the cat is not
alive and dead simultaneously. However, such states are
commonplace in the microworld. The debate on recon-
ciling quantum and classical physics has continued since
the early days of quantum mechanics. Here, we propose
a new approach to the problem that allows us, against
common wisdom, to derive Newtonian behavior of macro-
scopic particles and establish a connection between mea-
surement in quantum and classical physics without vio-
lating Schrödinger dynamics.

In our model, Newtonian motion emerges from
Schrödinger evolution by constraining the state of the
particle to a certain part of the space of all its possible
states. Mathematically, this part includes the usual 3-
dimensional space of possible positions of the particle.
On this 3-space, the Born rule, which gives the proba-
bility of finding the particle at a certain point in quan-
tum theory, is equivalent to the classical probability law.
Conversely, the classical probability law on the 3-space
implies the Born rule on the space of states. Moreover,
the Schrödinger evolution that accounts for random fluc-
tuations of the state of the measured particle becomes
the Brownian motion of the particle, modeling the pro-
cess of measurement in classical physics. In this setting,
the superposition principle does not create a problem be-
cause superpositions of states follow the same evolution
and satisfy the same Born rule. We provide details of the
evolution of the state in the case of the double-slit exper-
iment, where the position of the particle by the slits is or
is not measured. The wave and corpuscular properties of
the particle in the model are then explained.

The model prompts an important paradigm shift.
Namely, the transition from the classical 3-space of our
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everyday experience to the space of states not only allows
us to combine classical and quantum under one roof, but
it also enables us to demystify intricacies of the famous
double-slit experiment.

II. PREREQUISITES

The Newtonian dynamics of a mechanical system can
be identified with Schrödinger dynamics under a con-
straint. The latter bears resemblance to the dynamics
of a constrained classical system, like a bead on a wire.
However, given that Schrödinger dynamics is the dynam-
ics of a quantum state, the constraint is now applied di-
rectly to the system’s state. For instance, consider a
single-particle system in R3 described by the Hamiltonian

ĥ = − ~2

2m∆ + V̂ (x, t). The variation of the functional

S[ϕ] =

∫
ϕ(x, t)

[
i~
∂

∂t
− ĥ
]
ϕ(x, t)d3xdt (1)

yields the Schrödinger equation for the state function ϕ
of coordinates and time. Let Mσ

3,3 be the submanifold of

the space of states CPL2 of the particle formed by the
states

ϕ(x) = ga,σ(x)eipx/~. (2)

Here

ga,σ =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 (3)

is the Gaussian function of a sufficiently small variance
σ2 centered at a point a in the Euclidean space R3, and
p is a vector in R3. For the states ϕ constrained to the
manifold Mσ

3,3, the functional (1) reduces to the classical
action for the particle

S =

∫ [
p
da

dt
− h(p,a, t)

]
dt. (4)
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Here h(p,a, t) = p2

2m+V (a, t) is the Hamiltonian function
for the system. It follows that the variation of the func-
tional (1) subject to the constraint that the state function
ϕ is in Mσ

3,3 yields Newtonian equations of motion.

The Fubini-Study metric on CPL2 provides a Rie-
mannian metric on Mσ

3,3. The map Ω : (a,p) −→
ga,σe

ipx/~ serves as an isometry between the Euclidean
space R3×R3 and the Riemannian manifold Mσ

3,3. If de-
sired, a linear structure onMσ

3,3 can be induced by Ω from

the one on R3 × R3. The restricted map ω : a −→ ga,σ
acts as an isometry between the Euclidean space R3 and
the Riemannian submanifold Mσ

3 of CPL2 formed by the
states ga,σ [1, 2]. The relationship between action func-
tionals (1) and (4) enables us to identify classical parti-
cles, i.e., particles that satisfy Newtonian dynamics, with
quantum systems whose state is constrained to the man-
ifold Mσ

3,3. The map Ω identifies the Euclidean phase

space R3×R3 of positions and momenta (a,p) of a clas-
sical particle with the manifold Mσ

3,3 of states ϕ in (2).
Imposing the constraint amounts to making the compo-

nents of the velocity of state dϕ
dt = − i

~ ĥϕ orthogonal to
the manifold Mσ

3,3 vanish. The components tangent to
Mσ

3,3 correspond to the Newtonian velocity and accelera-
tion of the particle. Commutators of observables become
Poisson brackets, transforming the Schrödinger dynam-
ics of the constrained state into the Newtonian dynamics
of the particle [3].

The Fubini-Study distance ρ(ga,σ, gb,σ) between points
ga,σ and gb,σ in Mσ

3 is related to the Euclidean distance
‖a− b‖ between a and b in the following way:

e−
(a−b)2

4σ2 = cos2 ρ(ga,σ, gb,σ). (5)

The Fubini-Study distance between points in Mσ
3,3 is re-

lated to the Euclidean distance between the correspond-
ing points in the classical phase space R3×R3 by a simi-
lar formula [3]. The metric relationship (5) establishes a
connection between the normal probability distribution
of a position random variable in R3 and the Born rule
for the transition between states on CPL2 . To achieve
this, the identification between a classical particle and
the quantum system whose state is constrained to Mσ

3,3

is employed. Specifically, consider a scenario where the
measurement of the position of a classical particle yields
the typical normal probability distribution of the posi-
tion radius-vector in R3. Suppose that, under a similar
measurement on a quantum system, the probability of
transition between states depends solely on the distance
between them. In this case, the relationship (5) implies
the Born rule for the transition between arbitrary states
in CPL2 . Conversely, the Born rule on CPL2 yields the
normal distribution on Mσ

3 = R3 [3].
The correspondence established between classical and

quantum systems, and between normal probability dis-
tribution and the Born rule was leveraged in [3] to put
measurements performed on classical and quantum sys-
tems on an equal footing. To achieve this, the following

proposition, based on Wigner’s work [4] and the Bohigas-
Giannoni-Schmit conjecture [5], and further expounded
upon in [3], was introduced:

(RM) The dynamics of the state of a parti-
cle, whose position is measured, can be mod-
eled by a random walk of the state on the
space of states. The steps of the random walk,
without drift, satisfy the Schrödinger equa-
tion, with the Hamiltonian represented at any
time by a random matrix from the Gaussian
unitary ensemble (GUE). The matrices repre-
senting the Hamiltonian at different moments
in time are independent.

