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Abstract

Algebraic quantum field theory (AQFT) puts forward three “causal axioms”
that aim to characterize the theory as one that implements relativistic causation:
the spectrum condition, microcausality, and primitive causality. In this paper, I
aim to show, in a minimally technical way, that none of them fully explains the
notion of causation appropriate for AQFT because they only capture some of the
desiderata for relativistic causation I state or because it is often unclear how each
axiom implements its respective desideratum. After this diagnostic, I will show
that a fourth condition, local primitive causality (LPC), fully characterizes
relativistic causation in the sense of fulfilling all the relevant desiderata. However,
it only encompasses the virtues of the other axioms because it is implied by them,
as I will show from a construction by Haag and Schroer (1962). Since the
conjunction of the three causal axioms implies LPC and other important results in
QFT that LPC does not imply, and since LPC helps clarify some of the
shortcomings of the three axioms, I advocate for a holistic interpretation of how
the axioms characterize the causal structure of AQFT against the strategy in the
literature to rivalize the axioms and privilege one among them.

*fcalder@umich.edu

1

mailto:fcalder\protect \protect \protect \leavevmode@ifvmode \kern +.1667em\relax @\protect \protect \protect \leavevmode@ifvmode \kern +.1667em\relax umich.edu


1 Introduction

Philosophers have often praised algebraic quantum field theory’s (AQFT’s)
mathematically precise, axiomatic framework. The theory’s core is to assign to every
open, bounded region of spacetime O a set of observables A(O) describing the
physics in said region. For this paper, every A(O) is a von Neumann algebra that, in
particular cases, can be isomorphic to B(H), the bounded, linear operators on some
Hilbert space H—a structure more familiar from ordinary quantum mechanics (QM).
Although there has been much debate on which formulation of QFT we should use
to address foundational, philosophical, and interpretive questions (Wallace, 2011;
Fraser, 2011; Swanson, 2017), arguably, the fruitfulness of choosing AQFT lies in the
rich and robust framework that its axioms provide.

However, as AQFT’s advocates know, these axioms are very demanding from a
mathematical and physical point of view, so we must be attentive to the role each
axiom plays in capturing the physical features we want a QFT to have. It is then
puzzling that AQFT lays down multiple axioms that prima facie look like they strive
to do the same job—namely, characterizing the causal structure of a theory. The
spectrum condition (SC), microcausality (MC), or primitive causality (PC) are all
deemed causal axioms. From this point of view, it’s not surprising that the tendency
in the literature on relativistic causation in QFT has been to adopt the following
attitude:

Atomistic conception of the causal axioms (Atomistic): One of the
axioms implements relativistic causation in (or characterizes the causal
relativistic structure of) QFT singlehandedly or in the most exemplary
way.

The following passages are evidence of this attitude:

• “[SC] is perhaps the most direct expression of the prohibition of spacelike
processes” (Butterfield, 2007, p. 303)

• “The usual causality postulate which is adopted by practically all authors may
be expressed in the following way...[MC]” (Haag and Schroer, 1962, p. 250).
“the latter axiom [MC] represents the most important specific feature of
relativistic systems” (Horuzhy, 1990, p. 14). MC is still the single, most famous
constraint among physicists, as most textbooks in conventional QFT can attest.

• “the most fundamental causality requirement in both classical relativistic field
theory and relativistic AQFT is the requirement of no superluminal
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propagation. [SC] has sometimes been touted as a prohibition on superluminal
processes, but we will argue that it is no such thing. The proper expression of
the principle of no superluminal propagation in AQFT...is satisfied in models of
AQFT that obey [PC].” (Earman and Valente, 2014, p. 2)1

The first main upshot of this paper is to reject Atomistic: none of these causal
axioms fully explains the notion of relativistic causation appropriate for AQFT, so we
should not rivalize them and privilege one among them. As I will show, there are
two kinds of shortcomings for defending Atomistic. First, the axioms only capture
some (and not all) of the desiderata for relativistic causation that I will state in the
next section. Second, it is often unclear how each axiom implements its respective
desideratum.

The second main upshot is to advocate for the following attitude instead:

Holistic conception of the causal axioms (Holistic): All of the axioms
(and the connections between them) are required to implement relativistic
causation in (or characterize the causal relativistic structure of) QFT.

The cornerstone for Holistic will be a fourth condition, local primitive causality
(LPC) (also called the diamond property in older literature). LPC will embolden
Holistic in two ways. First, LPC does fully characterize relativistic causation in the
sense of fulfilling all the relevant desiderata. Second, it only encompasses the virtues
of the other axioms because it is implied by them. More specifically, I prove that we
can derive it from the rest of the axioms, which are known to be logically
independent. While some readers might take LPC for granted, doing so would
involuntarily assume Haag duality, a problematic assumption from the original
derivation of LPC (Haag and Schroer, 1962). Additionally, this would obfuscate the
connections between the axioms. So, to reiterate, LPC grants us holism in two ways:
by interpreting the axioms as mathematically rigorous but mostly physically intuitive
and interpretatively rich constraints on a QFT, but also by taking them as members of
an axiomatic system.2 As such, my worries driving this paper are very similar to

1I have renamed Earman and Valente’s core causal condition to fit my terminology here. The reader
should bear in mind that the literature on AQFT uses the same terms in different ways.

2As far as I know, there are no other explicit advocates of Holistic. Here are the two most similar
claims I could find: “The principle of relativistic causality [MC] can be put into various mathematical
forms and in terms of various objects: observables, states, elementary observables, corresponding to
projection operators. And it would be hard to say that any particular formulation includes the total contents of
this broad physical principle.” (1990, p. 20, emphasis added). However, Horuzhy is discussing different
ways of expressing the content of MC only. The other claim is the following passage from Rédei
(endorsed by (Hofer-Szabó and Vecsernyés, 2018, p. 17)): “relativistic locality is not a single property a
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those of the creators of AQFT: beyond their mathematical consistency, are these
physically meaningful and well-motivated requirements? Are they interdependent,
and if so, do they codify compatible or rival features of the theory?

The methodology I will adopt to address those questions is that of a diagnostic
that scrutinizes what it means to be a causal axiom. What this means is that to
address a dispute between Atomistic and Holistic, we must go through each axiom
aiming to take the “wide frame allowed by the general principles and, narrowing
the...frame step by step,...look for the neuralgic spots.” (Haag, 2010, p. 243). The
main tools at our disposal are, to borrow the terminology from Peskin and Schroeder
(1995), the three “themes” of QFT: the concept of field, QM, and special relativity
(SR). In other words, an axiom of AQFT should implement the notion of field (or, in
other words, make clear what is local in the sense of situating phenomena in
delimited patches of spacetime, as opposed to global) and have a clear input from
QM and SR. Now, while Earman and Valente (2014) have presented a similar
overview and ended up with a form of Atomistic, another difference between their
diagnostic and mine is a deliberate attempt to be minimally technical, partly because
of how inaccessible the literature on AQFT is, and partly to make the philosophical
stakes of these discussions more salient. But this is not to say that the diagnostic
preceding my discussion of LPC is a mere pedagogical rehashing of the literature:
aside from assuming less from the reader, I will introduce new difficulties for
interpreting the axioms and surface different considerations for thinking about them.
With this in mind, I’ve also relegated the gory details of the proof that the causal
axioms imply LPC to an appendix and technical details that might distract readers
from the argument to footnotes.

