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Abstract

The self-interaction spin-2 approach to general relativity (GR) has been

extremely influential in the particle physics community. Leaving no doubt

regarding its heuristic value, we argue that a view of the metric field of GR as

nothing but a stand-in for a self-coupling field in flat spacetime runs into a

dilemma: either the view is physically incomplete in so far as it requires recourse

to GR after all, or it leads to an absurd multiplication of alternative viewpoints on

GR rendering any understanding of the metric field as nothing but a spin-2 field in

flat spacetime unjustified.
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1 Introduction

Starting in the 1950s, several physicists explored the possibility that general relativity

(GR) follows—in one way or another—as the unique extension of a linear field theory for

gravity. With such approaches, gravitational degrees of freedom are described as

massless spin-2 particles, or “gravitons”, propagating against a background spacetime.

Within physics, this appealing line of work has contributed to making the case for the

inevitability of GR, and to assimilating GR with other field theories. This assimilation

has helped launch attempts to formulate quantum gravity in the covariant approach: a

perturbative treatment of GR, as a non-linear extension of a free field theory in

Minkowski spacetime, opened up the possibility of applying techniques like those used

for other quantum field theories. Later work established that GR is perturbatively

non-renormalizable, but this derivation is still cited as support for the claim that string

theory incorporates gravity because it contains a graviton in its particle spectrum.1

With regard to inevitability, Weinberg and others have emphasized that via this line of

work strikingly modest assumptions yield the full complexities of GR.

These so-called spin-2 approaches to GR promise to repay more careful scrutiny for

several reasons. A successful unique extendibility of spin-2 to GR would, for instance,

establish that GR has an appealingly “rigid” structure, in that it cannot easily be

modified or tweaked, and GR would be forced on us by mathematical consistency, given

a few facts about gravity in conjunction with general physical principles. This line of

1It is unclear to us exactly why it is cited in this context, as the derivation of GR

from Weyl symmetry of the worldsheet lends stronger support for this claim (Huggett and

Vistarini 2015).
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work also suggests a novel take on foundational questions. Ideas familiar from careful

reconstructions of Einstein’s own path to GR, such as the equivalence principle, appear

to be consequences rather than assumptions. Over and above these pragmatic reasons,

spin-2 approaches to GR suggest that GR can be treated like just another field theory

within a special relativistic framework. This is grist to the mill for philosophers, such as

proponents of the dynamical approach, who take the interpretative principles from (parts

of) special relativity (SR) to play a central role in interpreting GR. Salimkhani (2020)

has, for instance, argued that the original dynamical account of special relativity can be

“fully resurrected” based on spin-2 derivations for GR.

We will focus on a spin-2 approach based on self-interaction, which is typically taken

to show that consistently coupling the (classical) spin-2 field to itself nonlinearly, or to

other matter fields, leads directly to the field equations of GR. This suggests that GR’s

metric field is merely a stand-in for a self-coupling (classical) spin-2 field in flat

spacetime: the metric field is seen as entirely captured by the spin-2 field in flat

spacetime (and only by it). (Note that such a view contrasts with the more modest view

that the spin-2 field in flat spacetime is an approximation to the metric within a small

region.) In this paper, we argue that any view of the metric field as a mere stand-in for a

self-coupling spin-2 field in flat spacetime—in the sense just explicated—runs into a

dilemma: either the view is physically incomplete in so far as it requires recourse to GR

after all, or it leads to an absurd multiplication of alternative viewpoints on GR

rendering any understanding of the metric field as nothing but the spin-2 field in flat

spacetime unjustified.2

2For spin-2 views other than the self-interaction approach in flat spacetime, see e.g.

Pitts (2022).
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We will proceed as follows: in section 2 we present general concerns about the scope

of the self-interaction spin-2 approach and whether it yields a derivation of GR. Both

points make an interpretation of GR based on the self-interaction somewhat less

attractive, but not necessarily untenable. In section 3 we then turn to the mentioned

dilemma for any self-interaction spin-2 view of GR. This does pose a strong challenge to

taking the self-interaction spin-2 approach as clarifying the foundations of GR. We

conclude with a brief discussion regarding how the self-interaction spin-2 derivation has

had concrete heuristic use for rigorous restrictionist results.

