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Abstract

The use of statistical methods to model gravitational systems is crucial
to physics practice, but the extent to which thermodynamics and statis-
tical mechanics genuinely apply to these systems is a contentious issue.
This paper provides new conceptual foundations for gravitational thermo-
dynamics by reconsidering the nature of key concepts like equilibrium and
advancing a novel way of understanding thermodynamics. The challenges
arise from the peculiar characteristics of the gravitational potential, lead-
ing to non-extensive energy and entropy, negative heat capacity, and a
lack of standard equilibrium. Hence it has been claimed that only non-
equilibrium statistical mechanics is warranted in this domain, whereas
thermodynamics is inapplicable. We argue instead that equilibrium sta-
tistical mechanics applies to self-gravitating systems at the relevant scale,
as they display equilibrium in the form of metastable quasi-equilibrium
states. We then develop a minimal framework for thermodynamics that
can be applied to these systems and beyond. Thermodynamics applies in
the sense that we can devise macroscopic descriptions and explanations
of the behaviour of these systems in terms of coarse-grained quantities
within equilibrium statistical mechanics.
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1 Introduction

While possible in theory, tracking the evolution of self-gravitating systems (SGS)
like star clusters by calculating the trajectories of a million stars at a time is
practically impossible. Hence the application of statistical methods is crucial.
However, the precise extent to which statistical mechanics and thermodynamics
genuinely apply to these systems is a highly contentious matter.

This topic is an important and foundationally interesting area of physics that
has been understudied and is ripe for philosophical work. It also provides an
interesting case study that will motivate us to advance a novel way to understand
thermodynamics with further possible applications.

The challenges arise due to the peculiar long-range nature of gravity in these
systems. The gravitational potential distinguishes them from more conventional
short-range interacting systems. It entails unconventional thermodynamic and
statistical mechanical behaviour, especially non-extensivity of energy and en-
tropy, negative heat capacity, and lack of standard equilibrium.1

In the limited debate on the issue, some have maintained that thermodynam-
ics could still be suitable to describe these systems, provided we revise certain
thermodynamic features that are ascribed to conventional systems. In contrast,
others have claimed that thermodynamics is unfit to model these systems and
that only the application of non-equilibrium statistical mechanics is supported.2

This paper advances our understanding of gravitational physics in two ways.
First, we argue that equilibrium statistical mechanics can be meaningfully ap-
plied to SGS in the appropriate regime, alongside non-equilibrium statistical
mechanics. This is supported by the fact that equilibrium can be found in the
form of metastable quasi-equilibrium states in these systems at certain scales,
and by the idea that equilibrium is essentially scale-relative.3 We prove this
point first within idealised models and then within more realistic models of
globular clusters, applying Earman’s (2004) principle for de-idealisation.

Second, although full-blown phenomenological thermodynamics is unsuitable
in this domain, we develop what we call a ‘minimal framework for thermody-
namics’ and show how a notion of thermodynamics applies to SGS. In fact,
we can provide thermodynamic explanations based on the behaviour of macro-
level quantities like temperature and energy describing these systems within the

1See Padmanabhan (1989, 1990, 2008), Chavanis et al. (2002), Katz (2003), Heggie and
Hut (2003), Binney and Tremaine (2011), Sormani and Bertin (2013), Campa et al. (2014).

2Callender (2011) is the main figure in the first camp and defends a view that is arguably
supported by physicists such as Lynden-Bell and Wood (1968), Chavanis et al. (2002), Katz
(2003), Heggie and Hut (2003). Robertson (2019) defends explicitly the second view, voicing
the scepticism by e.g. Ruelle (1969), Binney and Tremaine (2011). See also Wallace (2010).

3Metastable quasi-equilibrium refers to local equilibria which are relatively stable under
perturbations and effectively in equilibrium over a certain time scale.
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domain of equilibrium statistical mechanics. While non-equilibrium and equilib-
rium statistical mechanics and phenomenological thermodynamics are distinct
theories, minimal thermodynamics is a coarse-grained level of description within
the framework of equilibrium statistical mechanics. It qualifies as ‘thermody-
namics’ especially in virtue of its use of macroscopic coarse-grained quantities
partially autonomous from the microscopic variables characterising purely sta-
tistical descriptions. We maintain that the picture we develop is the best way
to make sense of the notion of gravitational thermodynamics.

The paper has two goals. First, it provides new conceptual foundations for
the study of gravitational thermodynamics by drawing a clear map of statisti-
cal and thermal physics and elucidating how they apply to the physics of SGS.
In particular, we provide a more accurate reconstruction of physics practice
in this field by showing how certain phenomena like core collapse in globular
clusters can be predicted and explained starting both from distinctively statis-
tical mechanical and coarser-grained thermodynamic points of view. Despite
the unconventional features of these systems, these different methodologies are
all equally justified at the right scale, while there are natural trade-offs be-
tween more complex but richer statistical mechanical explanations and simpler
but more limited thermodynamic explanations of the same phenomena. Main-
taining that only non-equilibrium statistical mechanics applies to these systems
misses crucial aspects of SGS physics which fall within equilibrium statistical
mechanics and (minimal) thermodynamics.

Second, analysing SGS allows us to draw general lessons about thermody-
namics and statistical mechanics and to study the impact of idealisations in
astrophysical models. The case study supports a more liberal approach to con-
cepts such as equilibrium (Callender, 2001), brings out considerations on the role
of unconventional properties like negative heat capacity on thermodynamics and
statistical physics, and prompts the development of a novel minimal framework
for thermodynamics that accounts for thermodynamic descriptions in between
the purely statistical and phenomenological thermodynamics level. These re-
sults have a double outcome: (a) we develop a useful notion of thermodynamics
beyond phenomenological thermodynamics and control theory (Wallace, 2014)
with further possible applications; (b) we improve our understanding of equilib-
rium statistical mechanics, as we show how we can effectively apply equilibrium
statistical mechanics to these unconventional systems if only we take a less strin-
gent approach to features like equilibrium and stability. In addition, analysing
SGS brings interesting considerations about the role of idealisations and what
can we learn from idealised models via de-idealisation methods.

The structure of the paper is as follows. Section 2 introduces the background
physics and unconventional behaviour of SGS. Section 3 introduces the debate
around the applicability of statistical physics and thermodynamics in this exotic
domain. Section 4 argues how equilibrium statistical mechanics can be applied
to SGS to a certain scale and analyses the idealisations involved in SGS models.
Section 5 fleshes out a minimal framework for thermodynamics that applies to
SGS and argues that phenomenological thermodynamics does not work there.
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2 Atypical Features of Self-gravitating Systems

Self-gravitating systems (SGS) are systems bound by their own gravity. Glob-
ular clusters are the prime examples of these systems. They are spheroidal
conglomerations of self-gravitating stars, composed of tens of thousands to mil-
lions of elements. The physics of these systems can be in theory described to
a high approximation via Newtonian gravitation. However, this million-body
problem, as Heggie and Hut (2003) call it, is obviously practically intractable
in that way. Because of this, statistical physics methods are employed to model
these systems.4 SGS can be modelled like gases in which stars take the part of
gas molecules, but this is not a perfect analogy. The crucial difference between
SGS and conventional terrestrial systems to which statistical physics and ther-
modynamics are applied stems from the nature of the gravitational potential,
which is long-range, and from the fact that gravity is universally attractive and
does not possess any natural screening-off mechanism. As a consequence, unlike
in the case of conventional gas molecules in which only short-range forces are
dominant, the potential acting on any given constituent of SGS largely origi-
nates from the components that are not in its vicinity. These unconventional
conditions determine several well-known kinds of problematic behaviour both
from the point of view of statistical physics and thermodynamics:5

1. Divergences: On the one hand, the gravitational potential has an infinite
range, so the density of states and the (statistical mechanical) entropy
diverge, and the microcanonical ensemble cannot be defined. On the other
hand, short-range interactions are problematic too, because gravitational
interaction is attractive without lower bound and the partition function
in the canonical ensemble diverges.

2. Ensemble inequivalence: The microcanonical and canonical ensembles
are not equivalent within SGS, unlike in the case of conventional systems
(at least in the thermodynamic limit).6 Modelling SGS starting from dif-
ferent statistical ensembles leads to different descriptions and predictions.

3. Non-extensivity: Due to the long-range nature of gravity, functions such
as energy and entropy are not extensive (in the statistical description), i.e.
don’t depend linearly on the size of the system, unlike for conventional
systems. As reported by Callender (2011), many physics textbooks take
extensivity as an axiomatic feature of statistical mechanics and thermody-
namics. Even without taking it as axiomatic, it can be noticed that with-
out extensivity we cannot derive what are regarded as key thermodynamic
relations within statistical mechanics such as dU = TdS − PdV + µdN .