2 Four desiderata for relativistic causation

Before moving on with the diagnostic and seeing which axioms have which
symptoms, I should clarify what “relativistic causation” means. At this point, I also
depart from the literature on relativistic causation since the following desiderata are
trying to track the folk notions of causation used by physicists. Contrast this
approach with Butterfield’s (2007), which focuses on the notions of causation that are

physical theory can in principle have but an intricately interconnected web of features. Each of those
individual features expresses some important aspect of relativistic locality, and a physical theory can
in principle have some of these features but not others. A physical theory is in full compliance with
relativistic locality if it possesses all the features in this web” (2014, p. 138). However, the crux of
Rédei’s holism is a unified framework from category theory. Not only can I make a similar claim with
less sophisticated tools, but the holism brought about by LPC partially stems from fulfilling a set of
physically motivated desiderata and not merely from belonging to a cohesive mathematical structure.
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widespread in the philosophy of science literature. Now, the physics literature has
multiple facets of the notion of “causation,” so I will lay down multiple desiderata
for relativistic causation.

First, as a form of “action,” relativistic causation attempts to capture a notion of
(i) locality3 and of (ii) a finite speed of propagation of events:

For the relative independence of spatially distanced things (A and B), this
idea is characteristic: external influences from A have no immediate
influence on B; this is known as the “principle of proximal action
[Nahewirkung],” which is only used consistently in field theory. The
complete abolition of this principle would make impossible...the
formulation of empirically testable laws in our familiar sense. (Einstein,
1948, p. 321-322, my translation)

The worry about the immediacy of the propagation of this kind of influence
encapsulates (i) and (ii) into the preclusion of superluminal signaling, arguably the
most famous notion of relativistic causation. Events are independent in a relevant
causal sense if we cannot connect them with a light signal. That is, we have merely
specified what causal connections cannot be. “Relativistic causation” also includes a
notion of causal dependence, not merely independence (Earman and Valente, 2014, p.
4). Here is an account from another renowned physicist:

In physics, causal description...rests on the assumption that the
knowledge of the state of a material system at a given time permits the
prediction of its state at any subsequent time. (Bohr, 1948, p. 312)

Therefore, (relativistic) causation should also capture an idea of (iii) a deterministic
connection between events. Finally, I will add (iv) respecting the metric structure of
the underlying spacetime since Geroch (2011) has shown that SR is a viable theory
even with superluminal signaling and since SR secures very few of the multiple
locality conditions of AQFT (and the ones implementing SR are independent of the
rest) (Ruetsche, 2021, p. 314). Additionally, some axioms are restricted to Minkowski
spacetime while others only require that the spacetime is globally hyperbolic, so
different metric structures avail different resources to interpret the content of the
axioms.

3“Locality” is said in many ways. Specifically, it’s sometimes used synonymously with “localiza-
tion,” “separability”/“independence,” “no superluminal signaling,” or an obverse of Bell non-locality
(Earman and Valente, 2014, p. 3). From this list, I will discuss the first three. However, I’m not using
the term in the fourth sense, famously absent in quantum theories, especially in QFT.
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3 Symptomatology

3.1 The Spectrum Condition
The first axiom we will consider is the spectrum condition (SC):

SC: (a) The joint spectrum of the infinitesimal generators of translations in
Minkowski spacetime is confined to the forward lightcone. (b) There is a
unique (up to phase factors) vacuum state, which is translationally
invariant and has zero energy-momentum.

In other words, we will only consider states with positive energy-momentum (plus
the vacuum). SC is usually supplemented with a local “counterpart,” the axiom of
covariance, which dictates how the algebra of a given region transforms under the
unitary representations of Lorentz transformations. Since SC and the axiom of
covariance cover the demands of the Poincaré group of SR, including both Lorentz
transformations and spacetime translations, the axiom of covariance is usually taken
as one of the causal axioms of the theory. Now, from this perspective of symmetries,
they are both straightforward applications of Wigner’s theorem: to obtain the
quantum analog of the symmetry group of a classical theory (in this case, the
Poincaré group), take the group’s unitary representations. Thanks to Stone’s
theorem, those unitary representations can be further expressed in terms of their
infinitesimal generators, which, for the translation subgroup, are the key ingredient
for SC. So, the way in which SC implements QM and SR only codifies the geometry
of Minkowski spacetime. That covers the fourth desideratum: SC respects the
structure of (Minkowski) spacetime. What about the other desiderata? And is it not a
shortcoming of SC as a causal axiom that we surely want to be able to claim that
there is some form of “relativistic causation” in AQFT in curved spacetimes?

Let’s start with the first question. SC is fairly silent about determinism, and
although it’s not local, the axiom of covariance is. As for forbidding superluminal
signaling, its role (if it has one) needs to be clarified. SC does not hold for every QFT
since the energy (density) of a quantum field need not be positive (Epstein et al.,
1965). On top of that, the energy-momentum operators do not necessarily coincide
with the energy-momentum (tensor) of the quantum field in question (Earman and
Valente, 2014). Now, SC doesn’t hold for every QFT, but quantum fields obtained by
quantizing classical relativistic fields exhibit no superluminal signaling (Earman and
Valente, 2014, pp. 17-18). Maybe there’s something about field theories in general
precluding superluminal signaling? It doesn’t seem that way since the classical
analogs of SC are not sufficient conditions to prohibit superluminal signaling
(Earman, 2014, pp. 103-105). As for the second question, SC can be stated at every
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point of a curved spacetime (Haag, 1996, p. 338), but (non-unique) generalizations of
restrictions on the energy-momentum of the fields (Curiel, 2017) are extensions from
the classical analogs of SC I just mentioned are not sufficient to prohibit superluminal
signaling.

If SC (a) does not fulfill the goal we would want for a single causal axiom to have
or to have in the most exemplary way, what about SC (b)? SC (b) is sometimes taken
not as a characterization of relativistic causation in AQFT but, ironically, as one of the
ingredients needed to question AQFT’s status as a relativistic theory. One of the
consequences of SC (when supplemented with a condition of “additivity” saying that
observables can be expressed in terms of observables of arbitrarily small regions) is
the Reeh-Schlieder theorem. The theorem claims that if we act on the vacuum
defined by SC (b) with an element of A(O) for some region O, we can generate any
other state. This result is unsettling because it seems that we can measure the energy
of the vacuum in a lab and yet approximate any other quantum state in any other
region of spacetime, even states that do have energy! There are interpretive strategies
and more sophisticated mathematical tools to get out of this problem (Halvorson,
2001; Wallace, 2006; Valente, 2014). Still, they do not change that SC (b) does not
implement the prohibition of superluminal signaling, even if we manage to show that
it does not impede it.

3.2 Microcausality

The second axiom we will consider is the microcausality (MC), Einstein causality, or
local commutativity condition:

MC: A(O1) commutes with A(O2) if O1 and O2 are space-like separated.

Let us unpack this condition: since no physical process can occur along a spacelike
trajectory, no measurement in O1 can disturb the outcomes of a measurement carried
out in O2, and vice-versa. The notion of spacelike separation is tracking the metric
structure of spacetime (and can be extended to locally flat tangent spaces in curved
spacetimes (Haag, 1996, p. 338)), and this condition is clearly local. Now, MC is often
rephrased to say that there would be statistical correlations if we could connect O1
and O2 with a superluminal signal. However we want to read MC, it’s an attempt to
transcribe to the language of operator algebras the passage I cited from Einstein in
the introduction. For that reason, MC is considered a condition of independence or
separability between quantum systems in regions O1 and O2.

Prima facie, MC is a straightforward implementation of relativistic causation in
the sense of no superluminal signaling. That is, MC attempts to capture the first two
desiderata of relativistic causation that I had laid out. Aside from only capturing
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some of the desiderata for relativistic causation in AQFT, this section will show that
MC’s attempt to prohibit superluminal signaling comes with a “morass of
recalcitrant interpretational issues.” (Earman and Valente, 2014, p. 16).