The Gaussian unitary ensemble consists of Hermitian
matrices whose entries on and above the diagonal are in-
dependent random variables. The entries above the diag-
onal are identically distributed normal complex random
variables with mean 0 and variance d2. The diagonal
entries are real normal random variables with mean 0
and variance 2d2. Such matrices can be expressed in the
form 1

2 (A+A∗), where A is a square matrix whose entries
are independent, identically distributed complex normal
random variables, and A∗ is the Hermitian conjugate of
A. The central characteristic of the Gaussian unitary
ensemble is that the probability density function P on

matrices ĥ within the ensemble remains invariant under
unitary transformations: P (U∗ĥU) = P (ĥ) [6].

A small step in the walk of state driven by the Hamil-
tonian in (RM) is a random vector in the tangent space
to the space of states CPL2 . As demonstrated in [3],
the distribution of steps in the walk is normal, homo-
geneous, and isotropic. In particular, the orthogonal
components of a step at any point are independent nor-
mal random variables. The probability of transition be-
tween two states connected by the walk depends solely on
the Fubini-Study distance between them and satisfies the
Born rule. Under the condition that the steps of the walk
occur on Mσ

3 , the probability of transition is determined
by the normal probability distribution function. In this
case, the random walk of the state approximates Brown-
ian motion on R3, which can be used to model classical
measurement [3]. Consequently, both the normal prob-
ability distribution valid for classical measurements and
the Born rule for the probability of transition between
general quantum states arise from the Schrödinger evo-
lution with a Hamiltonian satisfying (RM).

The wave-function collapse models [7, 8] utilize a non-
linear stochastic modification of the Schrödinger equa-
tion to guide the state towards an eigenstate of the mea-
sured observable, typically position or energy. The un-
derlying assumption is that non-linearity is necessary to
eliminate superpositions of eigenstates. In contrast, the
Schrödinger equation with the Hamiltonian in (RM)
does not eliminate superpositions but causes the state
to meander through the space of states. The conditional
probability of reaching an eigenstate, given that the state
reached one of them, is determined by the Born rule. The



3

conservation of energy in the system induces a drift of
the state, ensuring that the system reaches one of the
eigenstates. Importantly, these two approaches are not
in conflict [3].

Here, we apply the conjecture (RM) to analyze a
“which-way” type of measurement in the double-slit ex-
periment. We re-derive the Born rule, which, in this
case, reduces to a simple “gambler’s ruin” random walk.
We then provide physical details of the evolution of the
state driven by the Hamiltonian in (RM). The path of
the state between the source, the screen with the slits,
the detector, and the backstop screen is traced. It is
demonstrated that the space of states and the Fubini-
Study metric on it provide a suitable framework for the
experiment, enabling us to demystify its intricacies. The
general results of [3] are made more tangible and useful
for understanding the process of collapse in this funda-
mental case.

III. THE DOUBLE-SLIT EXPERIMENT WITH
A MEASUREMENT

Consider the double-slit experiment with a microscopic
particle of mass m whose motion is adequately described
by the Schrödinger equation. Let us choose the Z-axis
on the screen with the slits, orthogonal to the slits. Sup-
pose the z-coordinates of the lower and upper slits are a
and b, respectively. Let the horizontal axis run along the
particle’s path from left to right. At a point immediately
to the right of the slits, the particle is in a superposi-
tion of states ga and gb, representing the particle passing
through one of the slits with the other slit closed. The
state of the particle at that point can be identified with
a function ϕ = αga + βgb, where α and β are complex
constants. For the purpose of this paper, the functions
ga and gb immediately to the right of the slits can be
approximated by Gaussian functions of z of a certain
“width” δ, peaked at a and b respectively. Interaction
of the particle with the screen is described by the usual
Schrödinger equation. Thus, the Schrödinger evolution
takes the initial state of the particle at the source to the
two-dimensional space of states C2 of linear combinations
of ga and gb, or, more precisely, to the projective space
CP 1 = S2 formed by the unit states in C2 modulo the
phase factor.

Let us now insert a particle detector by one of the slits
on the right. By measuring the particle’s position, the
detector provides information about the slit near which
the particle is located at the time of measurement. This
is an example of what is called the “which way” mea-
surement. To make the measurement successful, we need
to assume that |a − b| � δ, so that the states ga and gb
are nearly orthogonal. In fact, if the “overlap” of ga and
gb is significant, no detector will be able to identify the
slit by which the particle is located. In particular, the
detector should be placed sufficiently close to the screen,
before ga and gb spread and start interfering. With this

in place, the measurement causes the collapse of the wave
function and results in a transition from wave to particle
properties of the system. The common view is that the
measurement tells us which slit the particle went through.