2 General concerns

In this section we consider two general concerns with the idea of a “derivation” of

general relativity from a self-coupling classical spin-2 field: the supposed derivation

suffers both from severe ambiguities and an unsatisfactorily limited scope.

2.1 Ambiguities in derivation

We begin with a brief review of how to arrive at GR as the only consistent way of

including self-interaction in the dynamics of a classical spin-2 field, formulated on a

Lorentzian manifold (M, η) (where η is the Minkowski metric), in order to pinpoint

several ambiguities.

1: Stipulate a classical spin-2 field h, i.e. a tensor field representing exactly two

polarisations, together with a free equation of motion.

2: Include universal coupling to matter: the energy-momentum tensor of all fields other
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than the spin-2 field itself (denoted by T ) source the free spin-2 equation of motion:

G
(0)
βγ = Tβγ (EOM(0))

Assuming that T is conserved on-shell by virtue of the matter equations of motion

alone, a consistency problem arises: a coupling between the matter fields and the h

field means that T will no longer be conserved on-shell, i.e. ∂T
on-shell

= 0 no longer

holds for the novel matter equations of motion that include coupling to h. Yet G
(0)
βγ

in the free equation of motion is identically zero when hit with the partial

derivative which, via (EOM(0)), implies ∂T = 0 (not just on-shell).

3: Attempt to remedy the consistency problem by including a contribution to the

energy-momentum tensor from h itself (denoted by t(0)).

4: Adding an energy-momentum tensor contribution from h, t(0), leads to a new spin-2

equation of motion sourced by the matter term T :

G
(1)
βγ := G

(0)
βγ − t

(0)
βγ = Tβγ. (EOM(1))

But it would be inconsistent to stop at this point: we can iterate the argument

above, which leads to adding the energy-momentum tensor for h associated to the

left-hand-side of EOM(1), which we will denote t(1).

This problem arises for all steps n > 0: Let G
(n)
βγ be the n-EOM-term for h, sourced

by Tβγ. Once corrected by t
(n)
βγ , the (n+1)-EOM is:

G
(n+1)
βγ := G

(n)
βγ − t

(n)
βγ = Tβγ (EOM(n+1))
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5: Upon taking the limit n→∞, and re-defining η + h as g, the resulting field equation

containing all required self-interactions is the Einstein field equation.

The ambiguities of this procedure are so problematic as to undermine any plausible

claim of a derivation of GR from classical spin-2 theory.

Step 1 is ambiguous in choice of spin-2 field representation: A classical spin-2

field can be represented in various fashions (Barceló et al. 2014, section 2). This is

noteworthy in that the choice of spin-2 field representation demonstrably makes a

difference in the self-interaction approach even if various representations may be

physically equivalent in the standard flat spacetime context. Most proposals (with the

exception of Barceló et al. (2014)) tacitly presuppose a Fierz-Pauli representation—the h

field is taken as a second-rank, symmetric Lorentz tensor field. An alternative is,

however, the spin-2 field representation that involves a trace free condition on h

(hµµ = 0). This can be realised as a specific (partial) gauge-fix of the Fierz-Pauli spin-2

representation. The trace-free representation but not the Fierz-Pauli representation

always implies that the volume element linked to a composite metric g := η + h is that of

Minkowski spacetime (cf. Barceló et al. (2014), section 5). Moreover, step 1 is

ambiguous in the choice of spin-2 equation of motion: The Fierz-Pauli spin-2

equation of motion is a contingent but arguably preferable choice in so far as it is the

unique gauge-invariant second order equation for a free spin-2 field in the Fierz-Pauli

representation3. We will assume the Fierz-Pauli equation in the following.

3The Fierz-Pauli action yields the spin-2 equation of motion mentioned above, which is

equivalent to that obtained by linearizing Einstein’s field equations with g → η + h. This

equation of motion is invariant under the gauge transformation which is equivalent to the
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With step 2 we face the choice of matter coupling: on what grounds is h taken to

be sourced by T and not in a matter-field-specific manner?