Since the way in which this axiom implements its causal desiderata comes off
badly from my diagnostic, I want to stress its importance for QFT in general before
moving on. First, MC can be easily corroborated for the most common field theories,
or it is a crucial assumption in their construction. Consider a Klein-Gordon field, the
simplest relativistic free field. Then, the commutator of quantized fields operators at
spacetime points x and y vanishes for equal times x0 and y0 (for any spatial
separation x⃗ − y⃗) and spacelike values of x − y. Second, MC can be adapted and
modified to include fields with spin or charge, like the Dirac field, via the
spin-statistics theorem. It is even a sufficient condition to define a Lorentz-covariant
scattering matrix since it is connected to important analyticity properties of the fields
(Duncan, 2012; Weinberg, 1995). It is, then, no surprise that physicists follow
Einstein’s suit in putting MC at the heart of relativistic causation in QFT.

However, MC is not as straightforward as it seems. For it to be a QM-informed
axiom, we must now bite the bullet of not knowing what “measurement” means in a
quantum setting (Earman and Valente, 2014, p. 11). Whatever “measurement” means,
we need observables and states to obtain expectation values. One way to obtain the
theory’s observables is through a quantization procedure of a classical field theory.4

Then, we need a state |Ψ⟩ such that AB |Ψ⟩ = BA |Ψ⟩, where A ∈ A(O1) and
B ∈ A(O2) for O1 and O2 are spacelike separated. Since O1 and O2 are subregions of
the background spacetime M, A(O1) and A(O2) are subalgebras of A(M). Given
this property of isotony and since O1 and O2 are spacelike separated, A(M) should
admit a state. However, it would be absurd that local operations like A |Ψ⟩ or B |Ψ⟩
would alter a physical state for all space and time (Ruetsche, 2011, p. 110).

Despite these problems, MC still seems to be a reasonable axiom for a field theory
in implementing some “separability” of physical subsystems, which, additionally, has
testable consequences in terms of the measurements we can perform in each
subsystem. A reason to probe this further is that, following Einstein’s quotation, the
separability of physical subsystems and the possibility of communicating them are
closely connected, so we need a better grasp of that connection before diagnosing MC
as a causal axiom. I will address those topics separately.

4Since the fields are operator-valued distributions, we also need a sufficiently smooth test function
to smear them before using them in calculations.
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3.2.1 Separability/Independence conditions

This subsection aims to nail down some interpretive difficulties of diagnosing MC as
an axiom in AQFT. Since MC strives to make the separability of quantum field
theoretical systems compatible with the prohibition of superluminal signaling
between them, this subsection sets the stage for my discussion of causation in the
following subsection.

Consider A(O1) ∨A(O2), the smallest algebra generated by A(O1) and A(O2),
where O1 and O2 are spacelike separated. A state ω in AQFT is a linear,
positive-definite functional over the operator algebra. For our purposes, ω(A) is the
expectation value of the observable A belonging to some algebra A. Now, consider a
pair of states ωj acting on A(Oj) for j = 1, 2. Then, we should be able to find a state
ω acting on A(O1) ∨A(O2) such that its restriction to A(Oj) is just ωj. To give an
illustration more familiar to readers coming from QM, if the algebras are matrix
algebras, the composition ∨ can be equivalent to a tensor product, and the
expectation value ω(A) can be calculated using the trace prescription for a density
matrix ρω. In that case, the “restriction” from the global state to the local states
would be taking the partial trace over either one of the subsystems.

The most famous form5 of independence in the spirit of my last paragraph is
statistical independence, which is merely taking the expected values of ω1 and ω2 as
probabilistically independent, that is, ω(C) = ω1(C)ω2(C) for some observable
C ∈ A(O1) ∨A(O2). There is no resulting statistical mixture of the individual states
because they are localized in causally disjoint regions. This form of independence
looks like a straightforward rendition of what we would want the compatibility of
measurements carried out in spacelike separated regions to be since we are breaking
potential correlations between the measurements in both regions. However, for
statistical independence to hold, we need an additional assumption about the nature
of the algebras called the split property, which in turn depends on the fields’ energy
densities having certain properties (Fewster, 2016) different from SC that, though
reasonable, are not always fulfilled. That is, it can be shown that statistical
independence can be derived from MC, but it needs additional assumptions. On
their own, MC and statistical independence are logically independent (Earman and
Valente, 2014, p. 11). Moreover, more general forms of independence that avoid
superluminal signaling do not imply MC (Halvorson, 2007, pp. 753-755).

Still, MC does seem to implement some “separability” of physical subsystems,
even if it is not because of their independent statistical predictions. One suggestion is
to see MC more as a form of mereology of the structure of the algebras than a claim
about locality (Ruetsche, 2011, pp. 112-113); the operation ∨ in A(O1) ∨A(O2)

5Earman and Valente (2014, §4-5) survey other ways to formulate independence conditions.
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should incorporate and respect MC. However, consider the composition of physical
subsystems of standard QM: take two Hilbert spaces H1 and H2, and construct their
tensor product, H1 ⊗H2. Then the algebras B(H1)⊗ Id2 and Id1 ⊗B(H2) commute,
and yet QM is not a relativistic theory. This example shows that the composition of
bigger subsystems from commuting algebras is not a feature of relativistic theories
(Halvorson, 2007, p. 752). So even if MC seems reasonable, the way in which it
combines QM and SR brings to light multiple difficulties.

3.2.2 MC and causation

Aside from statistical independence, the no-signaling theorem is a result closely
connected to MC, but that shifts our focus from separability to relativistic causation.
In this subsection, I will finally show that the problems of separability and
measurements in the two previous ones disrupt the possibility that MC fully
characterizes relativistic causation in AQFT.

Of the many formulations of the no-signaling theorem, I will follow (Earman and
Valente, 2014, §4.2) to avoid further technicalities. Consider an observable A ∈ A(O1)
with a (countable) spectral decomposition A = ∑i aiEA

i , where the Eis are projectors
and the ais A’s eigenvalues. We can then define a map TA(·) = ∑i EA

i · EA
i over

A(O1) ∨A(O2) that is explicitly related to an A-measurement. Then, for a state ω
and an observable B ∈ A(O2), we have:

ω(TA(B)) = ω(B)

This means that states acting on the algebras of spacelike separated regions are
unaffected by measurements in the other region. The moral is clear: MC allows the
statistical predictions of one of the subsystems to be preserved even after performing
measurements in the other.

However, a few complications stop us from proclaiming victory over
superluminal signaling using MC. First, the preservation of the statistics of the
outcomes of a measurement may not require commutativity after all (Rédei and
Valente, 2010), and the no-signaling theorem only works for a restricted class of
operations (Ruetsche, 2011, p. 111). Second, even if we have no-signaling theorems,
the statistical independence of subsystems can get bypassed by measurement
protocols like the one from figure 1. For this setup, successive observations of the
same state in O1, O2, and O3 exhibit correlations between the measurement carried
out in O1 and that in O3 (Sorkin, 1993). This result seems to imply that there is some
superluminal signaling in QFT. Although Sorkin’s paradox just turned 30, it has been
significantly overlooked by most people working on measurements in QFT until a
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Time

O1

O2

O3

Figure 1: O1 and O3 are spacelike separated.

couple of years.6 Some papers claim to have found a solution (Bostelmann et al.,
2021), but whether it is satisfactory or not, it is more contrived than assuming MC.