For simplicity and to be specific, let us assume the de-
tector is a small scintillation screen positioned near the
slit at z = b. The detector’s role is to confirm or deny the
particle’s location by the slit at the time of observation.
Let the state function of the particle detected at a point
of the scintillation screen be denoted by η. Realistically,
η cannot be the Dirac’s delta function; its support must
be at least the size of the scintillator material’s atom on
the screen. We divide the screen into cells of the cor-
responding small size dη and identify the state of the
particle detected in the k-th cell by the normalized char-
acteristic function ηk of the cell. An ideal detector would
detects the particle in a state ηk with probability 1. The
probabilities Pb = Σk|(gb, ηk)|2 and Pa = Σk|(ga, ηk)|2
characterize the effectiveness of an ideal detector in the
experiment. These probabilities depend on the functions
ga and gb as well as the position, size, and the “granu-
larity” parameter dη of the detector. Note that Pb must
be sufficiently high, and Pa must be sufficiently small to
identify the slit by which the particle was found. We then
say that the particle in state ϕ is near the slit z = b if
Σk|(ϕ, ηk)|2 ≥ Pb − ε for some ε > 0, sufficiently small
for the state to identify the slit. This condition is met
by a range of states ϕ that are all identified with gb in
the experiment. The resulting equivalence class of states
will be called the physical eigenstate of the position oper-
ator on the Z-axis. In this case, we will also say that the
state ϕ is measurable without dispacement by the detec-
tor. Note that the term Σk|(ϕ, ηk)|2 in the definition of
physical eigenstate is approximately the squared norm of
the “part” ϕD of ϕ that is cut from it by making it vanish
outside the interval D occupied by the detector. If ηD is
the characteristic function of D, then ϕD = ϕ · ηD. The
state ϕ is in the equivalence class of gb if the “tails” of ϕ
outside D are sufficiently small, i.e., the norm of ϕ−ϕD
is small. For an arbitrary value of c in Z, the equivalence
class {gc} of the state gc is defined in the same way as for
the class {gb}, by translating the interval D. Note that a
state in the equivalence class {ga} of ga is approximately
orthogonal to a state in the equivalence class {gb} of gb.
In what follows, we will assume that such orthogonality
of states is fulfilled.

Let us define the Fubini-Study distance between a state
ϕ and the equivalence class {gb} by

ρ(ϕ; {gb}) = inf
gb∈{gb}

ρ(ϕ; gb), (6)

where ρ(ϕ; gb) is the Fubini-Study distance between
states. In particular, for the distance between ϕ =
αga + βgb and {gb} under the accepted conditions, we
have cos ρ(ϕ; {gb}) = |β|. For the state ϕ to reach the
physical eigenstate {gb}, it is necessary and sufficient that
ρ(ϕ; {gb}) = 0. Note that the equivalence class {gb}
of the eigenstate gb is rather “large”. In particular, it
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contains functions with support in the interval D occu-
pied by the detector, provided their total variation is not
too large. It follows that {gb} contains many orthogonal
states, i.e., states at the Fubini-Study distance equal to
the maximal possible value of π/2 from each other.

To clarify the role of the equivalence class during a
measurement, let us consider a few examples. We as-
sume a slit separation of 10−5m, a slit-width of 10−9m,
and that the width parameter δ of the states ga and gb
is comparable to the slit-width. These values are typi-
cal for a successful experiment of this sort. The length
of the detecting scintillation screen by the slit is taken
to be about half the slit separation. Suppose the initial
state gb, denoted as gb,δ here, moves to the point repre-
sented by the Gaussian state gb,100δ with a width of 100δ.
We have |(gb,δ, gb,100δ)| = cos ρ, where ρ = ρ(gb,δ, gb,100δ)
denotes the Fubini-Study distance between the states.
We then have ρ ≈ 1.43 radians or about 82◦. Because
100δ = 10−7m, the width of the state gb,100δ is less than
the size of a scintillation screen. In particular, the condi-
tion Σk|(gb,100δ, ηk)|2 ≥ Pb − ε is satisfied for a small
ε. It follows that the state gb,100δ is still within the
equivalence class of gb, and thus, it represents the same
physical eigenstate. On the other hand, we also have
|(ga,δ, gb,100δ)| < exp(−104), which is an extremely small
number. So, by any measure the states ga,δ and gb,100δ
can be considered orthogonal, as needed for the experi-
ment.

For the second example, consider that the state gb =
gb,δ is displaced by a distance of 10δ = 10−8 along the
Z-axis. We then have |(gb,δ, gb−10−8,δ)| < exp(−12), cor-
responding to a Fubini-Study distance of about 89.999◦.
So, the states are nearly orthogonal. However, because
10−8 is much smaller than the size of the detector, the
condition Σk|(gb−10−8,δ, ηk)|2 ≥ Pb − ε is satisfied for a
small ε. It follows that the states gb,δ and gb−10−8 be-
long to the same equivalence class. At the same time,
the states ga,δ and gb−10−8 remain orthogonal to a very
high degree of accuracy, as required for successful mea-
surement.

Suppose now that the initial state is a superposition
ϕ = αga + βgb with moduli |α| and |β| that are away
from zero, for example, ϕ = 1√

2
ga + 1√

2
gb. Unlike the

states ga and gb, the state ϕ cannot be “measured with-
out displacement” by the detector capable of resolving
the slits. In other words, such a state does not satisfy
the condition Σk|(ϕ, ηk)|2 ≥ Pb − ε with a small ε or a
similar condition for the detector located at z = a. In
other words, the superposition ϕ is far from the physical
eigenstates of the measured particle. The measurement
happens only if and when the initial state ϕ is moved to
the equivalence class of either ga or gb. The Fubini-Study
distance from the state ϕ = 1√

2
ga + 1√

2
gb to {gb} is

d(ϕ; {gb}) =
π

4
rad. (7)

So, the initial state ϕ traveling the distance of π/4 along
the shortest geodesics towards the physical eigenstate

{gb} will reach the physical eigenstate and become di-
rectly measurable by the detector. At the same time, the
state ϕ = αga+10−8,δ + βgb−10−8,δ based on the earlier
example travels almost twice the distance from the ini-
tial state αga,δ + βgb,δ but is still at the same distance
from the physical eigenstate {gb}. The reason for the
difference between the first two and the last example is
due to the fact that the detector stretches along inter-
val D in the Z-axis. This makes displacements within
D or relatively small changes in the width parameter of
gb possible without affecting the distance of the resulting
state to the equivalence class {gb}.