4. Negative heat capacity: SGS display negative heat capacity, that is
CV = (∂E/∂T )∣V < 0, or d̄Q/dT < 0. It means that if the system gives

4For a classic reference on galactic dynamics see Binney and Tremaine (2011).
5See Lynden-Bell and Lynden-Bell (1977), Padmanabhan (1990), Binney and Tremaine

(2011), Swendsen (2012, §13), Heggie and Hut (2003). For a short overview see Hut (1997).
6We refer here to the thermodynamic limit N,V →∞ while N/V is held constant.
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out energy (e.g. the core of the cluster transfers energy to the halo)
then its temperature increases. Positive heat capacity is often taken as a
prerequisite of thermodynamics.

5. Instability and lack of equilibrium: It is claimed that SGS are un-
stable and do not reach final thermodynamic/statistical equilibrium: it’s
entropically favourable for them to contract indefinitely. As it is conven-
tional, ‘equilibrium’ refers here to entropy extrema, i.e. vanishing of the
first variation of entropy δS, while ‘stability’ denotes the second variation
of S in the vicinity of equilibrium due to fluctuations.7 A prime example
of instability is the possibility of gravothermal catastrophe (in the mi-
crocanonical ensemble): under the right conditions, due to negative heat
capacity, the core of the system can get hotter when it gives out energy to
the outer part. Then, if the energy absorbed by the outer part does not
increase its temperature sufficiently to keep up with the increase in core
temperature, the temperature gradient between the core and outer part
steepens indefinitely and the core keeps contracting. An analogous phe-
nomenon called isothermal collapse happens in the canonical ensemble.8

As we shall see in the next sections, the short-range divergence in point (1)
and the ensemble inequivalence of point (2) are not deeply puzzling features and
they can be addressed reasonably easily. The long-range divergence in point (1)
constitutes a problematic idealisation, but we shall defer a proper review of it
until §4.2. On the other hand, features (3), (4) and (5) are problematic features
that substantively distinguish SGS from conventional systems and their presence
calls for a reconsideration of the physics of these systems.

The main questions to address at this point are the following: considering all
these unconventional features, does thermodynamics apply to SGS in any way?
What about statistical mechanics? Or should we merely accept that we can
apply some statistical methods to SGS without the whole underlying theory?
The philosophical debate on the subject has mainly focused on these questions,
which are a good starting point. We review it in the next section.

3 The Callender-Robertson Debate

In the philosophical literature the questions stated above have been discussed
by Callender (2011) and Robertson (2019).9 These foundational issues are also
often raised by physicists, although more sparsely.10 This section summarises
the debate and relates it to points (1)-(5). Before that, however, we draw a map

7See Padmanabhan (1990) and Heggie and Hut (2003). In a more fine-grained sense, (a)
thermodynamic equilibrium is defined in terms of observables staying (roughly) constant, while
(b) in statistical mechanics equilibrium can be either expressed in terms of the macrostate
with the largest volume in the 6N-dimensional phase space (Boltzmannian approach), or in
terms of the probability distribution being steady in time (Gibbsian approach).

8Antonov (1962) and Lynden-Bell and Wood (1968) have been the first to study the topic.
9The topic is also covered in part in the papers by Wallace (2010) and Callender (2010).

10The papers by Callender and Robertson are a useful reference resource in this respect.
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of the domain of thermodynamics and statistical physics which will be useful to
reconstruct the debate and further clarify the topic.

We distinguish between three theories: (i) non-equilibrium statistical me-
chanics, a statistical theory about the dynamics of many-body systems out of
equilibrium, represented for instance by kinetic theory and the use of Boltzmann
equation; (ii) equilibrium statistical mechanics, applied to systems around sta-
tistical equilibrium where macroscopic quantities are roughly time-independent
to a certain scale; (iii) phenomenological thermodynamics, a macroscopic theory
formulated independently from microvariables and concerned with quantities
like work and heat and with the operations we can perform with them.

Phenomenological thermodynamics is classical thermodynamics as specified
by the phenomenological version of the laws of thermodynamics (Wallace, 2015).
In a nutshell, the Zeroth Law defines the concepts of equilibrium and temper-
ature in a broadly qualitative way, by claiming that if two systems are both in
thermal equilibrium with a third system, then the two systems are in thermal
equilibrium with each other. The First Law is about conserved energy trans-
formations constituted by work and heat flow, i.e. dU = d̄Q + d̄W . The Second
Law is understood via Clausius’s or Kelvin’s statements. If understood along
these lines, we can think about thermodynamics as a broadly empirical and
phenomenologically formulated theory, and possibly as a kind of control theory,
as per Wallace: “a theory of which transitions between states can be induced
on a system (assumed to obey some known underlying dynamics) by means of
operations from a fixed list” (Wallace, 2014, p. 699).

Based on this distinction, we stress that the two sides of the following de-
bate agree on the applicability of models and equations from non-equilibrium
statistical mechanics while the disputed subject is rather the applicability of
equilibrium statistical mechanics and (some concept of) thermodynamics.

3.1 Robertson on self-gravitating systems

Robertson (2019) argues that thermodynamics does not apply to SGS although
(non-equilibrium) statistical mechanics does, based on the notion of thermody-
namics she adopts, which is arguably phenomenological thermodynamics. She
considers the puzzling behaviour of SGS and argues that, if we draw a clear dis-
tinction between thermodynamics and statistical mechanics, then the peculiar
behaviour of SGS is not puzzling at all. In fact, rather than revising thermo-
dynamics in light of the peculiar features of SGS, we should simply grant that
(phenomenological) thermodynamics is not applicable to SGS while statistical
physics can still be usefully and meaningfully applied in its non-equilibrium
form. In taking this route of denying the applicability of thermodynamics to
SGS she voices the scepticism expressed by physicists like Binney and Tremaine
(2011) on the use of thermodynamics in SGS, accounting at the same time for
the fact that they still successfully apply statistical physics methods to these
systems. Let’s look at how Robertson characterises thermodynamics and sta-
tistical mechanics and her reasons for arguing that one theory applies while the
other does not.
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Let’s start with thermodynamics. First, she argues that “thermodynam-
ics is an abstract theory, that proceeds in ignorance of the constitution of the
system, dealing instead only with macrovariables which obey the Four Laws”
(Robertson, 2019, p. 1794), whereas statistical mechanics is based on the de-
scription of microvariables and their statistical and probabilistic distributions.
She stresses that the physics of SGS does not really abstract away from these
micro-level details (e.g. positions of the individual stars), and is instead based
on equations such as the Boltzmann or Fokker-Planck equations. Hence we have
a reason for rejecting the viability of thermodynamics in this area.

Second, she frames thermodynamics as essentially a theory about the be-
haviour of equilibrium states parameterized by macrovariables and about (ther-
modynamically quasi-stable) curves through the thermodynamic equilibrium
state space. Positive heat capacity is also a crucial feature of this picture as it
is crucial to securing stable equilibrium. This further motivates the claim that
thermodynamics does not apply to SGS for the following reasons:

• What would count as an equilibrium state in SGS? Binney and Tremaine
(2011) deny that there are any. Robertson points out that Dirac peaks
and collapsed-core states could be theoretically proposed as equilibrium
states for spherically symmetric SGS (as in Callender, 2011), but these
are (i) unphysical states,11 and (ii) even if these were physically realistic
states, they are just a single state and we need an entire state space for
thermodynamics to work.

• Even if we could construct an equilibrium state space, SGS are unsta-
ble, because of the concavity of entropy and the negative heat capacity
that leads to phenomena like the gravothermal catastrophe: small inho-
mogeneities are amplified rather than dissipated. Thus these systems do
not return to equilibrium after a disturbance.

Third, if we regard thermodynamics as a control theory as previously defined,
then thermodynamics is largely inapplicable to SGS since we cannot manipulate
different parameters independently (Heggie and Hut, 2003, p. 20).

What about statistical mechanics? For the above reasons, Robertson
argues that statistical mechanics does apply, but only as non-equilibrium statis-
tical mechanics. Most importantly, statistical mechanical equilibrium is never
reached, but SGS still evolve towards equilibrium, which leads to the claim that
statistical physics applies in the non-equilibrium form. She suggests it is no sur-
prise that this theory applies here because these systems are modelled as gasses
in which the stars are gas molecules intrinsically identical and non-interacting,
a claim supported by the idea that statistical physics essentially refers to the
behaviour of the microvariables composing many-body systems.