In conclusion, although MC seems to shed some light on relativistic causation in
AQFT, multiple difficulties impede us from claiming we have achieved a complete,
clear characterization. First, as an axiom stated in terms of quantum measurements,
we fall into the difficulties of understanding what “measurement” means and,
especially, what it means for spacelike measurements to be compatible. We tried to
implement MC as a form of separability for this purpose. Still, statistical
independence needs more than MC to work, and some other forms of independence
are logically independent of MC or satisfied in non-relativistic cases. Even having
failed to characterize what form of separability MC implies, the no-signaling theorem
made us hopeful that it would still prohibit superluminal signaling. However, the
theorem only works for a particular case of measurements, it can be proved without
MC, and it can be bypassed in setups like Sorkin’s. The takeaway is that we still need
a good characterization of relativistic causation in AQFT. Every time MC seemed to
lead us in the right direction, interpretive difficulties or other pitfalls stopped us from
clearly seeing the role of MC in prohibiting superluminal signaling.

3.3 Primitive Causality

From my initial characterization of relativistic causation, SC and MC have aimed to
implement the role of locality, subluminality, and the metric structure of (Minkowski)

6For a recent exception, see (Papageorgiou and Fraser, 2023).
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spacetime. However, I have not discussed determinism. Primitive causality (PC), or
the time slice axiom, will fill this gap. First, we need some definitions. Consider two
spacetime regions O1 and O2. O2 depends causally on O1 if every light ray in the
backward (or forward) light cone originating from any point in O2 intersects O1.
Then we have:

Time

O1

O2

Figure 2: O2 depends causally on O1.

PC: If O2 depends causally on O1, A(O2) ⊆ A(O1) (cf. figure 2).

Notice that if O2 ⊂ O1, O2 depends causally on O1, so the property of isotony can be
derived from PC. Additionally, since M depends causally on any time slice and any
time slice is isotonically included in M, PC is usually presented in the literature in
an alternative way:

Consider a time slice in Minkowski spacetime.7 That is, a region infinitely
extended in space but restricted to a time interval of size τ:
Oτ := {x ∈ M :

∣∣x0 − t
∣∣ < τ}. Then A(Oτ) = A(M) ∀τ.

This version of the axiom makes determinism à la Bohr even more salient since the
standard interpretation of PC is that there should be a “dynamical law” that allows
us to determine the values of the fields at any given time with the values of the fields
at a time slice (Haag, 1996, p. 48). This claim can be re-stated in the following way:
the time slice provides a region of evaluation of an initial value problem, and the
“dynamical law” is deterministic (Bogolubov et al., 1987). Clearly, the exact nature of
the law depends on the dynamics of the fields (Earman and Valente, 2014, p. 21).

7More generally, the spacetime manifold should be globally hyperbolic, and the time slice is some
Cauchy surface.
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Since deterministic laws have causal-like behavior, PC is the core of Earman and
Valente’s Atomistic view. This section will argue that PC’s determinism is
insufficient to characterize relativistic causation in AQFT.

As mentioned, PC is local, and its time slice version is global. Aside from this
point, I will treat both versions of PC interchangeably. Dimock proved the relevance
of PC for QFT since it holds for the Klein-Gordon field (1980) and the Dirac field
(1982). However, as an initial value problem, it is trivially fulfilled. The Lagrangians
of field theories are formulated in terms of the fields and their derivatives at a time
slice, and if their derivatives are of a sufficiently higher order, we can recover the field
values in all spacetime (Bogolubov et al., 1987, pp. 330-331). As such, PC is an
entirely reasonable assumption for AQFT to make, but only because this form of
“determinism” is a truism for QFT.8 PC is not, then, a feature of relativistic causation
in AQFT but in field theories in general.

Now, the QFTs considered by Dimock should satisfy PC since their equations of
motion are hyperbolic partial differential equations (PDEs), which are characterized
by having unique solutions within their domain of dependence (Geroch, 2011) and by
having a finite propagation speed (Bär et al., 2007). The notion of domain of
dependence has a precise definition within the realm of PDEs, but, in our case, it is
merely the locus of causally dependent points to some region O, denoted by D(O).
Another example of a hyperbolic PDE is the wave equation describing every
undulatory phenomenon. From this point of view, PC is not a requirement from SR
since it appears in non-relativistic phenomena, nor QM since it appears in classical
ones. It is also not a sufficient characterization of relativistic causation since wave
equations like the Klein-Gordon one would only be relativistic because their finite
speed of propagation is the speed of light, but that does not rule out any higher
speeds! These are the same reasons why PC is not a good causal axiom: the claim
that the dynamics of the field are deterministic does not mean that the theory is
causal in the sense that the dynamics should also respect the light cone structure of
the underlying spacetime (Hofer-Szabó and Vecsernyés, 2018, p. 19).

Additionally, as Earman (2014) has claimed, determinism should apply not only
to the time evolution of the field observables but also to the states. If states ω1 and ω2
give the same predictions with the observables in A(O), they should also provide the
same ones with the observables in A(D(O)). Although I agree with Earman’s
suggestion, he bases it on taking A(O) = A(D(O)) as a result of Haag and Schroer
(1962). However, this equation is not valid in general. We only obtain
A(O) ⊆ A(D(O)) thanks to PC, and that is different from what Haag and Schroer

8Within AQFT, there are technical difficulties that complicate claiming that we can restrict the global
dynamics to those of a time slice. So, if it is a truism in Lagrangian QFT, it is hardly obvious that it
holds in AQFT. Thanks to Noel Swanson for this remark.
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prove, which is a consequence of the local primitive causality that I will discuss in the
next section.

3.4 Taking stock: against Atomistic
In the past subsections, we have seen the shortcomings and interpretive problems
with the three causal axioms. Some of their drawbacks stem from not implementing
QM, SR, and locality in a way amenable to codifying the desiderata of relativistic
causation I laid out or from implementing them in ways that imported interpretive
difficulties from each of those themes. And yet, someone who endorses Atomistic

might be undeterred: if none of these causal axioms do the job, let us look for a
condition that puts all those advantages in one place! In the next section, I will argue
that local primitive causality (LPC) does that for us, but I will show that it does so
because it is implied by the conjunction of SC, MC, and PC, thus going against
Atomistic.

4 LPC as a defense of Holistic

To state LPC, we first need to define the causal complement of a region O, O′, as the
set of points outside D(O). Then we have:

LPC: For a region O ⊂ M,9 A(O) = A(O′′).

I will use LPC to defend Holistic in two ways. First, contrary to the causal
axioms, I will show that it satisfies all the desiderata for relativistic causation. In
summary, LPC is local since its dependence on spacetime regions is explicit; it is a
crucial ingredient in showing that concrete experimental setups exhibit no
superluminal signaling (Buchholz and Yngvason, 1994; Yngvason, 2005); it is the key
assumption in theories of local observables that attempt to ensure that the
determinism of PC is compatible with the temporal evolution of field values in the
light cone of their regions (Hofer-Szabó and Vecsernyés, 2018); and it emphasizes the
metric structure of M underlying the definition of “causal complement.” I will only
elaborate on how LPC rules out superluminal signaling and improves upon PC’s
attempt at capturing determinism.

However, LPC’s role of unifying the desiderata does not warrant promoting it to
the ring to rule all the causal conditions of AQFT. The second defense of Holistic

9(Hofer-Szabó and Vecsernyés, 2018, p. 19) give a more general definition that I want to give here.
See also their footnote 2.
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will come as proof that the three causal axioms imply LPC, thus showing that LPC
crystallizes how all the axioms hang together. Although the first version of this proof
was first suggested by Haag and Schroer (1962) and I use their diamond construction,
I fill in the missing steps and amend it in the appendix by not using Haag duality,
which people involuntarily commit to when using LPC, but it is not satisfied by some
of our best field theories and only works in particular spacetime regions (Haag, 1996,
pp. 145-147), thus restricting greatly the kind of physical models we can consider.

