
From Explanations to Interpretability and Back

Tim Räz∗

March 4, 2024

Written for: Juan Durán and Giorgia Pozzi (Eds.): Philosophy of Science for
Machine Learning: Core Issues, New Perspective, Synthese Library.

Abstract

This chapter discusses connections between interpretability of machine
learning and (scientific and mathematical) explanations, provides novel
perspectives on interpretability, and highlights under-explored issues. In-
terpretability types are proposed: kinds of interpretability should be dis-
tinguished using both the parts of ML we want to explain and the parts
of ML we use to explain. It is argued that not all explanations are con-
trastive, and that we should also consider contrasts with respect to models
and data, not only with respect to inputs. Theoretical explanations are
highlighted; they include issues like generalization, optimization, and ex-
pressivity. It is proposed that there are two threats to the objectivity of
explanations: One from radical subject-dependence, the other from a lack
of factivity. Finally, pluralism is advocated: There are different notions
of interpretability and different notions of (scientific and mathematical)
explanations. However, the heterogeneity of one area does not transfer to
the other in a straightforward manner.

Keywords: interpretability, scientific explanation, mathematical explanation,
understanding, XAI, pluralism, machine learning

1 Introduction
This chapter discusses connections between the interpretability of machine learn-
ing models from computer science on the one hand, and scientific and mathe-
matical explanation from philosophy of science on the other. Both notions have
been discussed for decades in their respective fields, but the relation between
them has only been explored in the last couple of years. Prima facie, it makes
sense to look for connections: Interpretability is concerned with explaining phe-
nomena that arise in machine learning, and it would be useful to know what

∗University of Bern, Institute of Philosophy, Länggassstrasse 49a, 3012 Bern, Switzerland.
E-mail: tim.raez@posteo.de

1



such explanations should look like. Also, if explanations of ML phenomena ex-
ist, it should be of interest to philosophers of science to determine whether these
explanations conform to a mode of explanation they are familiar with, or else
to characterize the novel explanation type. Thus, looking for connections can
be fruitful for both parties.

This chapter provides novel perspectives on interpretability (see the next sec-
tion for a working definition) and highlights under-explored issues. One general
theme is to steer a middle course between extreme positions on interpretability
and explanation. For example, it is argued that while we should not strive for
one, homogeneous notion of interpretability, there is hope that we can prevent an
excessive proliferation of different notions. Then, interpretability should allow
for a certain context- and audience dependence; interpretability has a psycho-
logical dimension. But we should not view interpretability as purely subjective
and untethered by facts. Finally, the focus on explanations does not mean that
the twin notion of understanding is not important (see the chapters on under-
standing in this volume). Understanding is highly relevant to the notion of
explanation, and where it is not, there is room for a complementary role of the
two notions.

Here is a section-by-section overview of the chapter. 2. Preliminaries: I in-
troduce working definitions of the key notions of explanation and interpretability
and provide a very brief overview of supervised learning. 3. Types: I propose
to distinguish kinds of interpretability using the parts of ML we want to ex-
plain, and also the parts of ML we use to generate the explanation; this leads
to interpretability types. 4. Contrast: Contrastive explanations are useful.
However, not all explanations are contrastive. Also, not only contrasts with
respect to input values matter, but also contrasts with respect to models, data,
and other parts of ML. 5. Context: A certain extent of context dependence
of interpretability is useful or even necessary, but radical context dependence
goes too far. 6. Theoretical explanations: Explanations of general or theo-
retical phenomena are under-explored. They include issues like generalization,
optimization, and expressivity 7. Levels: If there are explanations on different
levels of generality, it is useful to explore how these are related. 8. Objectivity
and Idealization: There are two threats to objectivity: One from radical subject-
dependence, the other from a lack of factivity. Both cannot be fully avoided. 9.
Pluralism: There are different notions of interpretability and there are different
notions of (scientific and mathematical) explanations. The heterogeneity of one
area does not transfer to the other in a straightforward manner.

2 Preliminaries
In this section, I provide working definitions of the notion of explanation as used
in philosophy of science (Sec. 2.1), of interpretability as used in computer science
(Sec. 2.2), and of the most important aspects of machine learning, supervised
learning in particular (Sec. 2.3). These definitions constitute stepping stones
for the subsequent discussion.
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2.1 Explanation
Scientific explanations have been an important topic in philosophy of science
since Carl G. Hempel’s (1948) work on the Deductive-Nomological (DN) theory
of explanation (see Woodward and Ross 2021 for an overview of scientific expla-
nations). It soon turned out that the DN model (or theory) is not an adequate
theory of explanations (Ibid.). Despite efforts during the ensuing decades, no
universally agreed-upon theory of scientific explanation has emerged; more on
this in Sec. 9. I will use the following working definition. A scientific expla-
nation is an answer to a why-question of the form “Why φ?”, or “Why is it the
case that φ?” The idea to characterize explanations in this way goes back to
van Fraassen (1980); Bromberger (1966). Note that requests for explanations
can take other forms, e.g., that of a request of an explanation-how. The en-
tity φ to be explained is called explanandum, while the answer to the question,
the entity doing the explanatory work, is called explanans. Take the following,
classic example: “Why did the window shatter?” The explanandum is the event
that the window shatters. A possible answer is: “Because a rock was thrown
at it.” In this case, the explanation is causal, because the explanans consists
in citing a cause of the explanandum. Not all explanations are causal; there
are also structural, statistical, mathematical explanations, which are based on
non-causal explanatory relations; examples are given below. For an in-depth
discussion of mathematical explanations of ML phenomena see chapter 6 in
this volume. Also, explanations may not come in the form of an answer to a
why-question; the working definition is a first approximation.