11It is easy to see how these are unphysical since the Dirac peak is a state in which all of
the stars are placed in a single point, and the core-collapsed is not observed since we have
instead gravothermal oscillations except for the cases in which a black hole forms, and in such
cases Newtonian gravity breaks down.
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Looking at the general picture, Robertson asks whether this situation is
surprising. Can it be that statistical mechanics works while thermodynamics
fails? Is not thermodynamic behaviour supposed to emerge from statistical
mechanical behaviour? She argues that her conclusion is unsurprising, because
the thermodynamic limitN,V →∞ (with constantN/V ) does not exist for SGS,
and it is in the thermodynamic limit that thermodynamic behaviour is supposed
to emerge. Only in the limit statistical descriptions turn from probabilistic
to categorical, certain statistical mechanical quantities become extensive thus
coinciding with thermodynamic quantities, and the ensembles are equivalent.
However, the conditions for the thermodynamic limit are not met in SGS. In
particular, she singles out the following conditions, which do not apply: (i)
interactions between distant particles must be negligible, (ii) interactions are
stable.12 Finally, it is equilibrium statistical mechanics the theory from which
thermodynamics is supposed to emerge.

3.2 Callender on self-gravitating systems

Callender (2011) is more positive about the applicability of aspects of thermody-
namics to SGS, although he concedes that the question remains open in several
respects. The suggestion that thermodynamics is applicable to SGS does jus-
tice to the work of physicists such as Lynden-Bell and Wood (1968), Chavanis
et al. (2002), and Katz (2003), who talk explicitly about the thermodynamics of
SGS. Central to Callender’s claim is the idea that key thermodynamic features
such as thermodynamic equilibrium should be understood more liberally than
is often done (cf. Callender, 2001). His thesis that thermodynamics could apply
to SGS if properly modified to address the strange behaviour displayed by SGS
is grounded in his responses to the five unconventional features presented in §2.
However, we stress that he is not specific on the meaning of thermodynamics he
adopts, and if the project is the recovery of phenomenological thermodynamics
or thermodynamics in another sense, so we remain neutral in this regard.

Concerning features (1) and (2), i.e. divergences and ensemble inequivalence,
he deems them as unproblematic for the applicability of thermodynamics to SGS
and hence dismissable.

On the one hand, the divergence determined by the nature of short-range
gravitational interactions is fixed by introducing a short-distance cutoff in the
models. The cutoff is needed to give meaning to the partition function as the
gravitational interaction is attractive without lower bound and so a singularity
problem arises in Newtonian gravitation. In galactic astrophysics, the intro-
duction of the cutoff is easily justified given that the stellar radius provides a
natural cutoff.13 It is also reasonable to say that this issue is not peculiar to
these cases and thus not particularly concerning. On the other hand, Callender
points out that the divergence introduced by the infinite (and unscreened) range

12More specifically, instability here refers to the facts that the gravitational potential is
not bounded from below (U → −∞ as r → 0) and that the gravitational potential violates the
stability criterion that U does not grow faster, as a function of N , than N .

13Furthermore, the introduction of the mean-field approximation helps to solve the problem.
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of the gravitational potential is commonly solved in the physical literature on
SGS models by putting the system in an ideal box.14 Concerning this last point
we note that, unlike in the case of the short-range cutoff, it is reasonable to
wonder whether this invoked idealisation is justified. We set aside this worry
and return to it in §4.

Moving to ensemble inequivalence, recall that, unlike in conventional ther-
modynamics, the ensembles turn out to be generally inequivalent within SGS.
This requires us to modify statistical mechanics within SGS, and in general,
the equivalence of ensembles should not be taken anymore as a general princi-
ple. Callender however suggests that this is not really problematic and does not
threaten the application of thermodynamics. Equivalence is a surprising feature
of non-long-range interacting systems that emerges in the thermodynamic limit
N,V → ∞ (constant N/V ), while there is no reason to think it is an essential
prerequisite for statistical mechanics or thermodynamics.

Concerning feature (3), i.e. non-extensivity, Callender points out that if we
consider the mean-field approximation with limit N →∞ (at volume fixed) we
regain extensivity. In that limit, energy and entropy become extensive (pro-
portional to N) again.15 An important point is that the limit employed is not
the thermodynamic limit defined earlier. We mentioned how the absence of
this limit within SGS was stressed by Robertson as one of the main reasons
why the inapplicability of thermodynamics to SGS is unsurprising. Related to
this point, Callender claims that the thermodynamic limit N,V →∞ (constant
N/V ) is neither necessary nor sufficient for thermodynamic behaviour.16 Most
importantly, he suggests that it might be wrong to think that one kind of limit
is the right one generally speaking, and there is no a priori reason to prefer
that specific limit in every context. Instead, he suggests that we could take the
limit N → ∞ as the most suitable for SGS to recover thermodynamics since
that limit allows us to regain extensivity. For this reason, we can call N → ∞
the ‘gravitational thermodynamic limit’.17,18

Concerning features (4) and (5), i.e. negative heat capacity and the strictly
related instability and lack of equilibrium, the situation is more complex. Are
there equilibrium states for SGS? Callender briefly considers the states men-

14As presented by Chavanis (2002, p. 6): “We shall avoid the infinite mass problem by
confining artificially the system within a spherical box of radius R. It is only under this
simplifying assumption that a rigorous thermodynamics of self-gravitating systems can be
carried out”. The ideal box can be effectively replaced in a more realistic way by a potential
well or tidal force (Yoon et al., 2011).

15The limit is applied to the Hamiltonian H = ∑N
i=1

p2
i

2m
+ 1

2N ∑
N
i,j=1 V (qi − qj).

16See also Butterfield (2011) on limits not being necessary for emergence.
17On the use of the mean-field and N →∞ to regain extensivity and the ability to define

properly thermodynamic quantities, similar to what happens in short-range systems in the
N,V →∞ (constant N/V ) thermodynamic limit, see Padmanabhan (1990) and Katz (2003).
On the thermodynamic limit N → ∞ for SGS see also Chavanis (2006, §7) and Chavanis
(2013, Appendix A). On the use of alternative limits see De Vega and Sanchez (2002, 2006)

who employ the dilute limit N →∞, V →∞, N/V 1/3 = fixed in astrophysics.
18However, Callender is worried that this move could be begging the question since we are

deeming the N → ∞ as the right thermodynamic limit in this context by starting from the
assumption that extensivity must hold. We return to this point and refine this limit in §4.
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tioned before: a Dirac peak in which all the particles sit at the same material
point when the (confined) system is attached to a heat bath, or an endlessly
unbound shrinking-core system when the system is isolated. Should these exotic
and arguably unphysical states count as equilibrium states in any way? Callen-
der does not take a side and instead chooses another route. He suggests that
there is no equilibrium for SGS only if we adopt a strict notion of equilibrium.
That is, he stresses that equilibrium is an idealisation and a matter of scales:
“Equilibrium, in thermodynamics and statistical mechanics, is an idealization.
[...] there can’t really be any truly stationary states. [...] Equilibrium holds only
with respect to certain observables, spatial scales and temporal scales” (Callen-
der, 2011, p. 967). Hence, considering the scales involved in SGS, he suggests
taking the metastable states of the systems as a viable basis for equilibrium.

However, granting that these could be regarded as equilibrium states under
a more liberal notion of equilibrium, we can ask next whether these states are
stable enough to allow for equilibrium in any meaningful way. And, indeed,
later in the paper (§7.3) Callender himself raises the worry that the presence
of negative specific heat could make equilibrium hopelessly compromised for
systems like SGS, and he also questions the very postulation of negative specific
heat: “Are negative specific heats genuinely holding in equilibrium systems? Are
they instead the result of idealisation? Or do they place peculiar constraints on
how can combine thermodynamic macrostates?” (Callender, 2011, p. 978). The
negative heat capacity of SGS and the instability it entails is indeed the feature
exploited by Robertson (2019) in arguing that, even if some sort of equilibrium
could be found, SGS remain unstable and hence non-thermodynamic systems.

Hence it seems that the physics of SGS could to some extent recover features
like extensivity and quasi-equilibrium, but that any genuine thermodynamic de-
scription is prima facie hindered by their inherent instability. The next sections
pick up on the debate presented so far and advance it in several respects.

4 Equilibrium Statistical Mechanics

This section provides a first improvement of the debate so far. The applica-
bility of key features like equilibrium and stability has been questioned in the
context of SGS, hence the applicability of equilibrium statistical mechanics and
thermodynamics has been challenged. Robertson argues that non-equilibrium
statistical mechanics is the only working theory, whereas Callender voices op-
timism about the applicability of some kind of thermodynamics while leaving
some legitimate open questions.