4.1 LPC and determinism
The time slice version of PC implements determinism too crudely: if we want to
know whether some event involving quantum fields causes another one, we specify
the values of the fields (and probably some of its derivatives) at a whole time slice, and
the pay-off is every possible operation on spacetime. As argued by Hofer-Szabó and
Vecsernyés (2018), the axiom of covariance allows us to define a time-evolution for
the fields (similarly to how we implement time translations unitarily in QM) ατ′,τ
taking the fields from time slice τ to τ′. And yet, PC can’t guarantee that
ατ′,τ(A(Oτ)) ⊆ A(Oτ′ ∩D(Oτ))! That merely symbolizes what I mentioned in the
PC section: the dynamical law does not confine the time evolution of the fields to
their light cones.

LPC grants us a more fine-grained notion of determinism, especially since it’s
formulated for finite regions. Since we assume that the underlying spacetime is
globally hyperbolic, there will be a Cauchy surface transversing every open, bounded
region O. What LPC tells us, then, is that specifying the values of the fields, not in a
whole Cauchy surface but in the chunk intersecting O suffices to know that
operations in A(O) can influence operations in A(O′′). Figure 4 below will help
illuminate this point: since the causal future of C intersects the causal future of points
in C ′, claiming that A(C) = A(C ′′) tells us how much can we enlarge the operations
we do in C while still being insulated from possible influences from operations in C ′.
So, fulfilling Hofer-Szabó and Vecsernyés’s aspirations of a condition that is both
deterministic and restricted to the light cones of finite regions (as opposed to infinite
time slices), LPC is the cornerstone of a local, causal dynamical evolution. In the limit
where C extends infinitely spatially, a full Cauchy surface transverses it, and the
diamond C ′′ becomes the full spacetime, as expected from PC!

4.2 LPC and superluminal signaling: The Fermi’s Two-Atom System

In this subsection, I will introduce (but skip most of the details) an experimental
setup devised by Fermi (1932) to check whether the quantum theory of radiation that
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he was studying was compatible with SR and translated in (Yngvason, 2005) to an
AQFT language. Consider two atoms, a and b, separated by a distance R. At time
t = 0, a is in its ground state, and b is in an excited state. When b emits radiation,
there is a non-zero probability that a is excited for t > 0. Since the effect of b’s decay
cannot be superluminal, a should be in its ground state for t < R/c, where c is the
speed of light. (See figure 3.)

a b
R

RbRa

t, "Causal influence" of the signal

Figure 3: Fermi’s two-atom system.

Yngvason improved upon Fermi’s result of the transition probability from a’s
ground to a’s excited state using the observables available in QFT but not in QM.
More specifically, since QFT does not have “minimal projectors,” we can’t make a
measurement that merely acts like a switch from “unexcited” to “excited.”10

However, we can still know of changes in the state of a by purely local operations.11

10Technical aside: Let A be a von Neumann algebra. Two orthogonal projectors P1, P2 ∈ A are called
equivalent with respect to A, denoted P1 ∼ P2, if there exists an operator V ∈ A such that P1 = V∗V and
P2 = VV∗. Projector equivalence is an equivalence relation on the projector lattice on the Hilbert space
H on which the von Neumann algebra is represented. Denote P1 ≤ P2 when P1 ∼ P′

1 and P′
1H ⊆ P2H.

If A is a von Neumann factor, ≤ is a total order (Haag, 1996, Theorem 2.1.9). A projector is said to be
finite if it is not equivalent to any proper subprojector. The notion of finiteness, together with the total
ordering, allows us to define a projector’s relative dimension d, a positive number (possibly infinite)
where d(P) = 0 if and only if P = 0, d(P1) ≤ d(P2) if and only if P1 ≤ P2, d(P1 + P2) = d(P1) + d(P2)
if P1 ⊥ P2 etc. (See (Moretti, 2017, § 7.6) for details). Then, a minimal projector P has no non-zero
subprojectors, so it is used to normalize d(P) = 1. Equivalently, minimal projectors are the atoms of
the projector lattice. That is the precise sense in which they are “switch-like” in footnote 11. Only type
I factors contain minimal projectors.

11 Technical aside: Yngvason’s “strong local preparability” only needs that the algebras are type III
von Neumann factors, but we also want to prepare the states with arbitrary precision for any mea-
surement to be as “switch-like” as possible. There are at least two strategies for doing this. One is
Yngvason’s, which uses the subclassification of type III von Neumann factors: type III1 factors help
specify further how states can be prepared (Connes and Størmer, 1978, Theorem 4). Another one is
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The crux of the setup is to define two states, one in which atom b is excited in Rb at
t = 0 and a state in which atom b is in its ground state (or absent, since a only
“knows" that some radiation came into Ra, not the state of b) in Rb at t = 0. Since
these are joint states of the atoms, doing a measurement outside of Rb at t = 0 cannot
distinguish them from the ground state of a; one can only check whether b is in its
ground state or excited state at t = 0 from inside Rb.

Then, to check whether a became excited by the signal emitted by b measured in
Ra is to consider how much these states deviate from each other at some other time t
with observables in Oa (where Oa is the spacetime region made up of the spatial
region Ra and an infinitesimal interval around t = 0). Since O′′

a includes the region
that the light rays have not yet reached, the two states are indistinguishable for
t < R/c if LPC holds. As soon as b de-excites itself, it is irrelevant what happens to it
from a’s point of view; it would not be able to detect any effect before the arrival of
the light rays stemming from b’s de-excitation anyway. So LPC guarantees that a
doesn’t know of b’s presence before it detects the radiation it emitted!

Notice that A(Oa) = A(O′′
a ) implies that we have “enlarged” the region Oa to O′′

a .
Since the light rays emitted from b are moving, the region causally dependent on Ob
is growing. Only when the rays reach Ra will an observer be able to measure
whether the state of a changed. The light rays from PC’s notion of causal dependence
need not originate from points at rest at the reference frame at which their light cones
are drawn, so here we see how a region flips in time from causally independent to
causally dependent. So, aside from showing how LPC rules out superluminal
signaling, Fermi’s experiment helps to see how LPC finesses the notion of causal
dependence, as argued in the previous subsection.

4.3 Further advantages of LPC
There’s more. First, LPC can be generalized to curved spacetimes and used in
concrete measurement protocols (Fewster and Verch, 2020), thus alleviating some of

to use the non-local type I algebra interpolating local type III algebras satisfying the split property to
approximate local operations (Kitajima, 2018, Corollary 1 of Theorem 4). Although the operational sig-
nificance of this strategy has been questioned in the literature (Ruetsche and Earman, 2011, §5.2.5), it’s
not clear to me that it’s totally unviable. Even if we need to be careful about using type I algebras to
study relativistic causation (Hegerfeldt, 1994), results like Kitajima’s or those in (Busch, 1999) show that
rejecting them altogether would be too rash, and even Yngvason made a mistake in the argument ruling
out using type I factors. Probably inspired by MC, he associates the orthogonality of a’s ground and
excited states with the fact that their respective orthogonal projectors will localize them in causally inde-
pendent regions. But, if A is a self-adjoint operator of a von Neumann algebra A (independently of its
type), all of A’s spectral projections belong to A (Murphy, 1990, Theorem 4.1.11), including orthogonal
projections. Thanks to Aleksandr Pinzul for bringing this theorem to my attention.
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the worries I had raised about SC and MC.12 Second, in keeping this paper minimally
technical, I have avoided any talk on the details of the mathematical structure of
observable algebras because my arguments are independent of these considerations.
However, these details are vital for relativistic causation. For example, superluminal
signaling is unavoidable if the algebras are the matrix algebras of QM, which do have
minimal projectors (Hegerfeldt, 1994). From this point of view, Buchholz and
Yngvason (1994; 2005) have shown how LPC and the specific type of von Neumann
algebra relevant for AQFT come together in implementing relativistic causation. (Cf.
footnote 11 for further discussion).