2.2 Interpretability
Interpretability is the problem of understanding properties of ML models, or of
classes of ML models, possibly relative to some particular dataset, or to some
type of data (see Biran and Cotton 2017; Adadi and Berrada 2018 for computer
science surveys and Beisbart and Räz 2022 for a philosophical survey). Research
on interpretability encompasses a characterization of what we mean when we
say that we want to “understand some aspect of an ML model”, a characteriza-
tion of the properties we want to understand, and the formulation of methods
that provide understanding of these properties. Research on interpretability
thus encompasses both conceptual problems, such as saying what “understand-
ing a phenomenon” means in general terms, and technical problems, such as
formulating methods that provide understanding.

This admittedly vague definition of interpretability does not necessarily cap-
ture how the notion is used in computer science. One of the goals of the chapter
is to introduce useful distinctions that help to clarify the landscape of inter-
pretability, to distinguish different kinds of interpretability, and to point out
connections between different areas of research in computer science that are
traditionally not taken to be concerned with interpretability. Note that I will
not discuss the notion of explainable AI (XAI) separately from interpretability;
rather, questions and methods of XAI are subsumed under interpretability (see
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Beisbart and Räz 2022 for a discussion of the relation between interpretability
and explainability).

2.3 ML
The focus of the chapter is on supervised learning, one important kind of ma-
chine learning (Hastie et al., 2009). The goal of supervised learning is to con-
struct a function F that predicts values ŷ (outputs) of variable Y based on
values x (inputs) of variable X. Predictions are written with a hat, ŷ ∈ Y , and
ground truths, which are part of the dataset, without a hat, y ∈ Y . In order
to construct such a model, a dataset D = {(xi, yi), i ∈ 1, ..., n} is used. D is
sampled from a system in the world S, such that the xi ∈ X are instances of the
variable for which we want predictions, and yi ∈ Y are instances of the variable
to be predicted. For example, the xi could be images of different animals, yi
would be correct labels of the animals depicted (yi ∈ {cat, dog,...}) and the
problem would be to predict which animal is depicted in a given image.

The idea is to let a model M learn the function F : X → Y , thus ap-
proximating the relation between X and Y encoded in D. More specifically,
M constructs an F that minimizes the error on instances in D according to
some loss function. The function F can be seen as a property (the input-output
profile) of the model M . The model M “learns” F through some optimization
procedure O. Learning means that the parameters of M (model parameters)
are adapted such that the distance between F and D is minimized as much as
possible. In order to check whetherM has succeeded in approximating the data,
the dataset D is usually split into a training and a test set. The training set is
used to learn the function F ; the test set is used to check whether the learning
was successful, that is, whether F actually approximates D on samples not used
in constructing F . An ML model M is successful relative to a dataset D if it
has a high accuracy (small loss) on the test set. To return to an example, an
ML model has successfully learned to predict (or classify) animals if it is able to
predict, with high accuracy, animals depicted in images the model has not seen
during training. A model that succeeds in doing this is said to generalize well.
The most important aspects of supervised learning are summarized in figure 1.

S D F M O
sample approx compute learn

Figure 1: Components of supervised learning. Legend: S – System to be mod-
eled; D – dataset with structure {(xi, yi), i ∈ I} sampled from S; F : X → Y
– function approximating the relation D; M – ML model computing F ; O –
optimization procedure for M to approximate F .

This overview is very general and incomplete. More can be said about
which model is appropriate for which task. For example, while deep neural
networks (DNNs) may be appropriate for unstructured, high-dimensional data,
other models (random forest, boosted trees) may be more appropriate for tab-
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ular data, where individual variables have an “intuitive meaning” (see LeCun
et al. 2015; Goodfellow et al. 2016; Hastie et al. 2009 for details). The same ist
true for finer points concerning architecture, hyperparameter tuning, optimiza-
tion procedures, and so on. Then, supervised learning is not the only learning
paradigm; there are also unsupervised learning, reinforcement learning, and gen-
erative modeling. Also, classical supervised learning may no longer be the most
successful paradigm in view of self-supervised large language models. Finally,
the situation as depicted in the figure lacks context. ML, and interpretability,
are affected by issues such as: What kind or class of ML model is used in what
empirical context? What is the goal of the use of an ML model (use in natural
science, public administration, ...)? Who is affected by model output (directly
affected decision subjects, indirectly affected by consequences of ML models,
...)? The discussion below will fill in some of these aspects.

3 Types
How are interpretability and explanations related? Simply put, there are differ-
ent ML phenomena we want to understand, and understanding may be provided
by explanations of these phenomena (see Lipton 2018; Zednik 2021; Creel 2020).
We have just seen (Fig. 1) that supervised learning has different parts. A simple
consequence of this is that different explanations may be appropriate for phe-
nomena from different parts of ML, and that different explanations correspond
to different kinds of interpretability. How should different kinds of interpretabil-
ity be classified or distinguished? The simplest way is to distinguish them by
the part of ML they belong to. For example, a well-known distinction (Lipton,
2018) is between post-hoc interpretability, which concerns properties of the pre-
dictor function F , while transparency concerns properties of the model M , e.g.,
its parameters.