This section advances our understanding of the physics of SGS by arguing in
detail that equilibrium statistical mechanics can be applied to SGS to a certain
scale in a meaningful and useful way. §4.1 defends the scale relativity of equilib-
rium and argues for the applicability of equilibrium statistical mechanics in the
context of SGS by showing how equilibrium and stability can fit into the physics
of SGS in the form of metastable quasi-equilibrium states. Moreover, contrast-
ing Robertson’s claims that (a) SGS physics does not abstract away from the
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micro-details of the systems, and (b) the thermodynamic limit does not exist
for SGS, it shows how macroscopic quantities can be defined within SGS and
also how an appropriate limit for SGS can be found. §4.2 refines the arguments
of the previous subsection. It shows how equilibrium statistical mechanics still
applies to SGS even once we remove crucial idealisations involved in the models
studied in §4.1 and move to more realistic ones. It does so by connecting in
a novel way the physics literature on SGS with the philosophical literature on
de-idealisations. The overall goal of §4 is to clarify which concepts and theo-
ries can be meaningfully applied in the atypical context of SGS, and to present
how equilibrium statistical mechanics can be successfully used in situations in
which we lack conventional equilibrium and negative heat capacity can be in-
stantiated. This analysis also fosters a general reconsideration of concepts such
as equilibrium and stability in statistical mechanics. Building on these results,
§5 shows how part of the physics of SGS presented here can be considered as
thermodynamic in character within a minimal notion of thermodynamics. The
formulation of this framework and the consequent vindication of the notion of
‘gravitational thermodynamics’ is the second main contribution of this paper.

4.1 Statistical physics of idealised self-gravitating systems

Let’s start by stating our position own position in the context of the Callender-
Roberson debate. We agree with part of Callender’s conclusions, in particular
we concur that both introducing short-distance cutoffs to avoid divergence of
the partition function and the phenomenon of ensemble inequivalence are un-
problematic steps. We also adopt for now the proposal of introducing an ideal
box to model these systems to avoid density of state divergence, although the
next subsection shows that things are more complex. We agree with the claims
that extensivity can be regained in the appropriate but unconventional limit
and that metastable states provide a useful basis for equilibrium within SGS,
but we elaborate further on both topics. We also clarify the role of stability and
negative heat capacity, showing that these systems are effectively stable and in
equilibrium at the right scale.

The absence of equilibrium and stability are central to Robertson’s argu-
ment, hence these are our starting points. As maintained by Callender (2001,
2011) equilibrium is generally scale relative, and perfect equilibrium is never
reached even in conventional systems. Temporary fluctuations away from sta-
tistical equilibrium are to be expected and thus real systems are always in
equilibrium relative to a certain scale.19 Drawing on this thesis, our central
points are that (i) equilibrium states can be defined for SGS in the form of
local equilibrium if considered in the appropriate regime and limit, as local en-
tropy maxima instead of global maxima, and (ii) these equilibria are metastable

19This point aligns well with Ladyman’s and Ross’s thesis of the scale relativity of ontology:
“what (really, mind-independently) exists should be relativized to (real, mind-independent)
scales at which nature is measurable.” (Ladyman and Ross, 2007, p. 200). If ontology is scale
relative, then what it is to be equilibrium is to be equilibrium at a certain scale. On scale
relativity see also Franklin and Robertson (2021) and Ladyman and Lorenzetti (2027).
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states which are effectively stable relative to the right scale, as core collapse
is triggered only in certain parameter regimes. While metastability refers to
the stability of these states under minor perturbations, we call these entropy
maxima ‘quasi-equilibrium states’ to stress that they represent local equilibria
that can nevertheless act as proper equilibria over the appropriate time scale,
especially as SGS metastable states have extremely long lifetimes.20

Let’s look at the physics details to ground these claims. The focus is on
isothermal spheres models of SGS.21 In the isothermal model the system is de-
scribed statistical-mechanically by a distribution function f = f0exp(−2j2E),
with f0 and j as constants, and thus possess a Maxwellian distribution of ve-
locities at any point. As shown in the seminal works by Antonov (1962) and
Lynden-Bell and Wood (1968), and reported in Chavanis et al. (2002):

Thermodynamical equilibrium of a self-gravitating system enclosed
within a box exists only above a critical energy Ec = −0.335GM2/R
or above a critical temperature Tc = GMm/2.52kR and is at most
a metastable state, i.e. a local maximum of a relevant thermody-
namical potential (the entropy in the microcanonical ensemble and
the free energy in the canonical ensemble). For T < Tc or E < Ec,
the system is expected to collapse. This is called the “gravothermal
catastrophe” or “Antonov instability” in the microcanonical ensem-
ble and “isothermal collapse” in the canonical ensemble. (Chavanis
et al., 2002, §2.6)22

Note that they call this feature ‘thermodynamic’ equilibrium but what they
are really employing is statistical mechanical equilibrium, as per the definitions
in §2. Indeed the same equilibrium is elsewhere referred to as statistical equilib-
rium (Chavanis, 2006, §4.3), but most importantly this is the kind of equilibrium
calculated e.g. from the phase volume and the distribution function.23

The series of equilibria (E,β) for classical isothermal spheres is represented
in Figure 1, in which the (normalised) inverse temperature η = βGM/R is plot-
ted as a function of the (normalised) energy Λ = −ER/GM2. Functions β and E
are conjugate with respect to the entropy, β = ∂S/∂E. The β/E curve gives us
information about the thermodynamic stability of isothermal spheres. Broadly
speaking, it can be calculated that there is no stable equilibrium state above
Λc = 0.335 and ηc = 2.52, but metastable states allowing for a scale-relative form

20On ‘quasi-equilibrium states’ we follow the terminology by Heggie and Hut (2003).
21Antonov (1962) proved that only spherically symmetrical states can potentially corre-

spond to entropy maxima for these systems, hence only spherically symmetrical solutions
are considered in general. The isothermal sphere is the simplest model of this kind. Cf.
Lynden-Bell and Wood (1968, Appendix II) for the proof.

22Antonov (1962) showed that no globally maximum entropy state exists for particles of
fixed total energy inside a box of finite R. Cf. Lynden-Bell and Wood (1968, Appendix III).

23Physicists working on the subject often call this thermodynamic equilibrium because
they seem to identify thermodynamics with equilibrium statistical mechanics to a certain
extent and because their focus is on studying thermodynamic potentials in equilibrium. Their
rationale for labelling this ‘thermodynamic’ is vindicated within our minimal approach to
thermodynamics introduced in §5.
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Figure 1: Series of equilibria (E,β)
for classical isothermal spheres (a
thermodynamic-kind diagram). (Cha-
vanis et al., 2002)

Figure 2: Basin of attraction in canon-
ical ensemble. Isothermal spheres after
the first turning point of the spiral are
unstable in this ensemble. Depending
on their position on the spiral and the
initial perturbation, they can either re-
lax towards the local maximum of free
energy with same temperature (●) or
undergo a gravitational collapse (△).
(Chavanis et al., 2002)

of stable equilibrium can be found below those points. It is also worth stressing
that the region of negative specific heats between CE and MCE is stable in
the micro-canonical ensemble but unstable in the canonical ensemble (Padman-
abhan, 1990), so we note that the relation between negative specific heat and
instability is not straightforward and the existence of negative specific heat does
not unambiguously block the existence of equilibrium (and on the other hand
also positive specific heat can be defined for these systems).24

Figure 2 illustrates the behaviour of equilibrium states in the canonical en-
semble. The metastable isothermal configurations are only local maxima since
no global maximum can exist for these systems, and the value of energy or tem-
perature is not sufficient to determine the evolution of the systems. A configu-
ration with Λ < Λc or η < ηc can either reach metastable equilibrium or collapse
depending on the position of the system with respect to the local entropy maxi-
mum. Chavanis et al. (2002) studies the second variation of entropy and points
out that isothermal spheres whose initial configuration is in △ undergo collapse
while the ● configurations converge towards an equilibrium state.