The most severe ambiguity arises in step 3, the choice of energy momentum

tensor(s) associated to a spin-2 equation of motion.4 There is just no good heuristic

available to guide this choice, nor can it easily be regarded as a starting assumption (by

contrast with the first two steps). We will defer discussion until subsection 3.1 below.

Step 3 suffers from a further ambiguity in choice of h-self-energy-momentum

tensor interaction in the sense that it is not clear why no forms of coupling of h to

matter in a different sense of universality (for instance, as not mediated via the

energy-momentum tensor) or of no universal nature at all (interaction with h differs in

form from matter type to matter type) should be considered (in analogy with the

ambiguity of step 2). Arguably more severely though, and specific to the self-interaction

term, it is unclear whether the interaction of h with an energy momentum tensor is to be

primarily described as self-sourcing at the level of the equations of motion in analogy

to the sourcing notion in electrodynamics, or as self-coupling at the level of action

(schematically: h · T ) in reference to modern particle physics parlance (unlike for a

conventional energy-momentum tensor which does not contain h itself, self-interaction

and self-coupling are not equivalent in the context of a self-energy-momentum tensor for

h).

linearized diffeomorphisms of GR.
4Numerous different expressions for this energy-momentum tensor exist in the liter-

ature, yet it is not clear which one to use for the self coupling procedure. All of these

expressions are conserved on-shell using the spin-2 equation of motion, thus uniqueness

criteria are difficult to specify.
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Even setting aside all these ambiguities in setting up the self-interaction problem, the

spin-2 construction of GR faces yet further hurdles in actually delivering GR. Most

importantly, the construction is only really feasible if the self-sourcing relation leads to

the Einstein field equations (or to an action equivalent to the Einstein-Hilbert action).

Butcher (2012) obtains through a procedure, similar to that above, that the gravitational

action at each respective step n is given by
∑n

i=1 Si where

S1[γ, h] = 1/λ
∫
d4x
√
−γGµνh

µν , S2[γ, h] = 1/2
∫
d4xhρσ δS1

δγρσ
and

Sn[γ,h]
δhµν

= δSn−1[γ,h]
δγµν

(recursively). Now, S1, S2, Si are the first, second, i-th order terms

obtained from (formally) expanding the Einstein-Hilbert action S = 1/λ
∫
d4x
√
−gR

with respect to g around η in terms of orders of h. But from only knowing the sequence

prescription and the starting terms, can one indeed find that
∑

i Si converges to S?

We refrain from claiming to see how convergence to the Einstein-Hilbert action (with

g replaced by η + h) can in any sense be guessed rather than just tested; in particular, a

direct guess based on visual inspection of a finite number of elements of the sequence

fails. Even if it were for instance discovered that the “sequence within the series” (Si)i∈N

is explicitly given by Si[γ, h] = 2/i!
[∫

d4xhµν δ
γµν

]i−2
S2[γ, h], it is not at all clear from the

mere sequence rule what the overall series would converge to. A common feature of this

and other derivation attempts is that background knowledge of GR provides guidance at

crucial steps; none are able to uniquely recover GR starting from only concepts available

in special relativistic field theory. Notably, the exact details of the attempted derivation

varies in the literature, even in the most recent attempts (e.g. Butcher (2012); Barceló

et al. (2014))—an inconsistency which in itself points to the imprecise nature of the

current state of the derivation. The ambiguities discussed in this section stand in sharp

contrast to any claim that one can uniquely derive GR from spin-2 theory.
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2.2 Limited Sector

How much of GR can we expect to recover through the self-interaction approach? It is

understandably appealing to treat gravitons as perturbations around a flat spacetime as

a prelude to quantization, and to expect curved spacetime geometry to emerge from

interactions among the gravitons. From the point of view of heuristics and theory

construction, it is natural to start from a case of limited scope and hope that it generates

insight into the full theory, leaving global issues, and the complexities of full non-linear

interactions, to be treated at a later stage. However, if we take seriously the idea that

the spin-2 approach gives us a kind of theoretical reduction of GR (cf. Salimkhani

(2020)), the question of how much can be reproduced is much more pressing. Here we

highlight two well-known limitations of the self-interaction approach, that hold even if

the ambiguities above were resolved.