In this section, I propose a simple refinement of this well-known idea. The re-
finement is based on a systematic use of the explanandum-explanans distinction.
The idea is to distinguish kinds of interpretability by specifying not only their
explanandum type, but also their explanans type. Recall that the explanandum
is the property or phenomenon we want to explain, while the explanans is what
is doing the explanatory work. To specify the explanandum and explanans type,
we state which ML part they belong to; see figure 1 for the parts. If we write
the explanatory relation between explanandum and explanans as �, we can
specify an interpretability type in the following form:

explanans type � explanandum type. (1)

The idea of specifying an interpretability type in this way is borrowed from
mathematics. To define a mathematical function, one first specifies a domain
and a co-domain (target). For example, a metric on X is a function d : X×X →
R≥0, such that ... . The domain and target do not (in general) determine the
function, but they tell us where it lives. This, in turn, tells us about certain
properties of the function. For example, the domain of a metric makes sense
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because we want to examine how close pairs of elements of X are, and we want
closeness to be measured on a scale of non-negative real numbers. Functions
not defined on this kind of domain and target cannot be metrics.

Here is how this translates to interpretability. Assume that we want to
explain a particular output ŷ ∈ Y on the basis of a given, trained model M ,
but we do not want to take the optimization procedure into account. Then
the explanation we are looking for has interpretability type M � ŷ, where
ŷ ∈ Y . Note that this is the usual setting of many XAI methods, such as
saliency maps. If we want to explain properties of the predictor function in
terms of the model and the optimization procedure, then we are looking for
an explanation of the type {M,O} � F . This is the setting of the so-called
Information Bottleneck (IB) method, which examines learning phases of models
to illuminate the generalization properties of DNNs (see Shwartz-Ziv and Tishby
2017, and Räz 2022 for a philosophical discussion).

Why is it useful to distinguish interpretability types with relation (1)? First,
we can capture commonly discussed kinds of interpretability. For example, the
distinction between understanding of an ML model and understanding with an
ML model can be rephrased as: if we are after (explanatory) understanding of
the model, the explanandum type will be in the set {F,M,O}. Understanding
with the model, on the other hand, would be provided by an explanandum type
in the set {D, S}, while the explanans type should include one of {F,M,O}; oth-
erwise, it would be an explanation without ML. Second, and more importantly,
interpretability types can help us draw finer distinctions and clarify misun-
derstandings. As mentioned above, the distinction between transparency and
post-hoc explanations was introduced by Lipton (2018). On the basis of inter-
pretability types, we can refine this idea as follows. We may be in a situation
in which we have access to the structure of a model (it is transparent), but we
do not know how it was trained. In this situation, all we can hope to provide is
a post-optimization explanation. This is an interpretability type such that O is
neither in the explanandum nor the explanans. Usual XAI methods, which try
to explain outputs, are of this type, but also methods that try to align inner
parts of a model with human-interpretable concepts, such as TCAV (see Kim
et al. 2018 on TCAV and Räz 2023 for a philosophical discussion). In a different
situation, we may only have black-box access to a model, that is, we can feed
it inputs and get outputs, but we do not know how information is processed.
In this situation, one could try to feed F with novel data D′ and try to un-
derstand its behavior on D′. Such a black-box explanation would be of type
{D′, F} � F . In this case, the interpretability type should not contain M or
O. Finally, we may be in a situation where we are interested in model behavior
and we have full access to both M and O. Explanations of type {M,O}� F
are not concerned with transparency insofar as we do not want to understand or
explain the inner working of a model. It may still be useful, or even necessary,
to use M and O as part of the explanans, and transparency is required for this
interpretability type.

This last scenario is relevant for practical reasons. It is sometimes claimed
that certain interest groups (stakeholders) such as decision subjects and policy
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makers are not interested in the inner workings of ML models. Using inter-
pretability types, one recognizes that this statement is ambiguous and poten-
tially misleading. It may be true that decision subjects primarily want to under-
stand how predictions came about, which means that they are not interested in
M and O as explananda. However, they may still be interested in explanations
of model outputs that draw on M and O, that is, in the interpretability type
{M,O} � F . Such explanations may provide insights that cannot be gained
by a black-box method. Thus, it is a misconception that information about the
inner workings of ML models are irrelevant for decision subjects just because
their requests for explanations may not concern these aspects.

In the above, I have been rather loose in describing interpretability in terms
of both explanations and understanding. While there are differences between
these concepts, at least as discussed in philosophy of science, the concept of
interpretability types may be fruitful when discussing different kinds of under-
standing as well: we simply have to distinguish the object we want to understand
(in parallel to the explanandum), and the means, or information, that we want
to draw on to gain understanding (in parallel to the explanans). The importance
of understanding ML is also emphasized in chapter 9 in this volume.

4 Contrast
Distinguishing kinds of interpretability by type is a useful classificatory device,
but it does not uniquely determine all kinds of interpretability. More fine-
grained distinctions can be drawn by using contrast (see Miller 2018, Sec. 2.3.;
Guidotti 2022). In philosophy, the idea that explanations are contrastive was
probably first emphasized in van Fraassen’s (1980) pragmatic theory of expla-
nation. Discussions of contrast are part of a wider discussion about the extent
to which explanations are context dependent; more on this below. Let us start
with an example (adapted from Skow 2016):

(Q1) Why did Adam eat the apple?