Let us return to the double-slit experiment with both
slits open and the detector near the slit z = b. According
to (RM), the observed state ϕ will be acted upon by the
Hamiltonian represented by a random matrix and will
perform a random walk on the space of states. As a
result of this walk, the state may be able to reach one
of the physical eigenstates of the measured observable.
Our main goal is to find the probability of transition of
the initial state to physical eigenstates {ga} and {gb} for
this experiment. Additionally, because the distribution
of steps of the random walk of the state is isotropic and
the space of states CPL2 is infinite-dimensional, we need
to explain why the probability of reaching an eigenstate
is non-vanishing to begin with.

To achieve these goals, let us utilize the expected value
µz and the standard deviation δz of the z-coordinate to
identify a submanifold of CPL2 helpful for describing the
measurement and to establish a coordinate system on it.
We have:

µz =

∫
z|ϕ(z)|2dz, (8)

and

δ2z =

∫
(z − µz)2|ϕ(z)|2dz. (9)

These two measures are defined on functions ϕ in a dense
subset of the space of states, which is sufficient for our
purposes. Given an initial state ϕ with an expected
value µz and standard deviation δz, consider the two-
dimensional manifold Mϕ parametrically defined by

ϕτ,λ(z) =
√
λϕ(λ(z − µz − τ) + µz). (10)

The numeric parameters τ and λ serve as coordinates on
the manifold. Along the path ϕτ = ϕτ,λ|λ=λ0

with a
fixed value of λ, the expected value changes from µz to
µz + τ , while the standard deviation remains constant.
Similarly, along the path ϕλ = ϕτ,λ|τ=τ0 with fixed τ ,

the standard deviation changes from δz to δz/λ, while
the expected value stays the same.

The motion along ϕλ “squeezes” or “stretches” the
state function without altering its shape or translation.
This motion can relocate the state from its initial posi-
tion in the space of states CPL2 to the Z-axis represented
by the family of equivalence classes {gc} with c ∈ Z.
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Similarly, motion along ϕτ translates the state along the
Z-axis. This motion can bring the “squeezed” state to
the detector. The role of the equivalence class is crucial
in this process: squeezing a state may not move it closer
to a gc-state by itself, but it will bring it closer to an
equivalence class {gc}.

Let us prove that the steps of the random walk of the
state ϕ = αga+βgb along the paths ϕτ and ϕλ on Mϕ are
independent random variables. As we know, the proba-
bility distribution of the random vector representing a
step in (RM) is a normal isotropic distribution. The
orthogonal components of such a vector are independent
random variables. Therefore, we need to check that the
steps along these paths take place in the projective space
of states and that they are orthogonal in the Fubini-
Study metric. Let us first check that this is true for the
steps originating at the initial state ϕ = αga+βgb. First
of all, because the norm of the state along the paths
ϕτ and ϕλ is preserved, the paths take values on the
unit sphere SL2 in the space of states. In particular, the
vectors dϕλ

dλ and dϕτ
dτ are tangent to the sphere. Also,

dϕτ
dτ

∣∣∣
τ=0

= −dϕdz and dϕλ
dλ

∣∣∣
λ=1

= 1
2ϕ+ dϕ

dz (z−µz), and for

the state ϕ = αga + βgb we have

Re

(
iϕ,−dϕ

dz

)
= 0 (11)

and

Re

(
iϕ,

1

2
ϕ+

dϕ

dz
(z − µz)

)
= 0 (12)

by the properties of states ga and gb. It follows that
the vectors dϕλ

dλ and dϕτ
dτ are orthogonal to the fibre of

the fibration SL2 −→ CPL2 . In particular, they can be
thought of as vectors tangent to the projective space of
states CPL2 . Now,

Re

(
dϕλ
dλ

∣∣∣∣
λ=1

,
dϕτ
dτ

∣∣∣∣
τ=0

)
= −Re

(
dϕ

dz
,

1

2
ϕ+

dϕ

dz
(z − µz)

)
.

(13)

Using the orthogonality of ϕ and dϕ
dz , the equality of the

inner products (ga,
d2ga
dz2 ) and (gb,

d2gb
dz2 ), the expression

for ϕ, and the definition of µz, the obtained expression
(13) can be written and evaluated as follows:

Re

(
ϕ · (z − µz),

d2ϕ

dz2

)
=
(
|α|2(a− µz) + |β|2(b− µz)

)(
ga,

d2ga
dz2

)
= 0. (14)

This proves the orthogonality of steps from the initial
state ϕ along the paths ϕτ and ϕλ. The application of the
chain rule demonstrates that the preceding calculations
remain valid for steps from any point on Mϕ.

The established orthogonality confirms that steps of
the random walk from any state ψ in Mϕ along the di-
rection tangent to paths ϕτ and ϕλ through ψ are in-
dependent random variables. Furthermore, it is possi-
ble to re-parametrize the paths ϕλ to make the Fubini-
Study metric on Mϕ in the new coordinates explicitly
Euclidean. Specifically, by setting s = lnλ, we ob-
tain the new parametrization of ϕλ in the form ϕs(z) =
e
s
2ϕ(es(z − µz − τ0) + µz). We can see that the norm of

the tangent vector dϕs
ds is preserved along the path. The

same is true for dϕτ
dτ , which, together with the orthogo-

nality of these vectors, signifies that the induced metric
is Euclidean. The coordinates τ and s are then Cartesian
coordinates on Mϕ = R2.