First, there are certain surface terms which a spin-2 derivation (no matter which

energy-momentum tensor scheme is chosen) can never reproduce (see Padmanabhan

(2008), section III).5

The second, and more pressing, concern regards how to make a transition from

gravitons propagating against a background metric η to a generic curved spacetime

metric g (e.g. Barceló et al. 2014). In general, η and g are not definable on homeomorphic

manifolds, and the local symmetries and other structures of Minkowski spacetime (or

5This is not a general problem—the surface terms do not affect Einstein’s field equations

(Butcher 2012). But adding a surface term in the Fierz-Pauli action does change the

resulting spin-2 energy-momentum tensor, undermining the specific attempt to uniquely

specify one for the self-coupling procedure.
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other spacetimes with fixed curvature) cannot be extrapolated globally. It is also not

clear when local perturbative treatments can be patched together. Riemannian normal

coordinates can be applied in “local” patches on a manifold, clarifying the sense in which

a solution “looks locally flat,” but the requirement that these patches can be stitched

together imposes limits on the topology and global features of the manifold.

3 The Dilemma

We now turn to presenting what we take to be the central issue with any classical spin-2

view of GR, i.e. the view that the general relativistic metric is a stand-in for a

self-coupling classical spin-2 field in flat spacetime. The self-interaction statements of h

are first of all merely formal without some physical interpretation; however, the attempt

to provide such an interpretation leads to an immediate dilemma: (1) Either one buys

into the usual narrative of there being a self-coupling of h with its energy-momentum

tensor, or (2) one accepts that there is a physical self-coupling of h simpliciter, not to be

understood in terms of coupling to energy-momentum tensor (in other words, this option

entails dropping the usual motivational narrative for the self-consistency relation in

terms of energy-momentum coupling). On the first horn, we will argue that the

self-interaction relation can only be interpreted through recourse to a general relativistic

viewpoint, which renders the self-interaction spin-2 approach parasitic on GR after all.

On the second horn, there is no longer any reason why the self-interaction relation is not

simply one out of infinitely many self-coupling relations corresponding to different

perturbative expansions of any given spacetime. There is then no unique way of

interpreting GR in terms of perturbative expansions, and we criticize this interpretative
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stance on general grounds.

3.1 The first horn

The self-sourcing procedure rests on the identification of a concrete spin-2

energy-momentum tensor. The choice of an energy-momentum tensor is ambiguous in

several senses. First of all, the choice of an energy-momentum tensor is generally

considered to be ambiguous with respect to the addition of a superpotential

∂αΨ[ρα]σ, where Ψ[ρα]σ is a third-rank tensor that is anti-symmetric in its first two indices

(thereby, ∂ρ∂αΨ[ρα]σ = 0). The most general possible energy-momentum tensor found

from the superpotential method for the case of the Fierz-Pauli action was derived in

Baker (2021), which demonstrated that there are not only infinitely many possible

superpotential additions, but that even for specific superpotentials there are infinitely

many off-shell possibilities; therefore the superpotential method further complicates the

selection of a unique energy-momentum tensor for self coupling.

Secondly, there is an ambiguity linked to the fact that the standard definition usually

adhered to in special relativity to obtain the energy-momentum tensor relative to an

action A/Langrangian L—the canonical Noether energy-momentum tensor T µνC —does

not lead to a symmetric energy-momentum tensor, which is, however, required for

the self-interaction approach.6 Given the unique energy-momentum definition for the

6The Poincaré symmetries associated with η (in particular, the 4-parameter translation)

are used in Noether’s first theorem to derive an energy-momentum tensor, but in general,

other background spacetimes may lack these symmetries, thereby lacking the conventional

Noether definition of an energy-momentum tensor altogether.
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canonical Noether energy-momentum tensor(
T µνC = ηµνL − ∂L

∂(∂µhαβ)
∂νhαβ − ∂L

∂(∂µ∂ωhαβ)
∂ω∂

νhαβ +
(
∂ω

∂L
∂(∂µ∂ωhαβ)

)
∂νhαβ + . . .