(Q1) is a reasonable request for an explanation, but its scope, the kind of
answer one might be after by asking it, is very wide, and depending on the
situation, different answers may be appropriate. For example, the question can
be read with the following emphasis:

(Q2) Why did Adam eat the apple?

(Q2) focuses on Adam’s relation to the event in question, and an appropriate
explanation focuses on how Adam, as opposed to someone else, ended up eating
the apple. An appropriate explanation could be: “There was no one else there.”
The question can also be read with a different emphasis:

(Q3) Why did Adam eat the apple?
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(Q3) focuses on the apple’s relation to the event, and an appropriate ex-
planation focuses on the choice of apple as opposed to some other food. An
appropriate explanation could be: “There was pie there, but Adam is watching
his diet.” These two examples suggest that the role of contrast is to constrain
the kind of explanatory information we are looking for: (Q2) and (Q3) restrict
the appropriate answer to certain parts of the causal past of the explanandum
phenomenon, whereas the original question (Q1) does not provide such a re-
striction.

Now consider some analogous examples in the context of ML. An important
case is the explanation of a particular outcome ŷ of an ML model M :

(Q4) Why did decision subject i get prediction ŷi?

(Q4) is a request for explanation with no (explicit) contrast. Like (Q1), this
question has a wide scope – in principle, it concerns the entire history leading
to the prediction ŷi. It is possible to formulate more specific versions of (Q4),
which highlight what kind of explanatory information we seek. For example,
assume that F is a binary predictor, and that decision subject i has received a
decision F (xi) = ŷi = 0 based on input xi. Decision subject i may now wonder
what it would take to get a different decision ŷi = 1 from the same predictor
F . This kind of explanation has been discussed as “counterfactual explanations”
of algorithmic output, starting with Wachter et al. (2018) (see Buijsman 2022;
Zerilli 2022 and chapter 6 in this volume for discussions of counterfactual and
manipulationist notions of explanations in AI). We can thus reformulate (Q4)
as:

(Q5) Why did i get prediction F (xi) = ŷi = 0, as opposed to getting prediction
1 from F?

(Q5) can be read as a question about the general properties of F that yield
predictions 0 and 1. Now, (Q5) may still be too general if decision subject i is
only interested in particular contrasts, for example, in inputs that are close to
their input xi according to some metric. This interest may be motivated by the
desire to determine which changes to xi would flip the decision and require the
least effort. In this situation, (Q5) specializes to:

(Q6) Which values x are close to xi (according to some metric), but such that
F (x) = 1?

(Q6) is an even more focused request for information about the predictor F ,
in that information about F “far away” from the value xi is considered to be
irrelevant. Thus, (Q6) excludes a lot of information that would be relevant in
response to (Q4). And, despite not being a why-question, it can be interpreted as
explanatory because, while it is more focused than (Q5), it requests information
about properties relevant to classification, in particular, information about the
ball around xi in input space that gets the same prediction as xi.

Are all explanations contrastive, as suggested by Miller (2018)? Not neces-
sarily. A first example is (Q4), the open-ended request for an explanation of a
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particular output. This is not a contrastive request for an explanation. It may
be objected that while (Q4) is not contrastive, it is not possible to fully answer
(Q4), because it is too open ended. However, if the request only concerns infor-
mation about the predictor F , and if F is sufficiently simple (e.g. a linear model
of few variables), one can provide a full answer by providing a description of F .

A second example of a non-contrastive request requires very specific infor-
mation. A decision subject asking (Q4) may be interested in the input xi that
led to the prediction F (xi) = ŷi:

(Q7) Which input xi yielded the prediction F (xi) = ŷi for decision subject i?

This is not a contrastive request, and it is also not a why-question, which
means that, on the surface level, (Q7) is not a request for an explanation, as
opposed to (Q4). The reason why I would nevertheless suggest that (Q7) is
a request for a (partial) explanation is that (Q7) asks for a specific fact that
partially determines, or is responsible for, the output, which is the phenomenon
we want to understand. It therefore constitutes a request for explanatorily
relevant information. Also, (Q7) is a special case of (Q4), and the answer,
the value xi, does provide a (partial) explanation of the prediction. Note that
accepting (Q7) as a request for an explanation means that we do not strictly
adhere to the working definition of what constitutes an explanation.

Insisting that all explanations are contrastive may also be problematic be-
cause contrasts narrow down the scope of acceptable explanations. Presupposing
a particular contrast leads to the exclusion of certain answers. Let us consider a
different version of (Q4) to see why this is problematic. One legitimate concern
one may have when asking (Q4) is with properties of the decision process, such
as the predictor function F or the model M used to obtain the decision ŷi. One
may ask:

(Q8) What is the predictor function F (or modelM) that yielded the prediction
ŷi?