An arbitrary state on Mϕ has the form ψ = αg̃c+βg̃d,
where g̃c and g̃d are Gaussian functions with equal width,
and (g̃c, g̃d) = (ga, gb). The expected value of the z-
coordinate for an arbitrary state ψ in Mϕ is given by

µz =

∫
z|αg̃c + βg̃d|2dz = |α|2c+ |β|2d. (15)

The variance is given by

δ2z =

∫
z2|αg̃c + βg̃d|2dz − µ2

z = |α|2|β|2(c− d)2. (16)

Provided the coefficients α and β do not vanish, equa-
tions (15) and (16) can be solved for c and d. If one of
the coefficients is 0, the state is an eigenstate of z. In
either case, we see that the pair (c, d) for the states on
Mϕ can be represented by the pair (µz, δz), identified in
this context with coordinates τ and s. It follows that the
Fubini-Study distance from a state in Mϕ to the eigen-
states ga and gb can be expressed through the values of µz
and δz. Likewise, the Fubini-Study distance dρ between
two neighboring points of Mϕ can be expressed through
the differentials dµz and dδz for the points. In fact,

dρ2 = dρ21 + dρ22, (17)

where dρ1 and dρ2 are obtained by the following rotation
in the tangent plane to Mϕ:

dρ1 = |α|dµz − |β|dδz (18)

dρ2 = |β|dµz + |α|dδz. (19)
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Unlike the Fubini-Study distance between states, the
expected value µz and standard deviation δz have the
advantage in being familiar spatial quantities. More-
over, the condition that the initial state ϕ has reached
the detector or, equivalently, that it became a physical
eigenstate of z can be expressed in terms of the corre-
sponding change in the variables µz and δz of ϕ. Specif-
ically, for this to happen, it is sufficient that the interval
(µz − rδz, µz + rδz) for a proper value of the parameter
r for the final state ϕf is contained in the interval D
occupied by the detector. First, for the given values of
δz and µz of the initial state ϕ, the parameter r > 0 is
selected to ensure that the tails of ϕ outside the interval
Dr = (µz − rδz, µz + rδz) are small enough to satisfy the
condition Σk|(ϕ, ηk)|2 ≥ P − ε on the interval. Then,
the coordinates τ and s (i.e., the corresponding values
of µz and δz) are selected to make sure that the interval
(µz−rδz, µz+rδz) is in D. The range of possible values of
µz and δz that satisfy this condition determines the end-
states ϕf in Mϕ that are elements in the corresponding
physical eigenstate of z.

Suppose first that the random walk of the initial state

ϕ = αga+βgb generated by the Hamiltonian ĥ in (RM)
takes place on the manifold Mϕ. That is, we select only

those steps of the walk generated by ĥ that begin and end
on Mϕ. We will address the known isotropy of the distri-
bution of steps later. Note that the eigenstates ga and gb
are the points of Mϕ where µz = a or µz = b and δz = δ.
Furthermore, in the considered approximation, the states
ga and gb are orthogonal, which means that they lie at
the opposite points in the space of states. It follows that
in this approximation, the expected value µz of the co-
ordinate z cannot exceed the value b or be smaller than
a. It also follows that there is a maximum possible value
of the standard deviation δz of z. According to (16), this
value is equal to 1

2 |a− b|. These constraints simply mean
that there is a very small probability for the particle to
be found beyond a small neighborhood of the interval
[a, b] separating the slits, which we know to be true for a
proper set up of the experiment.

To find the probability that the initial state has
reached an eigenstate of z is to find the probability Pa
or Pb of µz having the value near a or b and δz to be
near δ at the same time. We know that τ and s repre-
sent orthogonal coordinates on Mϕ = R2. We also know
that the steps in τ and s are independent, identically dis-
tributed normal random variables. In the absence of the
boundary conditions, the probability density function of
the random vector of the final state ϕf at the time of
observation is normal, circularly symmetric function of τ
and s on Mϕ = R2. Therefore, the probability density
function is a product of functions of τ and s. Using ab-
sorbing boundaries at τ = a and τ = b, and a reflecting
boundary at δz = 1

2 |a− b|, we preserve the product form
of the probability density function. It follows that the
probability we are looking for is the product of the prob-
ability of µz to be near a or b and the probability of δz to
be near δ. However, for a given initial state the probabil-

ity of δz to be near δ is just a constant coefficient, which
is the same for convergence of the initial state to ga or
gb. This is because the change in δz from the initial value
|α||β||a − b| to δ (or, equivalently, the change in s from
0 to ln (|α||β||a− b|/δ)) is the same for both eigenstates.
In other words, the probability we are looking for is pro-
portional to the probability of µz being near a or near
b. It follows that the problem of finding the probability
of transition of the initial state to ga or gb can be solved
by studying the random walk in the coordinate τ of the

state ϕ under the action of ĥ on ϕ.
The steps of the random walk along the τ coordinate

line are given by (
− i

~ ĥϕ,
d̂ϕ

dτ

)
, (20)

where the hat over the derivative means that the vector is
unit-normalized. It was shown earlier that dϕ

dτ is tangent

to the space of states CPL2 . Because the distribution

of the vector ĥϕ is homogeneous, isotropic and normal,
the steps (20) are identically normally distributed for all
ϕ along the coordinate line. From ϕτ (z) = ϕ(z − τ) we
know that dτ = dµz = −dz. So, we are dealing with the
random walk with Gaussian steps on the Z-axis, where µz
takes values. When the number of steps is large, the ob-
tained walk with Gaussian steps can be approximated by
the walk whose steps have a fixed length. The end-points
of the interval [a, b] are absorbing and correspond to the
particle being absorbed by the detector. The probability
of reaching the point µz = b for the state ϕ = αga + βgb
is then given by the usual gambler’s ruin formula that
yields in this case

Pb =
number of steps from µz to a

number of steps from a to b
=
µz − a
b− a

= |β|2.

(21)
Here the definition (15) together with normalization
|α|2 + |β|2 = 1 were used. Similarly, the probability Pa
for the initial state ϕ of reaching the state ga (equiva-
lently, reaching µz = a) is given by Pa = |α|2. The Born
rule for the state is thus derived.