This behaviour can be described at different levels of description, which also
corresponds to different levels of precision and complexity. First, we can describe
it within kinetic theory, where the series of equilibria can be calculated with
some difficulty via the Fokker-Planck equation for the one-particle distribution

24More on negative heat capacity in §4.2.
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function f(x,p, t) (Padmanabhan (1990, §4), Chavanis (2006, §4.4, §7)):25

∂f

∂t
+ v∂f

∂x
−∇ϕ∂f

∂v
= C(f), (1)

where v = p/m and ϕ(x, t) is the mean gravitational field produced by f ,

ϕ(x, t) = −G∫
f(y,v, t)d3yd3v

∣x − y∣ . (2)

Second, slightly more easily, we can calculate the variation of entropy within
equilibrium statistical mechanics in the canonical and microcanonical ensemble,
respectively from the density of states g(E) and the partition function Z(β)
(Horwitz and Katz (1977), Padmanabhan (1990)).26 Finally, at an even simpler
and coarser-grained level, we can maximize the thermodynamic potential (Cha-
vanis, 2006, §2-4) and employ Poincaré linear series of equilibria as developed
by Katz (1978, 1980, 2003).27 This method then allows us to analyse the sta-
bility of SGS by focusing on the macro-quantities involved in our diagrams and
on the topology of the curve β/E. Systems described by those parameters are
stable along the curve until they reach a bifurcation or turning point, which is
represented in the diagrams by vertical lines tangent to the equilibrium states
line. We can use this method to study instabilities and predict in which param-
eter regimes they occur, matching the results of kinetic theory and equilibrium
statistical mechanics based on g(E) and Z(β) but wholly relying on macro-level
quantities defined over (scale-relative) equilibrium states within the theoretical
framework of equilibrium statistical mechanics (Chavanis, 2006, §7).28

This presentation shows that equilibrium and stability hold within SGS and
that equilibrium statistical mechanics plays a crucial role in the physics of SGS.
It is also important to stress the long lifetime of metastable states in SGS:29

The lifetime of metastable states (local entropy maxima) scales as
exp(N) due to the long-range nature of the interaction. Therefore,
the importance of these metastable states is considerable and they
cannot be simply ignored. Metastable states are in fact stable and
they correspond to observed structures in the universe such as glob-
ular clusters. (Chavanis, 2005, pp. 135)

The general conclusion to draw is that metastable states provide stable equi-
librium states in SGS within certain parameter regimes and time scales. These
metastable states have long lifetimes compared to the evolution of these systems,
a feature which can be related to the consideration that equilibrium is always

25See also Chavanis (2013).
26More precisely, for instance, Katz (2003, §2) employs a steepest descent technique starting

from the density of states function. See also Chavanis (2002) and De Vega and Sanchez (2002).
27See Heggie and Hut (2003, §17) and Chavanis (2006, §4.7) for an introduction.
28To anticipate, Katz’s theory will provide in Section 5 the basis for the formulation of a

minimal notion of thermodynamics that applies to SGS over merely statistical descriptions.
29See also Katz (2003, §2.6).
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relative to a certain time scale. Hence these technically quasi-equilibrium states
can be regarded as effectively equilibrium states at the appropriate time scale.
Collapses and instabilities take place and play an important role in the dynamics
of SGS, but for the given reasons we can argue that equilibrium and stability can
both be recovered within SGS in certain domains. It is worth noting that two
distinct scales are operating in this context: a time scale (quasi-equilibrium)
and a perturbation scale (metastability). These conclusions contrast Robert-
son’s claims that equilibrium is not attainable within SGS and that only non-
equilibrium statistical mechanics is employed and support instead the thesis
that equilibrium statistical mechanics is applicable in this context, although
this is not the full picture yet.

Having analysed equilibrium and stability, we now point out another key
aspect related to the applicability of equilibrium statistical mechanics to SGS.
As reported in §3.1 Robertson argues that “the thermal physics of SGS never
abstracts away from to macroscopic bulk variables from the microvariables – i.e.
the position and momenta of the individual stars – and probability distributions
over these microvariables” (Robertson, 2019, p. 1795). In contrast, we highlight
how macroscopic quantities actually play a role in the physical picture we have
presented, especially variables such as E, N , and V that are used to define
the density of states Ω(E,N,V ) and entropy S(E,N,V ). These quantities are
central to equilibrium statistical mechanics operations. But the list does not
stop here. As mentioned, Callender (2011) rightly stresses the ability of the
mean-field approximation with N → +∞ to regain us extensivity of energy.30

However, employing this approximation and limit brings more than that. In this
situation, we can define several macroscopic quantities which are characteristic
of the physics of equilibrium statistical mechanics, as Katz (2003, §3.1) remarks:
“Besides E, N, V and S(E,N,V ) there are other thermodynamic functions that
give a physical content to the results [...] in particular the derivatives of S with
respect to E, N, V” such as ∂S/∂E = β, ∂S/∂N = −α, ∂S/∂V = βPb (where Pb

is pressure on the boundary), from which follows:

dS = βdE − αdN + βPbdV or
1

β
dS = dE − α

β
dN + PbdV, (3)

from which we can define T = 1/β (temperature) and µ = α/β (Gibbs chem-
ical potential) which are global thermodynamic quantities of the whole system.
Notice that the partial derivatives must be evaluated at the extremum, which
highlights the role of equilibrium states. Recall that one of the hallmarks of the
problematic nature of lack of extensivity was the inability to derive equations
like (3). We take the definability of these quantities and relations as another
proof of the applicability of equilibrium statistical mechanics over and above
non-equilibrium statistical mechanics. Furthermore, this also supports the claim
that N →∞ should be taken as the salient limit to recover macroscopic quan-
tities within SGS instead of the N,V → ∞ (constant N/V ) thermodynamic

30More precisely, the limit is usually taken with fixed η = βGM/R and Λ = −ER/GM2

(Chavanis, 2006, p. 3127).
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limit. The latter might be the correct limit to adopt for short-range interacting
systems if we want to recover macroscopic quantities, but there is no reason to
believe it is true for every kind of system and thus we should instead be open
to employing different limits in other contexts if we want to recover those kinds
of coarser-grained features. This can help to address Callender’s worry about
the arbitrariness of adopting this limit.31

Wrapping up, we have established several results. We have demonstrated
that equilibrium, stability, extensivity, a viable ‘thermodynamic’ limit, and cer-
tain macroscopic quantities and relations can all be recovered in SGS in certain
regimes and provided certain idealisations. We thus made a strong case for the
viability of equilibrium statistical mechanics in SGS, at least to an important
extent, beyond non-equilibrium descriptions. However, two worries remain:

1. The arguments provided rely on idealised models. In particular, real clus-
ters are evidently not in boxes, but the box idealisation has been adopted
from the outset without clear justification. Similarly, we have so far con-
sidered only collisionless systems. These features are drastic departures
from realistic physical examples of SGS like globular clusters. Hence we
should ask whether they are justified, and what can we learn about actual
systems from those descriptions.

2. This section supported the application of equilibrium statistical mechanics
to SGS, but we were also able to recover certain quantities and relations
that are often characterised as ‘thermodynamic’, and we employed what
can be regarded as a ‘thermodynamic’ type of limit. We ask whether
thermodynamics still has a place in the physics of SGS and which place
can it have, especially since the arguments of this section countered one
of Robertson’s main reasons against the applicability of thermodynamics
(lack of stable equilibrium), and questioned the claim that the physics of
SGS does not abstract away from microdetails.

§4.2 addresses the idealisations, §5 responds to the second group of questions
and proposes a framework that can cash out SGS thermodynamics.

4.2 Removing idealisations

The model in §4.1 relied on the strong assumption that the systems are confined
in a box of fixed volume and a given radius. However, astrophysical systems are
evidently not confined by boxes and there are no real walls against which the
stars can bounce. Furthermore, it is not clear whether there is any kind of strong
external potential that can approximately play the same role and effectively
confine these systems like a box. Hence it is reasonable to question whether this
idealisation is justified. For example, Touma and Tremaine complain that:

31We return to the justification of this limit in §5. In that section we also explain why the
N →∞ limit deserves the name of thermodynamic limit.
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To make progress, the usual approach is to introduce artificial cutoffs
by confining the N-body system in a spherical box [...] Although
instructive and elegant, these models leave one with the nagging
question of what all of this has to do with actual self-gravitating
systems in the real world. What remains at the end of the day
are robust results on the thermodynamics of artificially imprisoned
and mutilated self-gravitating systems, more tentative and largely
numerical results on the evolution of realistic systems, and heuristic
rules relating the properties of the former to the latter. (Touma and
Tremaine, 2014, p. 2)

The box idealisation is important because it ensures that the model displays
meta-stable equilibria as we state in more detail below. Moreover, in §4.1 we did
not consider the possible impact of collisions, and we may ask whether factoring
collisions in would hinder stability and equilibrium. If these idealisations are
not justified then it is not clear whether we are learning anything useful about
real systems. To tackle the issue we provide a clear criterion for testing the
justifiedness of an idealisation in the form of Earman’s principle (as Jones (2006)
and Landsman (2013) call it) and apply it to our case study. The principle
provides a necessary (but not sufficient) condition for successful de-idealisations
that is particularly useful for our analysis, hence we use it as a benchmark.