)
for a

spin-2 field hαβ, one obtains T ρσC = ηρσLFP − ∂LFP
∂(∂ρhµν)

∂σhµν for the Fierz-Pauli

Lagrangian LFP . Using the freedom to add a superpotential ∂αΨ[ρα]σ, the symmetric

energy-momentum tensor for the spin-2 field will be given (on-shell) by the canonical

Noether T µνC on the Fierz-Pauli Lagrangian LFP and the divergence of a superpotential as

T ρσ = T ρσC + ∂αΨ[ρα]σ. (1)

As shown in Baker (2021), however, there are infinitely many solutions to the specific

problem of finding a symmetric energy-momentum tensor using this procedure. This

approach alone fails to deliver a unique answer. The usual proposal to determine a

unique answer employed in the spin-2-to-GR literature is to pick out a preferred

symmetric energy-momentum tensor through the Hilbert definition: T γρ = 2√
−g

δL
δgγρ

∣∣∣
g=η

.

Notably, having some prescriptive definition for energy-momentum tensor like the

Hilbert one is required to make the self-interaction spin-2 approach feasible to begin

with: at each iterative step it is required to actually pick an energy-momentum tensor

relative to the spin-2 field equation obtained in the previous step.7 This needs to be

done in a systematic fashion if the self-sourcing is really to count as a performable

procedure, which in turn seems to make a unique definition necessary—otherwise we

would have to choose in principle infinitely many times between infinitely many possible

(symmetric) energy-momentum sources.

7Alternatives to the Hilbert prescriptive definition do exist, such as the closely related

definition in Padmanabhan (2008).
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That is, the Hilbert definition is claimed to select one out of the infinitely many

possibilities in equation (1)8; however, this claim is not true in general—the result of the

Hilbert definition does not generally correspond to the symmetric Noether

energy-momentum tensor for flat (Minkowski) spacetime theories (Baker et al. 2021),

and in the example provided, only the Noether method was able to recover the accepted

energy-momentum tensor of the theory.9 But even if the methods do align as in the case

of Fierz-Pauli—Fierz-Pauli is one of a small number of models where on-shell

improvements can be used to reconcile the results of the Hilbert and Noether

methods—understanding why the Hilbert definition should be chosen to select the right

symmetric energy-momentum tensor still requires understanding the concept of Hilbert

definition itself—which as such, again, comes from GR and other curved spacetime

settings. Since the Hilbert definition relies on the notion of curved spacetime, using it

seemingly undermines the notion that the curved spacetime of GR is being introduced

purely through some iterative procedure starting from spin-2 theory. At the purely

8Importantly, the Hilbert definition of energy-momentum involves at least two ambi-

guities itself, namely how to generalise the coupling between spin-2 field and background

metric from a flat to generic curved metric, and to what action to apply the coupling

scheme. The two ambiguities are, however, intertranslatable (Barceló et al. 2014). So,

unless specified which options are taken here, the Hilbert method does not pick out just

one candidate.
9One basic reason for discrepancy in the Noether and Hilbert approaches is that once

models with higher rank potentials and orders of derivatives are considered, the terms

proportional to the Minkowski metric diverge; no symmetrisation superpotential “im-

provement” can impact this part of the expression.
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practical level, it also needs to be pointed out that if we considered only the Noether

approach without a priori knowledge of the Hilbert definition, it would be impossible to

determine which one of the infinitely many superpotentials recovers (on-shell) the

Hilbert expression.

With the relevance of the flat spacetime Hilbert definition called into question, and

without an alternative to it, we have no reason to think that there is a coherent sense of

energy-momentum sourcing at play in the self-interaction program.