An answer to this question may give rise to a contrastive follow-up: Once
one knows F , it may be asked why F (or a certain class of predictors) was used
as opposed to a predictor F ′ (or a different class of predictors), which may have
yielded a different prediction. To give an example, in certain contexts, black-
box models may have no advantage in performance over interpretable mod-
els, but their decision process is inscrutable; this is proposed by Rudin (2019).
This alone may constitute sufficient grounds to challenge decisions reached with
black-box models. Compare this to the contrast in (Q6), which focuses on inputs
with respect to the same predictor F . By narrowing down the explanatory re-
quest, this question necessarily excludes other aspects of ML, such as the choice
of model. However, the aspects that are excluded by a contrast may be exactly
those that need to be explained. Instead of asking how the decision subject
should change in view of a fixed predictor, as suggested by the contrast in (Q6),
it may be more appropriate to ask whether a different model should be used, as
suggested by (Q8). In principle, there is no limit on the aspects of ML that can
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and should be scrutinized by asking explanatory questions about them, from the
predictor F , to the model M , to the optimization, data, or even the very fact
that decision are made at all. Thus, an open-ended question, while unfocused,
encompasses more possible contrasts with respect to an explanandum and may
thus be preferable for some purposes.

5 Context
To what extent are explanations context dependent? Context dependence means
that both the interpretation of an explanatory request, and what constitutes an
appropriate answer to this request, depend on the situation in which the request
for explanation is posed. In particular, what the explanatory request is and what
constitutes an appropriate answer, may depend on a) the kind of ML model in
question, b) the empirical domain or problem to which the model is applied,
c) the audience asking the question or receiving the explanation, and d) the
purpose behind the request for explanation, and possibly further factors. The
context dependence of scientific explanations was discussed extensively in the
wake of van Fraassen’s (1980) pragmatic theory; see also Woodward and Ross
(2021, Sec. 6).

Context dependence is an important feature of explanations, but it also cre-
ates challenges. For example, it may lead to a proliferation of explanations, it
can make it hard to specify what counts as a good explanation, or to provide
a “rigorous definition” (Doshi-Velez and Kim, 2017) of explanations. Context
dependence also threatens to trivialize explanations, say, if the person request-
ing the explanation can decide freely whether a given answer is adequate or
not. The challenge is to allow for some context dependence, while not pushing
contextualization too far by letting what constitutes an appropriate explanation
depend on, say, the mood of the person asking for it. The idea that there may
be two kinds of context dependence, one that is mostly harmless, and one that
is more radical, is articulated in Woodward and Ross (2021). Two reasonable
kinds of context dependence have been discussed above. First, if we specify
the source and the target domain of an explanation (Sec. 3), this may yield
several, distinct classes of explanations. Interpretability types place restrictions
on both the model in question, the empirical domain (if any) about which the
question is asked, and the resources that can be used to answer the question.
However, the type does not determine the explanation. The second kind of
context dependence is contrast (Sec. 4). A precise articulation of the explana-
tory question narrows down what kind of explanatory information is considered
relevant. This may yield different kinds of explanations. Also, by narrowing
down what kind of information is considered relevant, contrasts may help with
audience dependence, because different kinds of information are relevant for
different audiences.

Some kinds of context dependence are not captured by contrast and in-
terpretability types. For one, there are more fine grained kinds of audience
dependence; see Langer et al. (2021) for a stakeholder-centric perspective on
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XAI, and Zednik (2021) for a proposal of which parts of ML different stakehold-
ers are interested in. For example, experts and laypeople may have the very
same explanatory request, with respect to the same explanation type, and still
have different explanatory needs: An explanation that is comprehensible to an
expert may be inaccessible to a layperson. This sort of context dependence is
important, but it has traditionally not been central to the discussion of scientific
explanations in philosophy of science, because the subject matter of scientific
explanations are the best explanations that science has to offer to experts.

Audience dependence creates challenges. For example, what is the relation
between an expert explanation, which provides the best available understand-
ing of a certain phenomenon, and an explanation of the same phenomenon for
laypeople? A tempting answer is that a layperson explanation is an explanation
sketch, or an approximation, of a full explanation, where the sketch provides the
gist of the full story (the idea of sketches of historical explanations goes back to
Hempel 1942). The problem with this solution is that if it is not communicated
how a sketch deviates from the full story, the layperson explanation can be mis-
leading, because it leaves out certain aspects of the full story. If, however, it is
communicated how a sketch deviates from the full story, it can lead to the kind
of information overload the approximation was designed to avoid. A different
approach would require that a layperson is given an explanation sketch, or an
approximative explanation, together with expert guidance on the difference be-
tween the sketch and the full story, depending on the goals of the layperson.
This approach has the advantage that the gap between sketch and full story is
bridged in a customized manner. A drawback is that it is much more costly
than a “one size fits all” sketch.

Finally, radical context dependence means that the context dictates not only
how the request for an explanation should be interpreted, but also what con-
stitutes an admissible answer. A version of this problem was raised by Kitcher
and Salmon (1987) as an objection against van Fraassen’s pragmatic theory of
explanation; the account given here draws on Woodward and Ross (2021). Even
the kinds of facts that form the basis of an explanation can be chosen more or
less freely. Radical context dependence does not seem adequate. Take the ex-
ample of a request for information about close-by inputs that flip a prediction,
(Q6) above. Not any kind of information is explanatorily relevant to answer
this question, even if the notion of distance is not completely rigorous. Relevant
information concerns the decision boundary of the predictor, plus, possibly, fur-
ther information about the predictor F . This means that an adequate answer
to (Q6) will have to draw on these facts, which means that what constitutes an
adequate explanation is not completely context dependent. We will return to
the discussion of the subjectivity and objectivity of explanations in Sec. 8.