Earman’s principle: “No effect [predicated by a model] can be
counted as a genuine physical effect if it disappears when the ideal-
izations [of the model] are removed”.32 (Earman, 2004, p. 191)

In particular, since the application of equilibrium statistical mechanics advo-
cated in §4.1 was based on showing that equilibrium and stability hold for SGS
in the right regime, in what follows we test whether equilibrium and stability
disappear once we remove the box idealisation and we factor in the effects of
collisions on the evolution of SGS. We first present qualitatively the effects of
these idealisations on SGS models under different conditions to show how they
influence the case study and then analyse what happens when we remove the
idealisations. We argue that metastable quasi-equilibrium states do not dis-
appear after relevant de-idealisation, rather they are still present in the more
realistic King models and are also displayed by the core of real globular clus-
ters, which approximate the isothermal models of §4.1. Hence, by Earman’s
principle, these observations support the validity of the conclusions of the pre-
vious section. Additionally, this analysis provides a more refined account of how
equilibrium statistical mechanics applies to SGS.

We start by highlighting that the box idealization has clear effects on SGS
models under certain conditions. If we model SGS as systems confined in a box
that allows the stars to bounce against the walls without losing energy, then we
can always make the system stable and in equilibrium by restricting the radius
of the box enough (Heggie and Hut, 2003, p. 177). If the radius is small enough,

32As quoted in Fletcher (2020, p. 5).

17



kinetic energy dominates and the effect of gravity is negligible, thus the system
behaves like an ideal gas and is not in virial equilibrium. As Heggie and Hut
(2003) remark, systems in these models are stable, as proved by Lynden-Bell and
Wood (1968). Thus, if the box is small enough the behaviour of the system is
heavily influenced by it and equilibrium statistical mechanics ‘trivially’ applies.
What about bigger boxes?33 If the box is large enough then the stability depends
less trivially on the energy of the system, as per Figures 1 and 2 above. If the
energy is high enough, then as before the kinetic energy dominates over the
gravitational effects and we have metastable quasi-equilibrium states as argued
in the previous subsection. However, the idealisation is still influencing the
model’s behaviour and thus it is reasonable to inquire about its justifiedness.
Finally, in the isothermal models of §4.1 there was no mention of collisions and
interactions between stars, and collisionless evolution naturally renders stability
easier to secure. It is reasonable to ask whether taking into account interactions
makes stability unattainable.

Let’s then follow Earman’s principle and analyse what happens once we de-
idealise. The first step we take in the removal of the box idealisation is to employ
the King model instead of the isothermal sphere model confined in a box (King,
1966). We adopt this model because it can be regarded as the simplest kind of
realistic model of a globular cluster that is not artificially confined and does not
have pathological behaviour like the infinite mass of the basic isothermal model
(Elson et al., 1987). Adopting this model is thus the easiest way to de-idealise
the model studied previously to apply Earman’s principle.

In a nutshell, the King model is a spherically symmetric modified isothermal
model. In this model, stars are not mechanically confined by any boundaries
and are allowed to escape (although the system is still generally bound gravi-
tationally). However, the system is still parametrised by a radius to avoid the
problem of infinite mass and the divergence of the density of states: if stars
that evaporate are still considered in the system, then the system’s extension
will tend to infinity and the density of states will diverge making the statisti-
cal mechanical description not well-defined. To make the system statistically
tractable, the model introduces a cutoff radius which is determined by the es-
cape energy of the high-energy stars that evaporate (Meylan and Heggie (1997),
Chavanis (2006)). The distribution function of the King model is:

f =
⎧⎪⎪⎨⎪⎪⎩

f0(exp(−2j2E) − exp(−2j2E0) if E < E0,

0 if E > E0,
(4)

where E0 is the escape energy. The model has a cutoff radius and a core or
King radius r0 defined by r0 ≡

√
9σ2/4πGρ0 where ρ0 is the central density

and σ is the dispersion. r0 is “the radius at which the projected density of
the isothermal sphere falls to roughly half of its central value” (Binney and
Tremaine, 2011, p. 305). We thus have a cutoff radius to allow us to model the
system statistical-mechanically but we don’t have a confining box anymore.

33For a more quantitative description of the scenario see Heggie and Hut (2003, §8, §17)
and Padmanabhan (1990, §4.4).
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King models are important and widely used in the physics of SGS as they
are well-confirmed experimentally and thus realistically model globular clusters
(Elson et al., 1987). King models also approximate more recent and developed
‘lowered isothermal’ models that fit observational data even better (Gieles and
Zocchi (2015), Zocchi et al. (2016)), but are more tractable.

What happens to these systems now that the box is removed? We focus
on globular clusters in the King model and present their evolution taking also
into account the effects of collisions and interactions. These models behave like
real globular clusters, and these astrophysical objects are believed to naturally
tend towards core collapse in normal conditions once encounters take place. But
let’s first distinguish two time scales, the crossing time tcross = R/v relating size
of the system and velocity of stars and the relaxation time trelax ∼ 0.1N

lnN
tcross,

where N is the number of stars in the system. The crossing time is the time
needed for a typical star to cross the galaxy once and is “the shortest time scale
on which the system as a whole can react to global changes in its potential”, the
relaxation time is “the time scale in which the cumulative effect of two-body
encounters can alter the individual stellar orbits significantly” (Elson et al.,
1987, p. 566). The relaxation time is significant for globular clusters and on
this time scale encounters drive the evolution of stellar systems by different
mechanisms (Meylan and Heggie (1997), Binney and Tremaine (2011, §7)).

The evolution of globular clusters is mainly driven by two-body relaxation,
a type of gravitational encounter. These encounters, together with other pro-
cesses, drive the system towards states with denser cores and low-density halos,
which also have higher entropy. Some of the other mechanisms involved are the
following. First, due to the equipartition of energy (and the virial theorem),
massive stars with less kinetic energy fall deeper into the gravitational potential
well while less massive stars diffuse towards the outer parts, bolstering the core-
halo structure.34 Second, encounters lead to evaporation, that is the stars with
higher velocity can escape the cluster, as mentioned earlier, decreasing the total
energy. Third, within realistic globular clusters, the tidal field of the galaxy also
has a role in evaporation, as it strips away stars from the clusters. Relatedly,
star escape is also enhanced by tidal shocking.35 The effect of evaporation is
particularly relevant for clusters with concentration parameter c < 2.1 (Inagaki,
1988). The concentration parameter characterises the profile of the King model
and is c = log(rt/rc), where rt is the truncation radius and rc is the core radius.

Hence the system naturally slowly evolves towards a core-halo structure with
a progressively shrinking core, and overall there is a decrease in the radius of
the cluster and an increase in the concentration parameter c. For c < 2.1 the
cluster follows the King sequence closely, whereas for larger values of c the
King models become unstable.36 This instability, powered by the negative heat

34However, note that mass segregation is not necessary for core collapse, as collapse can
take place even in systems composed of stars of equal mass (Heggie and Hut, 2003).

35On the effects of evaporation see in particular King (1966), Chernoff et al. (1986), Elson
et al. (1987, §2), and Spitzer (1987, §5).

36As Elson et al. remark: “This is in reasonable agreement with observations of most
globular clusters, as well as with numerical calculations of globular cluster evolution in the
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capacity, sets the final stage of the core collapse in the form of gravothermal
(or isothermal) collapse (Chavanis, 2006, §4.9-4.10).37 Following this runaway
process, the system collapses up to a point in which binary stars’ interactions
emit enough energy to make the system re-expand and this triggers gravothermal
oscillations.38

Does this prove that realistic SGS such as globular clusters are essentially
always unstable and not in equilibrium as they constantly evolve towards core
collapse? The answer is no. These effects take place relatively slowly and on
the relevant time scale these systems progress through a series of metastable
quasi-equilibrium states. For instance, as Chavanis (2002, p. 33) remarks:
“evaporation is a slow process so that a globular cluster passes by a succession of
quasi-equilibrium states corresponding to truncated isothermals”.39 Elson et al.
(1987) raise a similar point. They first claim that stars in the high-velocity tail
of the clusters are continuously torn out by the tidal field of the galaxy, causing
the shrinking of the radius and the increase in c, but then they point out that
“Although a cluster never attains a final equilibrium state, its evolution can
be represented as a series of near-equilibrium configurations described by King
models” (Elson et al., 1987, pp. 568), and stress that this is in agreement
with observations and numerical calculations as long as c < 2.1 (i.e. the stable
regime). Thus, while it is true that these systems naturally progress towards
core collapse and that they are unstable in certain regimes, this does not rule
out the existence of effectively stable equilibria at the appropriate scale.

Hence we can use equilibrium models for relaxed clusters over the relevant
time scale, and these models are useful tools in the physics of SGS. Katz et al.
(1978) build a whole statistical mechanics for these types of models while Katz
(1980) provides a coarse-grained stability analysis for King (and other) models
based on (E,β) diagrams and the Poincaré linear series of equilibria method
presented in the previous subsection (Fig. 3). Therefore we can argue that
features like equilibrium and the use of equilibrium statistical mechanical meth-
ods based on macro-quantities are not mere artefacts of the idealised isothermal
box-confined model described earlier, but rather are available in more realistic
models after de-idealisations. In the case of the King models, the system can
evolve through the diagram through a series of quasi-equilibria as it loses energy
until it reaches a turning point, which is represented in our diagrams by vertical
lines tangent to the equilibrium states line. At that point, it loses stability.