3.2 The second horn

If one accepts that the identification of a dynamical coupling to self-energy is blocked,

one might remain unimpressed and take the mere existence of a defining recursive

relation, say for the action, as sufficient to establish that the g-field arises from the

h-field relative to flat spacetime. This leads to the second horn of the dilemma.

Consider, following Butcher (2012) (section 2.3), how one can expand a gravitational

action S[g] such as the Einstein-Hilbert action SEH for g = γ + κh in orders of κ around

some arbitrary static background metric γ such that S[g] = S[γ + κh] =
∑∞

n=0 κ
nSn[γ, h]

where the n-th partial action is given by Sn[γ, h] = 1
n!

(∂nκS[γ + κh])κ=0. It

straightforwardly follows that

δSn[γ, h]

δhµν
=
δSn−1[γ, h]

δgµν
. (recursive relation)

We are interested in the case where S = SEH is the Einstein-Hilbert action and γ = η the

Minkowski background. As worked out before, it is not clear then that δSn−1[γ,h]
δgµν

|γ=η can

be associated with any sort of special relativistic concept of energy-momentum tensors
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(as usually done via Noether’s theorem for the special relativistic context, i.e., in relation

to the Poincaré symmetries)—and thus regarded as clearly physically sensible

contributions to h’s self-energy. (As long as there is no sensible notion of

energy-momentum tensor defended here, there is no clear sense in which the

energy-self-sourcing interaction can literally be taken as a physical mechanism.)

What we want to bring to attention now is that the mere fact that the relation

between a few terms of a perturbative series of a function(al) can be used to define the

whole function(al) if suitable operations are allowed is nothing special as such; in

particular, this fact alone cannot render the perturbative picture physically more

fundamental than the non-perturbative one. For instance, the sequence elements (fi)iN

in the series expansion of exp(x)− 1 as
∑∞

i=0 fi can be re-expressed recursively as

fi+1 = xfi

max{j| ∂(j)
∂x

fi 6=0}+1
with f0(x) = x analogously to how the Einstein–Hilbert action is

fixed by a recursive relation in equation (recursive relation). All of this suggests that the

self-interaction spin-2 approach involves interpreting a perturbative expansion to look

like a physical energy-sourcing relation instead of simply seeing it as part of a standard

mathematical procedure.

Perhaps a perturbative spin-2 view could still be seen to offer a decompositional

picture of the metric field as composed of some background metric and an h field with

corresponding dynamics. Given the arbitrariness in background metric (in particular,

the Minkowski metric is neither the only, nor a preferred, option in such a classical

decompositional picture), the question arises then why any perturbative picture of GR

should be more fundamental than the non-perturbative picture. Arguably, the converse

question(s) as to why the non-perturbative picture is more fundamental than the

perturbative one (or, at least, all perturbative pictures taken together) is also possible. If
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so, we seem to be left with many possible ways to identify the fundamental dynamical

degrees of freedom of the gravitational field, without sufficiently clear grounds for

privileging one. The existence of multiple viable ways of understanding a theory should

come as no surprise. Philosophers often turn to super-empirical virtues to provide new

grounds to single out a preferred reading. Now, the standard nonperturbative picture

offers an transparent path to the spin-2 equations of motion/actions; the converse, as we

have seen with all the involved ambiguities, is not equally true (section 2.1). Secondly,

the standard non-perturbative picture has a wider scope since it requires only very weak

restrictions on the background manifold (section 2.2). If at all, all perturbative pictures

taken together have the same explanatory scope as the non-perturbative picture alone.

But more than that: the myriad possible perturbations are even explained by assuming a

non-perturbative picture as fundamental.