4.4 Holistic redux: LPC is implied by the causal axioms

The past subsections could have been the ingredients for a defense of Atomistic:
LPC should supersede the three causal axioms as the most direct expression of
relativistic causation in AQFT since it captures all the desiderata. However, this
attempt at privileging one condition or even having it replace the rest would be too
rash for two reasons. First, there are results important for the foundations of QFT,
like the CPT theorem, that can be derived from the three causal axioms but that are
logically independent of LPC (Haag, 1996, §5.1). So even if LPC has some additional
advantages compared to the three causal axioms from the point of view of the causal
structure of the theory, the axioms have more physical content than that which goes
into codifying relativistic causation. Plus, I have been discussing in this paper which
axioms do the causal heavy lifting for the theory, not which ones are necessary to
derive the core theorems of QFT or to have a consistent theory.

However, more importantly for my purposes, we can derive LPC from the three
causal axioms (and some other physically reasonable conditions), as I will sketch
below as a defense of Holistic. Consider the construction of (Haag and Schroer,
1962) from figure 4. It is now possible to prove that A(D) = A(C), which is exactly

12However, I am not claiming that LPC solves problems like Sorkin’s paradox since that would re-
quire a different conception of measurements in QFT from the one I have been assuming in this paper.
The advantages I have presented from Buchholz, Yngvason, and Fewster and Verch rely on specific
measurement protocols or experimental setups. Fewster and Verch do not assume LPC explicitly, but
they obtain it for free (and with it, its advantages) because their framework relies heavily on causally
convex (i.e., diamond-like) regions, for which LPC is trivially true. Taking all regions to be diamonds is
not esoteric; Haag uses it to formulate a lattice of causally complete regions that makes the connection
between causal complements and algebraic commutants salient (1996, §III.4.1) and to study superselec-
tion sectors (1996, p. 156). However, Fewster and Verch’s version of LPC is more general than the one I
presented here because they work with local ∗-algebras, not von Neumann algebras, which gives them
less topological structure than the one the derivation of LPC from the other axioms that I cite in the
main text can exploit.
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Figure 4: The region shaded with slanted lines is C. The region shaded with vertical
lines is C ′, the causal complement of C. The diamond D, containing C, is the causal
complement of C ′. The red dotted lines extend spatially to form a time slice of the
temporal size of C. Call Cr the two caps outside of C that extend in the spatial direction.

LPC since the diamond D satisfies D = C ′′. All the pieces of the proof have been put
together in the appendix, but here, I will only sketch the main steps. From SC, one
can prove that the domain of analyticity of the fields in C can be extended to C ∪ Cr
(Borchers, 1961; Streater and Wightman, 2000). From PC and MC, we can build a
time slice from C ∪ Cr and C ′, where C and C ′ localize separated subsystems. The fact
that the observables at a time slice generate those in all spacetime gives some nice
closure properties that display the intimate connection between the local algebras
and the regions in which they are supported. Finally, from MC, the observables from
C ′ commute with those of C but also with those of C ′′(= D). The takeaway from this
construction is that even if SC, MC, and PC individually failed to characterize
relativistic causation in AQFT, LPC captures all the desiderata of relativistic
causation in AQFT because it is a fruit of their conjunction.
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5 Outlook

Throughout this paper, we saw that SC, MC, and PC only give partial
characterizations of relativistic causation. Even if this is unsatisfactory for the
advocates of Atomistic, the need for multiple axioms should not be startling
anymore precisely because they highlight different aspects of the causal framework
of the theory. Additionally, LPC encapsulates each axiom’s advantages for the most
widely used regions and theories in AQFT, which was the key idea behind my
defense of Holistic. Assuming LPC has become a widespread move in more
technical literature in AQFT. Still, its motivations are rarely stated, its role as a causal
axiom is left uninterpreted, and its interdependence with the other causal axioms is
ignored.

However, many additional worries emerged in analyzing this wide variety of
axioms. First, an appropriate interpretation of MC would require tackling the
measurement problem in QFT. One way to address this problem is to introduce a
more sophisticated account of local operations in AQFT, which is where some of the
more technical literature has been heading (Okamura and Ozawa, 2016; Kitajima,
2018; Drago and Moretti, 2020). However, from an interpretational point of view, it is
unclear whether considering a more widespread class of measurements would solve
the problem of answering what “measurement” means. Even if looking for an
account of measurements in QFT seems orthogonal to a project on relativistic
causation, I do think they are connected through the worries that philosophers have
raised about the “operationalist” views of the founders of AQFT and the “algebraic
imperialist” (Ruetsche, 2011) tendencies of the mathematical physicists working on
this formulation of QFT. Additionally, revising the connections between causation
and measurements would require further examining the local algebras’ mathematical
structure and the states that can act on them. The need to appeal to those tools can be
seen not only in the problems of measurements in, e.g., MC but in the interplay
between the different formulations of PC as a requirement demanding that we have a
compatible notion of local dynamics and global determinism. That is one of the
problems that even promoting LPC to an additional assumption in AQFT leaves
unsettled.

The second problem is that any account of relativistic causation in AQFT is
challenged by entanglement, which is ubiquitous and maximal in AQFT, even in
spacelike separated regions (Summers and Werner, 1988). Entanglement itself is not
something we should worry about since it is just a key feature of QM and QFT.
Instead, the origin of the uneasiness about entanglement is that it is often conceived
as a form of non-locality or non-separability, which conflicts with, e.g., conceiving
MC as a form of independence between spacelike separated subsystems. The pull of
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entanglement as a problem for causation in AQFT relies heavily on assumptions
outside of the theory’s axiomatic framework about measurements and operations in
QFT (Ruetsche, 2021) and, as such, it is connected to my first remaining worry. These
problems are, to the best of my knowledge, unsettled. I hope this diagnostic points to
some of the issues that need to be addressed and the importance of doing so.
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Appendix: Causal diamond proof using essential duality

Preliminaries: notation, some definitions, and re-stating the axioms

Let O be an open, bounded subregion of Minkowski spacetime M, and A(O) a von
Neumann algebra whose elements are taken to be the observables describing the
physics in O. I’ll take the algebras to be “concretely represented,” which means that
A(O) ⊆ B(H), the bounded, linear operators on some Hilbert space H. I’ll also
assume that A(M) = B(H). Denote by A(O)′ the commutant of A(O)—the set of
all operators commuting with those of A(O). A von Neumann factor is a von
Neumann algebra satisfying A(O) ∪A(O)′ = B(H) or, equivalently,
A(O)′ ∩A(O) = C IdB(H).

Consider two spacetime regions O1 and O2. O2 depends causally on O1 if every
light ray in the backward (or forward) light cone originating from any point in O2
intersects O1. If O1 ⊆ O2, isotony tells us that A(O1) ⊆ A(O2). Let D(O) denote the
domain of dependence of O, the locus of causally dependent points to O, and let O′,
the causal complement of O, be the set of points outside D(O). Essential duality
(Halvorson, 2007, p. 841) then tells us that A(O′)′ = A(O′′).