6 Theoretical Explanations
So far, the examples of ML phenomena and explanation types were mostly
situated at a concrete level of particular predictions. However, explanations
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also occur at a more general and theoretical level. Higher generality means
that the explanandum type is different. For example, we may ask about the
behavior of an entire class of models, without reference to applications or single
predictions. The tools to answer such questions are also different. If, say, our
question is statistical and not tied to a particular dataset, the answer may be
statistical or mathematical as well. Questions and answers of this type result in
theoretical explanations.

A first example concerns the generalization properties of DNNs (see Zhang
et al. 2021 on the concept of generalization, Kawaguchi et al. 2023 for a recent
survey, and Buckner 2019; Räz 2022 for philosophical discussions). Many DNNs
show a very good test set performance, that is, they generalize well. This phe-
nomenon is general in that DNNs generalize well on may different datasets (e.g.
image classification benchmarks), but also for different data modalities, such as
images, text, and so on. This raises the question: Why do DNNs generalize
well? This question is all the more relevant because prima facie, many DNNs
are overparametrized, that is, they have many free parameters in comparison
to the size of training sets, such that one would expect the models to overfit.
This, however, is not the case. So far, there are several proposals and promising
avenues, but no satisfactory answer to this why-question (Zhang et al., 2021).
The generalization phenomenon is statistical in a double sense: The test set per-
formance of single DNNs itself is a statistical property, and the generalization
phenomenon concerns the frequency of this statistical property in applications
of DNNs. This suggests that the eventual explanans will also be statistical in
nature. In fact, many attempts to explain generalization behavior come from
statistical learning theory (see the references given above). However, it is also
possible that the explanans will include domain-specific knowledge, that is, a
characterization of the kinds of features or data for which DNNs work well.
There are different, interesting contrasts for the generalization phenomenon.
One contrast is the question why the models perform well as opposed to over-
fitting the data. A second contrast, which may also be worth exploring, would
be to better understand why DNNs do not perform well in some cases. The
latter contrast may lead to a better understanding of the kind of features that
contribute to good generalization.

A second example of a phenomenon requiring a theoretical explanation con-
cerns the optimization properties of DNNs. The optimization (or learning)
process used to train DNNs is usually a version of stochastic gradient descent
(SGD). SGD is used to modify the weights of DNNs through backpropagation.
There are many open questions regarding the optimization of DNNs. Usually,
the optimization problem to be solved by DNNs is non-convex: if the error
landscape is optimized locally using SGD, there is no guarantee that one ends
up at a global minimum. Thus, the question arises: Why are DNNs optimized
with SGD able to find global or close to global minima, as opposed to getting
stuck in non-optimal local minima? This is a request for a general explanation.
There has been interesting and relevant work on this problem, see e.g. Vidal
et al. (2023), but it is still open, like the generalization puzzle. For example,
the optimization properties of special kinds of simple networks (linear networks
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with one hidden layer) have been explored, and it has been shown that for some
kinds of data and architectures, optimization will not get stuck in local minima.
This approach to explaining the optimization behavior of DNNs with “ideal-
ized” models can be interpreted as providing how-possibly explanations (Scholl
and Räz, 2013; Verreault-Julien, 2019, 2023): it is established that the idealized
model (a linear, shallow network) reproduces the behavior of the target system
(deep, non-linear neural networks), for reasons that are mathematically well un-
derstood, but it is not clear to what extent the same explanations also apply to
non-idealized models. More recent work has been geared towards de-idealizing
these results, e.g., by extending the results to deep and non-linear networks.

A third example where an explanatory perspective may be useful is expres-
sivity; see Gühring et al. (2023) for a recent review, on which the following
draws. Expressivity explores the kinds of functions that DNNs can express
in principle. Given a certain class of functions, such as continuous functions
on a certain domain, it is investigated whether a class of models can approxi-
mate functions in that class. For example, one early universal approximation
theorem states that a continuous function on a compact real domain can be ap-
proximated arbitrarily well by a neural network with sigmoidal activations (see
Gühring et al. (2023) for details and Nielsen (2015) for a heuristic argument why
DNNs are universal function approximators). Results of this kind can, again, be
interpreted as providing how-possibly explanations, because they explain why
these models are in principle capable of approximating a certain class of func-
tions. However, expressivity results do not provide how-actually explanations.
First, the process by which models are matched with functions does not corre-
spond to the actual optimization procedures used in practice. Thus, there is no
guarantee that one can approximate all functions in a class with the optimiza-
tion procedures used in practice. Second, the model architectures used to prove
approximation results can be highly idealized. For example, early universal ap-
proximation theorems with shallow networks needed the number of parameters
to grow exponentially in the size of the input to achieve good approximations.
These results are nevertheless useful, because they may suggest a path from
highly idealized results to less idealized ones, and progress has been made since
the early days. Note that other theoretical works, e.g., no-free-lunch theorems,
may also have explanatory importance (see Sterkenburg and Grünwald 2021 for
discussion of NFL theorems).