But what if one takes into account the special status of flat spacetime in quantum

theory? Admittedly special relativistic field theory is a powerful framework. One might

object then that that spin-2 theory cannot dynamically reduce GR should really not

bother us; rather, what should be stressed is that it is the (specific) perturbative picture

of flat spin-2 theory (and only that) which is continuous with all of our other best other

physical theories. The flat-spacetime based perturbative picture offers prospects of a

unified account of all field theories within one framework. This kind of unificationist

argument is much less appealing now than in the 50s, however: quantised perturbative

gravity is generally seen as a non-renormalisable theory while it is non-perturbatively

quantised GR—so exactly not the quantisation of gravity around flat spacetime—that is

generally expected to be UV complete (see Crowther and Linnemann 2019, for an
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overview).10 More precisely, the general expectation within the quantum gravity

community seems by now to be that the (Minkowski-based) spin-2 view is, again, only

one out of a myriad of complementary EFT views on general relativity—including the

de-Sitter- and anti-de-Sitter-based spin-2 views (Huggett and Wüthrich ND, Chapter 9)

but more generally perturbative quantisations around arbitrary background spacetimes.11

Unification with QFT seems simply to get immediately trumped by renormalisable

quantisation, the posit that gravity should lead to a renormalisable quantum theory—an

explanatory standard with more relevance than unification for its own sake.

4 Conclusion

We have shown that not only are there serious concerns to be had about the scope and

derivational nature of the spin-2 approach to GR but also that a devastating dilemma

arises for any understanding of the metric of GR as a self-interacting spin-2 field.

None of this undermines the heuristic use of the self-interaction picture. One often

ignored achievement of the self-interaction approach from a pragmatic point of view is

the by now common re-formulation of the self-interaction problem as a problem of gauge

deformation (see in particular Fang and Fronsdal (1979), as well as Wald (1986),

Boulanger et al. (2001)). Notably, once the transition has been carried out, there is no

need to explicitly define the energy-momentum tensor associated to the h field.

10See Ashtekar (1991) for a heuristic argument that quantising non-perturbative gravity

provides additional insights over perturbative approaches.
11The possible lack of a particle representation (because the background spacetime does

not have symmetries) does not impede the possibility of a sensible quantum field theory.
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Consequently, the ambiguity problem with respect to the self-interaction

energy-momentum tensor may be evaded when the gauge deformation perspective is

taken up from the start (and not merely treated as clarifying the self-interaction

problem). However, the gauge-theoretic and the self-interaction approaches are de facto

linked to two very different projects in the literature: while the self-interaction problem

qua physical sourcing mechanism is typically presented as a step-by-step “derivation” of

the field equations (and, given the ambiguities, only at first sight sensibly so),

proponents of the gauge-deformation approach do not convey an image of the spin-2

equations as leading to the Einstein field equations in the sense of a derivation.12 Rather

the idea is to make precise a sense in which the former fix the latter uniquely under

sufficiently further mild conditions (something one may refer to as a restrictionist

approach, as for instance familiar from the Lovelock theorems). In some sense the

difference in strategy is inevitable if the self-interaction approach is considered to be a

failure qua derivational approach. After all: if the gauge-theoretic approach was just as

well cast as a “derivation”, would one not immediately wonder as to why one has

practically only managed to arrive at it through the self-interaction approach? The

failure of the self-interaction approach qua “derivation” undermines any wider

“derivational” project the self-interaction approach itself is a part of. But notably, gauge

deformationists have treated—or, in any case, can treat—the self-interaction picture

simply as a heuristic ladder which can be used despite its flaws.

12Although, the self-interaction and gauge deformation approaches are sometimes con-

flated in the literature.
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Huggett, N. and C. Wüthrich (ND). Out of Nowhere: The Emergence of Spacetime in
Quantum Theories of Gravity. Oxford University Press.

Padmanabhan, T. (2008). From gravitons to gravity: Myths and reality. International
Journal of Modern Physics D 17, 367–398.

19



Pitts, J. B. (2022). What represents space-time? And what follows for substantivalism
vs. relationalism and gravitational energy? arXiv preprint arXiv:2208.05946 .

Salimkhani, K. (2020). The dynamical approach to spin-2 gravity. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of Modern
Physics 72, 29–45.

Wald, R. M. (1986). Spin-two fields and general covariance. Physical Review D 33 (12),
3613.

20


	Introduction
	General concerns
	Ambiguities in derivation
	Limited Sector

	The Dilemma
	The first horn
	The second horn

	Conclusion