The random walk of the state was conditioned so far to
stay on the manifold Mϕ. This contradicts the isotropy
of the distribution of steps of the state driven by the
Hamiltonian in (RM). The isotropy allows the state to
propagate into the space of states CPL2 . The resulting
conditional probability of reaching the eigenstates given
that the state has reached the Z-axis is consistent with
the Born rule [3]. However, the unconditional probability
of transition between states is vanishingly small in this
case. To address this problem, note that we have dis-
regarded an additional physical process that takes place
during measurement. Namely, the interaction of the par-
ticle with the screen results in a decrease of its energy.
The energy is deposited to atoms of the scintillation ma-
terial of the screen. To be specific and for simplicity,
suppose that the incident particle is charged and distin-
guishable from the particles of the screen participating
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in the interaction. With this in place, we can follow the
particle throughout its evolution. Inelastic collisions be-
tween the incident particle and bound electrons in atoms
of the scintillation material produce a stream of low-
energy photons whose quantity is proportional to the en-
ergy transferred by the particle. The outgoing low-energy
particle is then trapped in the potential of the system. It
continues to lose energy as its state goes down the ladder
of discreet energy levels towards the ground state.

Although complicated, the process can be described
by the standard Schrödinger dynamics with elements of
quantum electrodynamics. When the potential of the
system, composed of the weakened particle and atoms of
the screen it interacts with, is harmonic, the energy lev-
els of the trapped particle are given in natural units by
En = 1

2 +n. In this case, a calculation yields the expres-

sion for the variance as δ2zn = 1
2 +4n. As the excited state

descends the ladder and approaches the ground state, the
standard deviation δz for the state decreases to a small
value, comparable to the size of a molecule of the screen.
A similar process takes place for a potential that is ap-
proximately harmonic or quartic near the stable point,
or, more generally, is U-shaped. We conclude that the
interaction with the screen and the resulting trapping of
the particle in the potential well are responsible for gen-
erating a drift of the particle’s state towards the set of
equivalence classes gc representing the Z-axis. Moreover,
assuming that the ground state is attained in the process,
the drift is directed towards the set of Gaussian states gc.

It follows that there are two types of motion of the
state participating in the collapse in the model. The first
one is the random walk of state without drift generated

by the Hamiltonian ĥ in (RM). The second is the drift
of the state towards the Z-axis. With the state guaran-
teed to reach a neighborhood of the Z-axis, the random
walk of the state reduces to a gambler’s ruin process on
the Z-axis and results in the Born rule. Assuming, for
example, that the drift towards the Z-axis happens ap-
proximately along the shortest line, we conclude that the
entire process can be modeled within the manifold Mϕ.
Recall that Mϕ is isometric to the Euclidean space R2

and the τ and s-coordinate lines are orthogonal. The
steps of the random walk generated by the Hamiltonian

ĥ in (RM) in these two directions are independent iden-
tically distributed normal random variables. The walk of
the initial state ϕ = αga+βgb on Mϕ consists of the ran-
dom walk without drift along the τ -coordinate line and
the random walk with the drift in the positive direction
of the s-axis. In other words, the walk is represented as
follows:

τk = τk−1 + ξk (22)

and

sk = sk−1 + a+ ηk, (23)

where ξk and ηk are independent identically distributed
normal random variables, and a is a positive number

equal to the step of the drift. Using s0 = 0, we have,
for the N -th step of the walk in s:

sN = a ·N +

N∑
k=1

ηk. (24)

Given that λ = es and δz = λ−1δz0 , we see that
δz = e−sδz0 . Therefore, the variance exponentially ap-
proaches zero with an increase in s. In this case even a
few steps of the walk of the state may be sufficient to
reach a neighborhood of the Z-axis. The gambler’s ruin
process in the variable τ is then guaranteed to take the
state to {ga} or {gb} with the probability satisfying the
Born rule, as derived in (21). The expected time interval
of collapse in the model depends on the frequency and
the distribution of steps of the walk, the value of the pa-
rameter a, and the parameters in the definition of the
equivalence classes {ga} and {gb}.

There is an interesting geometric interpretation that
relates the considered walk with a walk of a spin-state
[α, β] on the sphere S2 = CP 1. Namely, by a proper
choice of the unit and the origin on the Z-axis, one can
always ensure that a = −1 and b = 1. With this, we have
for the initial state ϕ = αga + βgb:

µz = |β|2 − |α|2 (25)

and

δ2z = 1− µ2
z = 4|α|2|β|2. (26)

Expressions (25) and (26) are intimately related to the
expressions for Cartesian coordinates of the spin-state
[α, β] ∈ C2 under the usual bundle projection π : S3 −→
CP 1 = S2. These coordinates are given by

x = αβ + αβ, (27)

y = i(αβ − αβ), (28)

z = |β|2 − |α|2. (29)

From these equations, we see that µz = z and δ2z = x2 +
y2. The coefficients α and β of ϕ may also have a phase
difference θ. Adding the variable θ to the pair (µz, δz),
we obtain cylindrical coordinates on the sphere S2.

We would like to use the triple (µz, δz, θ) to describe
the walk of state ϕ in the model as a motion on the
sphere. Namely, given a state αg̃c+βg̃d evolving on Mϕ,
we could identify its coordinates (µz, δz, θ) and then find
the corresponding point (x, y, z) on the sphere with the
help of equations (15,16) and (27-29). In such a way, we
would identify the change in the values of c and d with
the corresponding change in the coefficients α and β of
the initial state ϕ = αga + βgb. In this case, the basis
states ga and gb would remain fixed during the evolution
while the value of the coefficients α and β would be ob-
tained from the equations (15,16). The problem with this
geometric realization of the evolution is that it imposes a
relationship between µz and δz. Namely, it requires that
δ2z = 1− µ2

z, which is not valid in general. Furthermore,
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the parameter θ cannot be determined from equations
(25,26). However, imposing the relationship δ2z = 1− µ2

z

without changing the walk in τ preserves the probabili-
ties of reaching the eigenstates. Furthermore, it makes
reaching the values µz = a of µz = b equivalent to reach-
ing the eigenstates, which is similar to what the drift in
s has achieved. Although imposing this relationship is
rather arbitrary, the change in µz = z and δ2z = x2 + y2

when the state approaches the poles of S2 gives us a
nice illustration of collapse in the model. Note that the
actual random walk of state studied in the paper does
not happen on CP 1 = S2, which does not even include
the Z-axis. In particular, the walk does not converge to
Brownian motion on the sphere.