7 Levels
The examples of general explanations provided in the previous section suggest
that one can explain ML phenomena at different levels of generality. For ex-
ample, we can ask for explanations of single outputs, but also for explanations
of statistical properties of generalization. If we accept that explanations come
at different levels, the question arises as to how the levels are related. Below
are some examples of relations between explanatory levels, highlighting their
importance (see Dazeley et al. 2021 for a recent proposal regarding levels of
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explanations in AI)
A first example can be gleaned from the discussion of contrastive explana-

tions (Sec. 4). If we use contrast, we can formulate more focused requests for
explanation and exclude certain possible answers as irrelevant. This also means
that an explanation request without contrast is more general than the same
request with contrast. For example, contrastive explanations that only consider
particular values of the predictor function are special cases of an explanation
of the global behavior of a predictor function. The relation between these ex-
planations is deductive: global information about all input-output pairs entails
information about specific counterfactual questions. Thus, if we are able to
provide a global explanation of what a predictor function is doing, then this ex-
planation encompasses everything we may want to know about counterfactuals,
which means that the latter become superfluous. However, global explanations
may not always be available. If a predictor function is too complex, we may
not be able to grasp it, and we have to resort to approximations, or particu-
lar counterfactual scenarios, which are more tractable. Also, it is very hard,
if not impossible, to specify formal criteria of functional interpretability, which
corresponds to a global understanding of predictor functions (Räz, 2024). In a
nutshell, the problem is that such understanding is possible if the corresponding
predictors are simple, but the notion of simplicity itself is heterogeneous and
has no formal characterization.

A second example is the relation between safe application of DNNs in partic-
ular contexts and our understanding of the generalization properties of DNNs.
An explanation of the generalization properties of DNNs would be very useful
because such an explanation would presumably reveal to what extent the appli-
cation of these models allows us to understand or explain empirical phenomena.
An explanation of the generalization properties might provide information about
the contexts in which DNNs rely on spurious features, i.e., have high predictive
accuracy “for the wrong reasons”, and contexts in which DNNs do not rely on
spurious features. Only in the latter case should we consider empirical infor-
mation revealed by DNNs to be genuinely explanatory. The fact that we do
not (yet) have a consolidated theory of deep learning means that the different
explanatory levels are not firmly integrated yet (see Räz and Beisbart 2022, Sec.
5.).

8 Objectivity and Idealization
Are explanations of ML phenomena objective? The answer hinges on what we
mean by “objective”. It is helpful to tackle a different question first: In what
sense could explanations be subjective? One possible source of subjectivity is
the audience dependence of explanations (Sec. 5). Surely, an explanation is only
successful to the extent that people are able to grasp it. If so, this commits us to
a view of explanations according to which at least a certain degree of grasping
(or understanding) is necessary for a successful explanation; more on this below.
However, if this is taken to the point where grasping depends on the individuals
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involved, then explanations become truly subjective. Compare this with sci-
entific explanations: whether or not a (scientific or mathematical) explanation
can be grasped is not a matter of individuals, but a matter of consensus in the
scientific community. This does not make explanations completely objective: If
what constitutes an explanation is determined by a community, the community
can disagree about what can be grasped, and the community can be wrong.
However, it also shows that explanations are not entirely subjective or up to
individuals either. The problem of how to bridge the gap between explanations
for experts and for laypeople was briefly discussed in Sec. 5.

The problem of graspability leads to a general feature of explanations. On
the one hand, it should be granted that explanations do, in fact, serve a psycho-
logical purpose: they should be graspable in principle, after adequate scientific
training, or with guidance. On the other hand, explanations do not reduce to
what has been called a sense of understanding (Trout, 2002). They are grounded
in facts, at least to some extent. Thus, explanations have two main ingredients,
their psychological role, and factivity; see Wilkenfeld (2017) for a discussion
of these two components in the debate on understanding, and Räz (2024) for
an articulation of this idea in the context of understanding ML. If an expla-
nation does not have one of these ingredients to a sufficient degree, it loses its
explanatory status. To a large extent, the challenge of articulating good expla-
nations boils down to the fact that these two ingredients are necessary, but also
in tension.

To see how the tension arises, take the example of explaining single outputs
of ML models (Sec. 4). In principle, we can simply cite the entire history of a
model leading up to the output; this includes the entire model, training process,
training data, and how each of these components were generated. This, however,
is not an explanation because the entire history of an output is not graspable, it
it is too large, which leads to cognitive overload. Thus, certain facts have to be
left out or averaged over. Also, depending on the exact explanatory question,
not all facts are relevant. However, even only relevant facts may lead to cognitive
overload. Thus, usually, idealizations have to be introduced. Idealizations are
deliberate distortions of facts, which allow us to grasp explanations. But every
idealization compromises factivity. Thus, idealization is the second threat to
objectivity.

Some critics have rejected approximative explanations as promoted by XAI
for the very reason that they are necessarily wrong. In particular, Cynthia
Rudin (2019) has argued that explainability methods are inadequate because
they are non-factive. As a remedy, she has recommended to use interpretable
models, such as rules lists, which are inherently and globally interpretable, while
not compromising too much on accuracy. If it is really possible to build glob-
ally interpretable models that show predictive performance similar to black-box
models, they should be preferred. The worry with this approach is that a loss
of predictive performance will be incurred. Such a loss can be interpreted as
a loss of a different kind of factivity, viz. the ability of the model to capture
an empirical phenomenon. Note that recent results suggest that we can expect
similar performance of black-box models and interpretable models at least for
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tabular data (Chang et al., 2021). If we accept these results, then we should
prefer interpretable models.