The following causal axioms follow the notation and terminology from the main
text.
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• Spectrum Condition (SC): (a) The joint spectrum of the infinitesimal generators
of translations in Minkowski spacetime is confined to the forward lightcone. (b)
There is a unique (up to phase factors) vacuum state, which is translationally
invariant and has zero energy-momentum.

• Microcausality (MC): A(O1) commutes with A(O2) if O1 and O2 are space-like
separated. In symbols, A(O) ⊆ A(O′)′.

• Primitive Causality (PC): Consider a time slice in M. That is, a region
infinitely extended in space but restricted to a time interval of size τ:
Oτ := {x ∈ M :

∣∣x0 − t
∣∣ < τ}. Then A(Oτ) = A(M) ∀τ.

Proof

Consider the following cylinder C := {x ∈ M : ||⃗x|| < a, |x0| < τ} for some a and τ,
shaded with diagonal lines in figure 5. Its causal complement C ′ is shaded with
vertical lines. Call the caps between the cylinder and the vertices of the diamond Ct
and Cr, according to their orientation toward the time or space axis. Let D be the
diamond C ∪ Ct ∪ Cr, which is equivalent to C ′′. This proof aims to show that
A(C) = A(D). Although this result is only suited for regions such as the diamond,
A(O) = A(O′′) is usually lifted to a general property. See the main text for further
discussion.

Here’s a sketch of the proof, where every step will have its own subproof.

1. From SC, A(C ∪ Cr) = A(C).

2. From PC and 1, (A(C ∪ Cr) ∪A(C ′))′′ = (A(C) ∪A(C ′))′′ = B(H).

3. From MC and 2, A(C) is a von Neumann factor.

∴ From MC and essential duality, A(C) = A(D).

Proof of 1

The proof of this step is the most elaborate one, and it relies crucially on a lemma
found in (Borchers, 1961). However, Borchers doesn’t clarify what the role of SC is,
so, in (Calderón Ossa, 2019, pp. 22-31), where much of this appendix comes from, I
supplemented Borchers’ proof with results found in (Streater and Wightman, 2000).
I’ve also added more details to some of the proofs I adapted from them.
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Figure 5: Causal diamond.

Streater and Wightman’s Theorem 2-13: Let F1 be a function holomorphic
in an open set D1 in the upper half-plane with an open interval a < x < b
as part of its boundary. Let F2 be holomorphic in an open set D2 in the
lower half-plane with a < x < b as part of its boundary. Suppose
F1(x) = limy→0+ F1(x + iy) and F2(x) = limy→0+ F2(x − iy) exist uniformly,
in a < x < b, are continuous and satisfy F1(x) = F2(x) for a < x < b.
Then, F1 and F2 are holomorphic on a < x < b and are the same
holomorphic function.

The theorem, a special case of Bogolyubov’s Edge of the Wedge theorem (Rudin,
1971; Bogolubov et al., 1987; Vladimirov et al., 1994), states the condition under
which the analytic continuation of two holomorphic functions is such that they
coincide in their real boundaries. We’ll use this result below and, as Streater and
Wightman discuss, this result can be extended for distributions whose real part is
compactly supported.

Let V+ be the set of all real momentum four-vectors p such that p2 > 0 and p0 > 0
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on some reference frame, and let V̄+ be its closure (the set of ps such that p2 ≥ 0 and
p0 ≥ 0). Define V− and V̄− analogously but for negative energies.

Borchers’ lemma: Let F±(x + iy) be analytic functions with boundary
values F±(x) = lim y→0

y∈V̄±

F±(x + iy) that exist as tempered distributions.

Then, if F+(x) = F−(x) for x ∈ C, F+(x) = F−(x) for x ∈ C ∪ Cr.

Sketch of the proof. From the special case of the Edge of the Wedge theorem from
above, F+(ζ) and F−(ζ) coincide in their domain of analyticity, which contains the
cylinder C. Then, a re-parametrization of ζ within allows us to extend the domain of
analyticity of F±, and we can prove that the new ζ lies in C ∪ Cr.

Before proving Streater and Wightman’s Theorem 3-2(b), the last ingredient we’re
missing to prove my premise 1, we need an intermediate result that uses SC.

Intermediate result (Streater and Wightman, 2000, pp. 91-92): Let U(a, Λ)
be a unitary representation of the Poincaré group on a Hilbert space H,
where a is a four-vector and Λ is a Lorentz transformation. Let Φ, Ψ ∈ H
and ⟨|⟩ be H’s inner product. Then,

∫
da e−ip·a ⟨Φ|U(a, Id) |Ψ⟩ = 0 unless

p belongs to the spectrum of the energy-momentum operators.

Proof. Let us write ⟨Φ|Ψ⟩ in terms of a basis13 of momentum eigenstates |Qα⟩:
⟨Φ|Ψ⟩ = ∑α

∫
dQ ⟨Φ|Qα⟩ ⟨Qα|Ψ⟩. Then, we have that∫

da e−ip·a ⟨Φ|U(a, Id) |Ψ⟩ = ∑
α

∫
dQ

∫
da e−ip·a ⟨Φ|Qα⟩ ⟨Qα|U(a, Id) |Ψ⟩

= ∑
α

∫
dQ

∫
da e−i(p−Q)·a ⟨Φ|Qα⟩ ⟨Qα|Ψ⟩

= (2π)4 ∑
α

∫
dQ δ(Q − p) ⟨Φ|Qα⟩ ⟨Qα|Ψ⟩

The second equality follows from the fact that U(a, Id) = eiP̂µaµ , where P̂ is the
energy-momentum operator, and that |Qα⟩ is one of its eigenvectors. Then, since Φ
and Ψ are arbitrary states,

∫
da e−ip·a ⟨Φ|U(a, Id) |Ψ⟩ = 0 unless p is equal to some

Q ∈ V̄+.
13Streater and Wightman recognize that this derivation might not be rigorous (p. 91), but it can be

made rigorous with different techniques (p. 92). I’ll stick to this version since it’s more intuitive and to
me and the role of SC is clearer.
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Streater and Wightman’s Theorem 3-2(b): Let φ1, φ2, ...φn be any
components of any fields and recall the definition of a Wightman
function: W(n)(x1, ..., xn) := ⟨0| φ1(x1)...φn(xn) |0⟩. Then there are
tempered distributions W(ξ1, ..., ξn−1) depending on the coordinates
ξ j = xj − xj+1 for j = 1, 2, ..., n − 1 that satisfy

W(n)(x1, ..., xn) = W(ξ1, ..., ξn−1).

Their Fourier transforms are tempered distributions defined by

W̃(n)(p1, ..., pn) =
∫

dx1...dxn ei ∑n
j=1 pjxjW(n)(x1, ..., xn)

W̃(q1, ..., qn−1) =
∫

dξ1...dξn−1 ei ∑n−1
j=1 qjξ jW(ξ1, ..., ξn−1)

and are related by

W̃(n)(p1, ..., pn) = (2π)4δ

(
n

∑
j=1

pj

)
W̃(p1, p1 + p2, ..., p1 + p2 + ... + pn−1).

Further, we have
W̃(q1, ..., qn−1) = 0

if any q is not in the energy-momentum spectrum of the states.

Proof. The existence of W follows automatically from the fact that the Wightman
functions are themselves tempered distributions (Wightman, 1996) and that they’re
translationally invariant (Streater and Wightman, 2000, pp. 38-40). From their
translational invariance, their Fourier transforms, straightforwardly generalized from
functions to distributions, are well-defined.