Before concluding, two other points are worth mentioning to make the ar-
gument of this subsection even more robust. First, the analysis by Katz et al.
(1978), which starts from the premise that models like the King one are defi-

Fokker-Planck approximation, which show that an evolving cluster follows the King sequence
closely as long as c < 2.1” (Elson et al., 1987, pp. 568-9).

37See also Chavanis et al. (2015, p. 5) for a description of self-gravitating systems within
the King model (i.e. without the box). It should be noted that the same phenomenon happens
in the box-confined idealised case when the box is big enough that kinetic energy does not
dominate and thus it becomes entropically favourable to form a core-halo structure.

38See Heggie and Hut (2003, Part VIII) on post-collapse evolution. Two classic works on
the topic are Cohn and Hut (1984) and Hut (1983).

39See also Katz (2003, p. 255) who makes the same point within King models.
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Figure 3: Series of equilibria (E,β) for different kinds of models. (Katz, 1980)

nitely more realistic than artificially box-confined isothermal models, eventually
shows that “As far as the core of the cluster is concerned, there is little difference
between both models in terms of the stability conditions.” (Katz et al., 1978, p.
309). That is, the very analysis of §4.1 remains valid for the more realistic King
models if we focus on the core. However, this observation is not surprising and
relates to our second point. That is, both King models and even more developed
and realistic models like the ‘lowered isothermal’ models by Gieles and Zocchi
(2015) have isothermal cores.40 Hence, at the right parameter regime, the core
of these clusters approximates the isothermal profile discussed in §4.1 and we can
study the core of these clusters as an isothermal system slowly moving through
quasi-equilibrium metastable states.41

To sum up, we have provided several reasons in support of the robustness
of the analysis carried out in the previous subsection. We have done so by
following Earman’s principle and showing how equilibrium and stability survive
once we move from idealised to more realistic models through de-idealisations.
In particular, we removed the box idealisation and the collisionless assumption.
We demonstrated that King models, which are some of the simplest examples of
non-artificially-confined models, still display quasi-equilibrium metastable states

40See Bertin (2014, §22.3) on the approximate isothermality of the core of Kings models.
41See Heggie and Hut (2003, pp. 169-170) on the interaction between the core and the

outer part of the system in this situation.
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and can be modelled using the kind of coarse-grained methods used in §4.1 even
when encounter effects are factored in. Then we also pointed out that the cores
of realistic models of globular clusters approximate the isothermal sphere profile
and therefore this supported in an even stronger way the validity of the analysis
of §4.1, since the isothermal model employed in that context remains a valid
description of a part of real clusters. Therefore the applicability of equilibrium
statistical mechanics to SGS is not an artefact produced by the unrealistic nature
of the model we employed in §4.1, but rather we are justified to believe that
this theory plays an actual role in the physics of SGS.42

More generally, this subsection has also developed a more refined description
of how equilibrium statistical mechanical behaviour is instantiated by realistic
SGS and has provided a more accurate description of the scales and regimes at
which this analysis is valid within globular clusters.

Before moving on, a note on the role of negative heat capacity within the
statistical physics of SGS is in order. As pointed out in §3.2, Callender (2011)
asks whether negative specific heat would ultimately be unavoidably problem-
atic for equilibrium and whether negative specific heat can genuinely hold in
equilibrium systems. The description of SGS presented in this section dispels
these worries. Core collapse and negative heat capacity are genuinely displayed
by SGS but they only happen in certain regimes. Hence they can still be de-
scribed as evolving through a series of effective equilibria in the right regime
even if negative heat capacity can be instantiated at some point. This uncon-
ventional aspect of SGS further proves how studying these systems allows us to
learn interesting lessons about equilibrium statistical mechanics.

5 Minimal Thermodynamics

The previous sections have defended the applicability of equilibrium and sta-
bility within SGS and the scale at which they hold, and have also shown how
coarse-grained quantities can be defined. This supported the applicability of
the core scaffolding of equilibrium statistical mechanics to SGS. However, equi-
librium statistical mechanics is obviously compatible with thermodynamics and
indeed thermodynamics is usually taken to emerge from it. And, in the last sec-
tion, we have been able to define within the equilibrium statistical mechanics
of SGS quantities, relations and a limit that are usually regarded as ‘thermo-
dynamic’. Here we return to the central question of the whole debate and ask
whether thermodynamics does apply to SGS and, if yes, in what sense. We
propose a minimal framework for thermodynamics and argue that it applies to
the physics of SGS, vindicating a notion of gravitational thermodynamics.

Briefly put, our thesis is that a minimal notion of thermodynamics applies
to SGS because we can model them via macro-quantities and we can use these
quantities to deliver higher-level non-statistical explanations. Minimal thermo-
dynamics is not an additional theory but rather an additional level of description

42Another realistic case in which the equilibrium statistical description and the series of
equilibria is valid is studied in Bertin and Trenti (2003) for partially relaxed stellar systems.
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that can be embedded in the theoretical framework of equilibrium statistical me-
chanics. The quantities of the minimal thermodynamic description are coarse-
grained quantities like energy, temperature and entropy that can be derived
within equilibrium statistical mechanics but can enter higher-level explanations
of the behaviour of SGS above the mere lower-level statistical mechanical be-
haviour expressed in terms of micro-variables and distribution functions. At the
same time, we argue that minimal thermodynamics is not at the same level of
description as phenomenological thermodynamics, which is even more abstract.
Hence ‘minimal thermodynamics’ captures a distinctive level of description and
layer of explanations. Here is the framework in a nutshell:

I. Quantities: Minimal thermodynamics abstracts away details about the
composition of the system, in contrast to the description of statistical me-
chanics expressed in terms of dynamics of micro-variables. It is based on
macroscopic quantities that are state functions defined within equilibrium
statistical mechanics (E, T , V , ...), often in the limit. Unlike phenomeno-
logical thermodynamics, it is not based on empirically formulated descrip-
tions in terms of δQ and δW involved in transformations on systems.

II. Explanations: Within minimal thermodynamics we can deliver ‘thermo-
dynamic’ explanations based on the behaviour of these macroscopic quanti-
ties. They are formulated within the theoretical framework of equilibrium
statistical mechanics but are higher-level non-statistical explanations.

III. Autonomy: Minimal thermodynamics is partly autonomous from the sta-
tistical lower-level description, although it is based on quantities derived
from it. Minimal thermodynamics concerns the evolution of the macro-
scopic quantities irrespectively from their statistical underpinning.

IV. Trade-off: Minimal thermodynamics explanations and predictions are
simpler but more limited than the statistical mechanical explanations and
predictions of the same phenomenon.

The following table broadly illustrates the relationship between theories and
levels of description in the domain of statistical physics and thermodynamics:
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Theory Level of Description Variables

Phenomenological
Thermodynamics

Empirical descriptions in terms
of macroscopic transformations
on systems

δQ, δW , ...

Equilibr Stat Mech

Minimal Thermodynamics:
Coarse-grained state functions
and relations, etc.

E, T , V , P , S, ...

Equilibrium Stat Mech:
Canonical and microcanonical
ensemble, density of state,
partition function, etc.

g(E), Z(β), ...

Non-Equilibrium
Stat Mech

Evolution of one-particle
distribution functions via
Boltzmann equation, etc.

f(x,p, t), ...

We now show how the minimal framework for thermodynamics just intro-
duced can account for certain characteristic aspects of the physics of SGS. Ap-
plying minimal thermodynamics to our case study is also the best way to spell
out the general description of the framework just presented.

A specific and clear example of the application of minimal thermodynamics
is the descriptions and explanations of SGS based on the diagrams in Figures 1
and 2. Katz (1978, 1980, 2003) developed Poincaré’s linear series of equilibria
theory to analyse the stability of SGS in terms of quantities such as E and β.43

Basically, turning points in the (E,β) phase diagram denotes instabilities:

The stability or the number of unstable modes can be deduced from
the topological properties of series of equilibria, i.e., from purely
thermodynamic considerations (Katz, 2003, p. 241, italics added)

Thus, looking at macro-level quantities provides a platform for developing
an explanation of the stability of SGS and their evolution into a core-halo struc-
ture from a distinctive higher-level perspective. As stressed by Chavanis (2006,
§4.4) and Katz (2003, §2.4, §3.3) the results we obtain with these methods are
compatible with the results obtained via kinetic theory and numerical meth-
ods and thus are in principle derivable also from that more detailed lower-level
perspective. Hence we have at least two distinct dimensions of descriptions
and explanations working at the same time, one characteristically statistical
mechanical and the other thermodynamic, in the sense of being coarse-grained
with respect to micro-variables and e.g. distribution functions.44 This shows
how Katz’s approach adheres to points (I)-(II) of minimal thermodynamics.