A second kind of example of explanations relying on idealizations are theoret-
ical explanations (Sec. 6). The expressivity results of DNNs are mathematical
results about the possibility of DNNs to represent certain function classes. At
face value, such results are not idealized, they are mathematical statements,
and contain no falsehoods. Considerations of idealization come in when we ap-
ply these results to DNNs with architectures as used in practice. Very often,
such DNNs will not share some of the properties of the models that are inves-
tigated theoretically. This raises the question as to how the theoretical results
bear on cases in which the assumptions of a theorem are violated. Above, it was
suggested that we can interpret such results as how-possibly explanations. How-
ever, it is not clear whether these can be turned into how-actually explanations,
e.g., by generalizing the mathematical results to more realistic architectures. At
least some recent efforts (cf. Gühring et al. 2023) can be interpreted as working
towards such de-idealized results, including work on the role of depth of DNNs
in expressivity.

All in all, the use of idealizations is standard practice in science, and need not
be necessarily problematic. A minimal requirement for the use of idealizations
is that they should be labeled as such. One danger of idealized explanations
is that even if such labels are provided in the original proposal of the idealized
explanation, such labels are often left out in subsequent work, such that idealized
explanations are interpreted as how-actually explanations.

9 Pluralism
Interpretability is pluralistic if there is not one kind of explanation of ML phe-
nomena, but many. Pluralism with respect to interpretability has been advo-
cated in the computer science literature by Lipton (2018), and also in philosophy
by Krishnan (2020). Sometimes, the advocacy has been accompanied by calls
for a formal definition (Doshi-Velez and Kim, 2017), sometimes with scepticism
as to the possibility of a unified notion of interpretability (Räz, 2024). In the
above discussion, explanation types, contrastive explanations, audience depen-
dence, and different levels of explanation all point towards a certain degree of
heterogeneity. Independently of the situation in computer science, scientific
explanations presumably are also heterogeneous. There are many different pro-
posals of how to define what a scientific explanation is, both in general and in
particular scientific disciplines (see Woodward and Ross 2021 for scientific ex-
planations and Mancosu 2018 for mathematical explanations). Some proposals
may aspire to be generally applicable, but there is no generally accepted theory
of what a scientific or mathematical explanation is, be it in the form of necessary
and sufficient conditions, or in the form of more relaxed “theory of explanation”.
Some very general properties appear to be shared by most explanations, such as
those used as a working definition above (Sec. 2.1), but these are too unspecific
to merit being called a theory.
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What does the state of the philosophical discussion mean for the discussion
about explanations of ML phenomena? A critical stance towards the relevance
of scientific and mathematical explanation for XAI and interpretability is de-
fended by Páez (2019) and Krishnan (2020); see also chapter 9 in this volume.
Even if scientific explanations are heterogeneous, this does not imply that ex-
planations of ML phenomena are heterogeneous as well, simply because ML
does not coincide with science (or math). However, the heterogeneity of sci-
entific and mathematical explanations does have methodological consequences
for the use of philosophical theories of explanation in application to ML. For
example, if we can reconstruct a candidate explanation from ML in terms of a
theory of explanation from philosophy of science, this does not imply that this
candidate is therefore a good explanation, simply because there is no consensus
in philosophy of science about what constitutes a good explanation. Such a
reconstruction may be fruitful in some cases, but not in others. For example,
showing that some mode of reasoning conforms with the DN theory of explana-
tion is not useful per se, because it is known that some candidate explanations
that have the form of a DN explanation are actually not very good explanations
– put bluntly, the DN theory does not provide a useful picture of scientific ex-
planations. For criticism of applying the DN theory in the context of ML, as
proposed by Erasmus et al. (2020) see chapter 9 in this volume.

Now, even if there is no unified notion of explaining ML phenomena, this
does not need to lead to a trivialization of the notion. One could hope that
that for each kind of explanation, we can give a reasonably clear account of why
it is an explanation. Even if there are several kinds of explanations, it is still
possible that we end up with a limited set of reasonable kinds of requests for
explanation, and with a limited set of acceptable answers to each request (see
Räz (2024) for elaboration, and Durán (2021) for the need of a unified picture
of scientific XAI). Of course, right now, such sets have not been identified. If
this could be done, it would amount to what could be called a heterogeneous
theory of explanations. Such a theory, because it is heterogeneous, would pre-
sumably involve distinctions between explanations along some of the dimensions
mentioned above: types, context, contrast, levels, and so on.

Finally, note that ML also has the potential to play a unifying role in pro-
viding explanations of empirical phenomena, by generating explanations with
ML. If progress with our theoretical understanding of ML (Sec. 6) were made,
e.g., with an explanation of the generalization properties of ML, this explana-
tion may tell us something about the features shared by domains in which ML
is successfully applied. This, in turn, might lead to a non-trivial, theoretically-
grounded account of the circumstances in which inductive reasoning, including
scientific explanation, is successful, and also of the circumstances in which it is
not.
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10 Conclusion
To conclude, I would like to stress the advantages of viewing the problem of in-
terpretability from the perspective of scientific and mathematical explanations.
We can view these as the best explanations that science (including computer
science, mathematics, etc.) has to offer. For some ML phenomena, there is
no consensus as to what the best explanation would look like, and for other
phenomena, there are no explanations altogether. In this situation, it can be
misleading to provide explanations based on simplifications and visualizations
that are merely graspable, but do not pay sufficient heed to factivity. It can be
misleading because the simplified explanations may paint an inadequate picture
of the best available explanation of a phenomenon, but also because the best
available explanation may still be very imcomplete. Instead of communicating
in terms of such simplified explanations, it is preferable to try to convey a pic-
ture of the complexity of the best available explanation, and also of the limits
of our current knowledge.
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