IV. ELECTRONS VERSUS BULLETS

In a version of Feynman’s experiment with bullets, a
machine gun shoots a stream of bullets into a screen with
two slits. Behind the slits, there is a wooden screen that
absorbs bullets. A small movable sandbox in front of the
screen is used as a detector of bullets along the Z-axis
on the screen. The setup of this experiment is, there-
fore, very similar to the one with a microscopic particle
such as electron considered in the paper. Furthermore,
we saw that classical space R3 is isometric to the sub-
manifold Mσ

3 of the space of states CPL2 . A point a in
classical space R3 is represented by the state ga,σ in Mσ

3 ,
defined in (3). Similarly, the classical phase space R3×R3

for a particle is isometric to the submanifold Mσ
3,3 of the

space of states of the particle. Most importantly, it was
verified that Newtonian motion of a particle is equiva-
lent to the Schrödinger evolution of its state, provided
the state is constrained to the manifold Mσ

3,3. Based on
that, we can identify the path of a classical particle with
the corresponding path in Mσ

3,3 in a physically meaning-
ful way. In particular, neglecting other coordinates in
R3, the path z = c(t) of a particle going through point
a is represented by the path ϕ = gc(t) of its state go-
ing through the point ga. This mathematically rigorous
and physically valid identification, together with the con-
jecture (RM), give us a perfect setup for analyzing and
comparing the double-slit experiments with electrons and
bullets.

Let us consider the experiment with electrons first.
The electron’s spin properties in the experiment will be
neglected. At the beginning of the experiment, an elec-
tron gun fires electrons one by one. We may assume that
state of the initial electron is a Gaussian wave packet
moving towards the screen with the slits. In particu-
lar, the state is near the manifold Mσ

3,3 in the space of

states CPL2 . That is, the Fubini-Study distance from the
state to Mσ

3,3 is small. During this time, the state prop-

agates by the usual Hamiltonian ĥ = p̂2

2m + V̂ (x), where

V̂ (x) is an external potential including the one associated
with the screen with the slits. Interaction of the electron

with the surrounding matter in the experiment can be
neglected. Upon interaction with the screen, the wave
packet splits into a superposition of two wave packets.
That means that the state is no longer on the manifold
Mσ

3,3. In fact, assuming, for example, that ϕ = αga+βgb
with |α| ≤ |β|, the cosine of the smallest distance between
the state and Mσ

3,3 is given by

|(αga + βgb, gb)| = |β|. (30)

It follows that the state is close to Mσ
3,3 only when α is

close to 0. This is not the case immediately to the right
of the screen with both slits open.

Note that nothing special has happened to the state
at this time. It simply moved away from the classical
phase space submanifold Mσ

3,3 into CPL2 . In particular,
the path of the state did not go through the points ga or
gb, or any other point gc with c on the Z-axis. It passed
in the space of states “over” the Z-axis and the screen.
However, for the electron to have any position in R3 at
all, the electron’s state must be in Mσ

3 , which is not the
case when the electron interacts with the screen. So, the
electron position is not defined at this time. It is not
given by a or b on the Z-axis, or by any other point in
R3. At the same time, whenever the electron’s state is in
Mσ

3 , it identifies the electron’s position in R3 correctly,
as a dynamical variable, in a way consistent with New-
tonian dynamics. In this sense, the state variable ϕ is an
extension of the classical position variable of the particle.
Instead of saying that the electron’s position is not de-
fined when the particle interacts with the screen, we can
say that the electron’s path takes off the classical space
and passes “over” the screen in the space of states. Its
position along the path is well-defined but requires addi-
tional dimensions provided by the space of states CPL2 .
In particular, the electron’s path does not “split” to go
through two slits at once. It is only when we insist that
the electron’s state must always be on Mσ

3,3 that we run
into this paradox.

What happens to the right of the screen, when the
particle interacts with the detector? The Born rule for
the probability density function for the particle’s posi-
tion, in the considered approximation, yields P (z) =
|αga(z) + βgb(z)|2 = |α|2|ga(z)|2 + |β|2|gb(z)|2. Integrat-
ing this over the area occupied by the detector near point
a, we get approximately |α|2. The probability of being
near b is then |β|2. This result is identical to the one
obtained from the conjecture (RM) in the paper. Ac-
cording to (RM), the state ϕ is driven by the Hamilto-
nian represented by a random matrix. The random walk
of state brings it back to the classical space submanifold
Mσ

3 to the equivalence class of one of the eigenstates ga
or gb by the process described in the previous section.
The electron is then positioned near the point a or point
b with the probabilities |α|2 and |β|2 respectively.

Suppose now that the detected particle is able to con-
tinue its motion towards the screen on the right of the
detector. It will then arrive at the screen as a spread-
out version g̃a (or g̃b) of the detected Gaussian state ga
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(or gb). The probability density function for the elec-
tron’s position on the screen is then given by either
P (z) = |g̃a(z)|2 or |g̃b(z)|2 and no interference pattern
is observed on the screen. The resulting “corpuscular”
properties of the detected electron are due to the close-
ness of its “post-detector” state to the classical phase
space manifold Mσ

3,3 during its motion from the detector
to the backstop screen. As we know, when the electron’s
state is on Mσ

3,3, it satisfies Newtonian dynamics and be-
haves like a particle.