Concerning (III), we can point out that these higher-level descriptions and
explanations are partly autonomous from the statistical level: they are based

43Following the approach by Antonov (1962) and Lynden-Bell and Wood (1968).
44More specifically, as mentioned in §4.1, the statistical-based dimension of explanation

comprises both non-equilibrium and equilibrium statistical explanations.
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on a diagram obtained by maximizing statistical entropy and so the (E,β)
description is derived from the statistical mechanical description, but Katz’s
explanation of instability is purely expressed in terms of the behaviour of these
macro-quantities independently from their underpinning. Relating this point
to the literature on inter-level relations in science, this type of independence
from the micro-level could be framed in terms of emergent behaviour, in a sense
of emergence compatible with reduction, as these descriptions are in principle
derivable.45 It could be classified as ‘coarse-grained emergence’:

A coarse-grained description of a system emerges synchronically
upon a fine-grained description, iff the former has terms denoting
properties or behavior that are novel and autonomous with respect
to the latter, and these properties or behavior supervene upon the
behavior of the components of the fine-grained description. (Pala-
cios, 2022, p. 39)

Furthermore and relatedly, concerning point (IV), as Katz remarks the
higher-level explanations are more limited:

The thermodynamic criterion has a number of limitations. One
rarely calculates all the sequences of equilibrium and therefore some
bifurcations may not show up because the branch points are miss-
ing. Thus equilibria might become unstable and the system might
choose to be in a more stable state which has not been calculated.
[. . . ] Another general limitation of any thermodynamic criterion of
stability is that we learn little about the nature of instabilities, trig-
gering mechanisms, and what becomes of stable states which evolve
through a series of quasi-equilibria along the linear series up to and
beyond the limit of instability. (Katz, 2003, p. 245)

However, they are simpler to employ as it is easier to explain the behaviour
and shape of globular clusters by running a stability analysis solely based on the
(E,β) curve than by solving the Fokker-Planck equation. As Yoon et al. stress,
“the thermodynamical approach to describe the self-gravitating system [...] is
useful to understand important physics using much less expensive computational
resources than the numerical simulation” (Yoon et al., 2011, p. 2737). So there is
a trade-off between higher practical utility and less detailed explanations. Also,
the trade-off between more abstract and more detailed descriptions arguably
matches the one we normally find in confronting thermodynamic and statistical
mechanical explanations of the same phenomena, hence this further vindicates
the thermodynamic character of minimal thermodynamics.

The approach just discussed is a specific example, but is representative of
the general fact that in certain regimes SGS can be expressed in terms of macro-
level quantities as presented in the previous section, for instance talking of virial
equilibrium (as 2K + U = 0), negative heat capacity (as CV = (∂E/∂T )∣V < 0),

45See for instance Butterfield (2011) and Franklin and Knox (2018).
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temperature (T −1(E) = β(E) = ∂S(E)/∂E), and relations like dE = TdS −
PbdV +µdN . This relation derived within equilibrium statistical mechanics from
the base micro-level description can be regarded as an alternative statement of
the first law of thermodynamics, although this is not the general first law of
thermodynamics in terms of work and heat introduced by phenomenological
thermodynamics independently from any micro-description, i.e. dU = d̄Q+ d̄W .
This is thus a good example of a relation that is not fully thermodynamic in
the sense of phenomenological thermodynamics but is also not based on micro-
variables, and supports (I). Hence minimal thermodynamics captures a middle
ground description between the two levels.

It is crucial to highlight the role of limits and how their use reinforces our
ability to provide thermodynamic descriptions in SGS. As discussed in the pre-
vious section, we can meaningfully formulate most of these quantities and re-
lations thanks to the application of a limit (N → ∞) which is similar to the
thermodynamic limit. The use of this type of thermodynamic limit is a further
reason to regard this as a kind of thermodynamic level of description, as per
point (I). This consideration also allows us to respond to one of Robertson’s
arguments reported in §3.1. Robertson claims that the inapplicability of ther-
modynamics to SGS is unsurprising in light of the failure of the thermodynamic
limit in SGS. She also stresses that in the limit probabilistic descriptions become
non-probabilistic, certain crucial statistical quantities become extensive, and en-
sembles are equivalent. We showed that, whereas the N,V →∞ (constant N/V )
limit does not work, another thermodynamic limit which allows us to recover
higher-level non-statistical descriptions exists. Hence, on Robertson’s grounds,
a thermodynamic description can be applied to SGS. Furthermore, addressing
Callender’s worry that taking the N →∞ limit as the right thermodynamic limit
for this context could be question-begging, we stress that redefining thermody-
namic relations and equilibrium states in this limit is not a mere philosophical
exercise, but rather allows us to develop useful thermodynamic description like
the one involved in Katz’s stability theory, and so this is a principled choice.

All these things being considered, we highlight how the analysis of this sec-
tion makes clear how the theory of phenomenological thermodynamics is not
suitable for SGS. If we think of thermodynamics in those terms then it is right
to conclude that thermodynamics does not apply to SGS as Robertson argues.
Concepts like thermal contact, work, heat and the idea of gradually changing
external parameters and performing operations on these systems make little
sense.46 Instead, the kind of thermodynamic descriptions we can develop in the
physics of SGS match more with the type of thermodynamic relations we can for-
mulate in equilibrium statistical mechanics. These relations are accommodated
by minimal thermodynamics but are not part of phenomenological thermody-
namics. For instance, as we mentioned, the relation dE = TdS − PbdV + µdN
that can hold for SGS is the specific version of the first law of thermodynamics
that is obtained in equilibrium statistical mechanics. That relation can in prin-
ciple be used to derive the first law of thermodynamics dU = d̄Q+ d̄W as found

46See Heggie and Hut (2003, p. 19) on the lack of handles we have on modelling SGS.
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in phenomenological thermodynamics, but they are not the same identical law,
as one is empirically formulated and the other is derived within equilibrium
statistical mechanics and they are based on different quantities. Furthermore,
focusing on T , we stress that this is the temperature defined via statistical equi-
librium and not temperature as introduced by thermodynamic equilibrium in
phenomenological thermodynamics via the Zeroth law of thermodynamics.

Wrapping up, there is space for thermodynamics in SGS physics even though
the theory of phenomenological thermodynamics does not apply. SGS provided
an ideal case study to develop this original take on thermodynamics. This min-
imal framework for thermodynamics is the most perspicuous and useful way to
think about thermodynamics in SGS especially as it is grounded in physics prac-
tice. Also, describing minimal thermodynamics as a kind of thermodynamics
vindicates the ‘thermodynamic’ label used by physicists in talking about ther-
modynamic methods in statistical SGS physics.47 More broadly, adopting this
framework clarifies how kinetic theory, equilibrium statistical mechanics, and a
kind of thermodynamics embedded within the theoretical frame of equilibrium
statistical mechanics are all employed at different levels in the physics of SGS.
Every one of these three levels is equally justified and interpreting the physics of
SGS leaving out one of these dimensions of description and explanation would
miss something about our understanding of these systems.

6 Conclusion

We have shown that equilibrium statistical mechanics and a minimal notion of
thermodynamics based on coarse-grained quantities and explanations can be
applied to self-gravitating systems. This analysis accounts for scientific prac-
tice and improves our understanding of the physics of SGS. More generally, our
proposal sheds new light on concepts such as equilibrium and advances a new
useful conceptualisation of thermodynamics standing in between statistical me-
chanical and phenomenological thermodynamic descriptions, which is also not
agent-centric, unlike the notion of thermodynamics as control theory.

Looking at future applications, this minimal conception of thermodynamics
can help us understand other areas of physics, such as the physics of stars,
which shares important similarities with the physics of SGS. Statistical physics
can be employed to model stars, but features like stability and equilibrium
work in peculiar ways and thermodynamics is usually applied only in a limited
way. Another area in which statistical physics can be useful is dark matter.
For instance, Chavanis et al. (2015) model dark matter halos using the King
model. These systems bear interesting similarities with the SGS studied here.
Finally, there are several other areas where long-range interactions are involved,
including two-dimensional or geophysical fluid dynamics and plasma models.

47For instance Chavanis (2006) distinguished between the thermodynamic approach used
by Lynden-Bell and Wood (1968), Padmanabhan (1990) and himself and the statistical me-
chanical approach starting by the density of states or partition functions. We vindicate this
classification but we reframe it in clearer terms.
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