As for the relationship between their Fourier transforms, it follows from the
Fourier transform of the Dirac delta we already used in the intermediate result above
and from the following trick:
∑n

j=1 pjxj = p1(x1 − x2) + (p1 + p2)(x2 − x3) + ... + (p1 + ... + pn−1)(xn−1 − xn) +

xn ∑n
j=1 pj = p1ξ1 + (p1 + p2)ξ2 + ... + (p1 + ... + pn−1)ξn−1 + xn ∑n

j=1 pj.
As for the last result, let us use the intermediate result from above, with Φ → |0⟩

and U(a, Id)Ψ → φ1(x1)...φj(xj)U(−a, Id)φj+1(xj+1)φn(xn) |0⟩ =
φ1(x1)...φj(xj + a)φj+1(xj+1)...φn(xn) |0⟩. That way, the inner product of Φ and Ψ is
directly related to the Wightman functions. The “new” Ψ is also a unitary operator
acting on a state, but we “moved” the operator using its unitarity and the

25



translational invariance of the Wightman functions to obtain the following general
result for p ̸∈ V̄+∫

da eip·aW(ξ1, ..., ξ j + a, ..., ξn−1) = 0 , j = 1, 2, ..., n.

Since this result holds for any j = 1, 2, ..., n and a is an arbitrary translation,
W̃(q1, ..., qn−1) = 0 unless each qj lies in the physical spectrum. Using the relationship
between the original Wightman functions and the translated ones, their Fourier
transform vanishes unless p1, p1 + p2, ..., p1 + p2 + ... + pn ∈ V̄+.

We can now go back to Borchers’ paper (1961, pp. 791-792) and prove my premise
1.

Rest of the proof. Let C be a bounded operator and let P and Q be eigenstates of the
energy-momentum operator such that [φ(x), C] = 0 for φ(x) a scalar field and x ∈ C.
Consider the tempered distributions F+(x) = ⟨P| φ(x)C |Q⟩ and
F−(x) = ⟨P|Cφ(x) |Q⟩. (The distributions will only be tempered if |P0|, |Q0| < ∞, but
this is expected from SC). From Streater and Wightman’s theorem 3-2(b), their
Fourier transforms satisfy F+(k) ̸= 0 only for k + P ∈ V̄+ and F−(k) ̸= 0 only for
k − Q ∈ V̄−. Since φ(x) and C commute in C, F+(x) = F−(x) for x ∈ C, but this
implies F+(x) = F−(x) for x ∈ C ∪ Cr due to Borchers’ lemma from above. It follows
that [φ(x), C] = 0 for x ∈ C ∪ Cr. Since the fields are the generators of the local
algebras A(O) and since any bounded operator that commutes with fields in C also
commutes with any field in C ∪ Cr, A(C)′ ⊆ A(C ∪ Cr)′. Now, since A1 ⊆ A2 implies
A′

2 ⊆ A′
1 for any two von Neumann algebras (Haag, 1996, p. 114), we have that

A(C)′′ ⊇ A(C ∪ Cr)′′. Since these are von Neumann algebras, A′′ = A, so
A(C) ⊇ A(C ∪ Cr).14 Due to the isotony property we have that A(C) ⊆ A(C ∪ Cr).
Combining these results, we finally obtain A(C ∪ Cr) = A(C), which is precisely
premise 1.

Proof of 2

The proof of this step comes directly from (Haag and Schroer, 1962). Let us take a
time slice of the size of the cylinder, as shown in figure 6.

From PC, the algebra of the time slice generates A(M), which contains all the
bounded operators. Now, notice that the time slice is generated from C, Cr, a subset
of C ′, and the caps between C ′ and C ∪ Cr shaded in the diagram above. Those caps,
following (Haag and Schroer, 1962), can be neglected if we take the smallest von

14In the following pages, I will use the properties of von Neumann algebras from this sentence and
the previous one without warning.

26



||⃗x||

x0

Figure 6: Time slice of the size of the cylinder delimited by the red dotted lines.

Neumann algebra generated by A(C ∪ Cr) and A(C ′), (A(C ∪ Cr) ∪A(C ′))′′. We take
the double commutant of the union (or, equivalently, their weak closure, following
von Neumann’s bicommutant theorem) since the union of two von Neumann
algebras is not necessarily a von Neumann algebra. Since this is the smallest von
Neumann algebra containing them, this choice should minimize the effect of ignoring
the caps. Then, (A(C ∪ Cr) ∪A(C ′))′′ = B(H), which is precisely premise 2. From
premise 1, A(C ∪ Cr) = A(C), so we conclude that (A(C) ∪A(C ′))′′ = B(H).

Proof of 3

The proof of this step follows automatically from MC and premise 2—so much so
that Haag and Schroer don’t include a proof! However, here is one. From MC,
A(C ′) ⊆ A(C)′. We can use this inclusion and premise 2 to prove that A(C) is a von
Neumann factor.
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Proof.

A(C ′) ⊆ A(C)′

A(C) ∪A(C ′) ⊆ A(C) ∪A(C)′

(A(C) ∪A(C ′))′ ⊇ (A(C) ∪A(C)′)′

(A(C) ∪A(C ′))′′ ⊆ (A(C) ∪A(C)′)′′

B(H) = (A(C) ∪A(C ′))′′ ⊆ (A(C) ∪A(C)′)′′ ⊆ B(H)

(A(C) ∪A(C)′)′′ = B(H)

Since the set of von Neumann algebras on a Hilbert space forms an
orthocomplemented lattice (Haag, 1996, p. 114), taking the double commutant on the
left-hand side of the last equation is the identity operation, so A(C) ∪A(C)′ = B(H),
which is precisely premise 3.

Proof of the conclusion

The proof of this final step was prepared as a supplement for the argument in the
main text as an alternative ending from the version of the proof I had done in 2019

using Haag duality. I owe Noel Swanson the suggestion to try to use essential duality
instead.

To prove that A(C) = A(C ′′), I will show the double inclusion.

• One side follows from MC and essential duality: A(C) ⊆ A(C ′)′ = A(C ′′).

• For the other side, our starting point is premise 3. Since A(C) is a von Neumann
factor, A(C) ∪A(C)′ = B(H) or, equivalently, that A(C)′ ∩A(C) = C IdB(H).
Then, since A(C ′)′ ⊆ B(H) = A(C) ∪A(C)′, the elements of A(C ′)′ are in either
A(C), which is what we want, or in A(C)′. So we want to prove they are not in
A(C)′. Assume, for reductio, that A(C ′)′ ⊆ A(C)′, which implies that
A(C)′′ ⊆ A(C ′)′′. Since these are von Neumann algebras, A(C)′′ ⊆ A(C ′)′′ is
equivalent to A(C) ⊆ A(C ′). Then, for some A ∈ A(C), A ∈ A(C ′). Since A(C)
is a von Neumann factor and A ∈ A(C), A ̸∈ A(C)′ unless A = c IdB(H) for
some c ∈ C. For non-trivial operators, if A ̸∈ A(C)′, A ̸∈ A(C ′)′′ because
A(C)′ ⊆ A(C ′)′′ by MC. But, since these are von Neumann algebras,
A(C ′)′′ = A(C ′), so A ̸∈ A(C ′), which is a contradiction. Therefore,
A(C ′)′ ̸⊆ A(C)′. Since A(C ′)′ ⊆ A(C) ∪A(C)′, we conclude that
A(C ′)′ ⊆ A(C). Using essential duality once again, A(C ′′) ⊆ A(C).
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