If the experiment is repeated without the detector, the
state ϕ = αga +βgb obtained to the right of the slits will
continue its motion towards the backstop screen along a
path that is away from Mσ

3,3. Interaction of the parti-
cle with the backstop screen happens in the same way
as its interaction with the detector. However, this time
the spread-out states g̃a and g̃b may not be considered
orthogonal. As shown in [3], the conjecture (RM) ap-
plied to this case yields the Born rule as before. The loss
of energy and trapping of the particle bring the state
to the screen. Provided the particle has been detected
by the screen, the probability density function for the
position is given by P (z) = |αg̃a(z) + βg̃b(z)|2. The in-
terference term is now present. The observed “wave”
properties of the electron are caused by its state being
distant from the classical phase space submanifold Mσ

3,3

during its motion from the screen with the slits to the
backstop screen. That is, the state arrives at the back-
stop screen as a superposition αg̃a + βg̃b, and such a
superposition is away from Mσ

3,3. When the state of the
particle in the experiment moves away from the classical
phase space submanifold Mσ

3,3, the standard deviation δz
increases and the particle demonstrates its wave prop-
erties. When the state is brought back to the manifold
Mσ

3,3, the standard deviation decreases, and the particle
demonstrates classical corpuscular properties.

What is different about the experiment with bullets?
Measuring the position of a small electron in the exper-
iment requires a detector or a backstop screen that the
electron interacts with. On the other hand, the bullet in-
teracts randomly and continuously in time with particles
of the surroundings even before it reaches the sandbox or
the backstop screen. Because of this continuous interac-
tion, the surroundings (particles of air, radiation) contain
information about the bullet’s position at all times. In
other words, the bullet’s position is constantly measured
by the surroundings. It follows that the conjecture (RM)
needs to be applied to the entire motion of the bullet in
the experiment.

As shown in [3], the state driven by the Hamiltonian
in (RM), and conditioned to stay to the manifold Mσ

3,3,
describes the Brownian motion of the particle. When
the particle is sufficiently large, the diffusion coefficient
for the Brownian motion vanishes, and the particle is at
rest in the lab system. The isotropy of the probability
distribution of steps of the random walk of the state sig-
nifies that the state of the particle in the space of states
CPL2 must then be at rest as well. If an external poten-

tial is applied to such a system, the particle will move in
accord with Newtonian dynamics [3]. A bullet is large
enough for its Brownian motion in natural environment
to be trivial. It follows that the state of the bullet is
confined to Mσ

3,3. Accordingly, the dynamics of the bul-
let is described by Newton’s equations of motion. Thus,
if accepted, conjecture (RM) has the potential to eluci-
date why the bullet does not exhibit wave properties but
instead moves in accordance with Newtonian dynamics.

V. WHY RANDOM MATRICES?

The conjecture (RM) provides us with a model of
measurement that works for macroscopic and microscopic
particles alike. The constraint that relates measurement
on macroscopic and microscopic particles is identical to
the one that relates Newtonian and Schrödinger dynam-
ics (see section II). The usual translational and rota-
tional symmetries of measurement in the macro-world
are preserved. The irreversibility of measurement is tied
to the fact that Hamiltonians in the Gaussian unitary
ensemble are not invariant under time reversal [3]. The
model yields the Born rule and explains what happens
in the double-slit experiment with and without a detec-
tor. These groundbreaking results validate the conjec-
ture, albeit indirectly. However, the question remains:
why would the Hamiltonian during measurement be rep-
resented by a random matrix?

Random matrices were introduced into quantum me-
chanics by Wigner [4] in a study of excitation spectra
of heavy nuclei. Wigner reasoned that the complexity
of the motion of nucleons in the nucleus could be han-
dled by modeling the Hamiltonian of the system with
a random matrix. The ensemble of matrices only had
to respect the symmetries of the system. The correla-
tions in the spectrum of random matrices that Wigner
discovered turned out to be applicable to a remarkably
large number of quantum systems with many as well as
few degrees of freedom. Experimental evidence suggests
that all quantum systems whose classical counterpart is
chaotic demonstrate random matrix statistics, as pro-
posed in the Bohigas-Giannoni-Schmit (BGS) conjecture
[5]. On another note, classical measurement can be mod-
eled by Brownian motion. It is known that Brownian
motion can be characterized as a chaotic process [9–11].
The intricate nature of the interaction between the mea-
sured particle and atoms of the detector, coupled with
the chaotic features of Brownian motion, suggests that
the system’s Hamiltonian can be effectively represented
by a random matrix.

Decoherence theory [12] seeks to explain the process
of position measurement based on the Schrödinger evo-
lution of the system interacting with the environment.
A typical Hamiltonian modeling this situation would de-
scribe a particle linearly coupled to a set of harmonic
oscillators. Alternatively, the scattering matrix can be
used to determine the effect of the collective scattering
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of particles on the particle whose position is measured.
The evolution of the density matrix of the measured par-
ticle would then exhibit a damping of interference terms
in the matrix. The theory has been successful in explain-
ing the emergence of classical probabilities. However, it
falls short in explaining how the observed quantum state
arises as a result of measurement and does not lead to the
Born rule. Loosely speaking, the derivation of evolution
equations for the density matrix in decoherence theory is
akin to attempts to derive Brownian motion from New-
tonian dynamics of a system of particles. Both attempts
provide a proof of concept but require several important
assumptions and fall short of providing a fundamental ex-

planation of the phenomena. Ultimately, these attempts
can be regarded as useful models. Additional statistical
or symmetry-based assumptions, such as those made by
Einstein in the theory of Brownian motion or by Wigner
in the study of spectra of heavy nuclei, are still needed to
gain deeper insight into the phenomena. Similarly, the
universal applicability of random matrix theory to fluc-
tuations in quantum systems, together with the results
derived here, suggests that random matrices may offer
the missing insight into the process of measurement.
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