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Abstract. Humans and many animals are capable of learning and learning how to

learn better. We are concerned here with one way that reinforcement learners might

learn how to learn better. In an experiment described by Harry Harlow (1949), a group

of rhesus monkeys learn a new way of learning in the context of a specific type of

problem. We will consider how such agents might coevolve a new learning dynamics and

new attendant saliences. To this end, we propose a self-tuning dynamics that illustrates

one way that a reinforcement learner might acquire forms of learning that are

well-suited to context-specific problems.
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1. introduction

David Hume believed that we can never have rational justification for our expectations

or beliefs regarding matters of fact (1975, 25–39). In his sceptical solution to the

problem, he explained that beliefs regarding matters of fact, and expectations regarding

the future in particular, were naturally learned not rationally justified. This shift in

focus from rational justification to learning has both pragmatic and naturalistic virtues.

Hume held that beliefs regarding expectation and matters of fact were produced from

experience by means of custom or habit. Custom, in the sense in which he used the term,

is a principle of our psychological nature that acts to produce and adjust propensities

when presented with experience. He explained that “wherever the repetition of any

particular act or operation produces a propensity to renew the same act or operation,

without being impelled by any reasoning or process of the understanding . . .this

propensity is the effect of Custom” (1975, 43). We learn just as animals do who “by the

proper application of rewards and punishments, may be taught any course of action”

(1975, 105). To learn by custom, then, is to learn by reinforcement on success and

punishment on failure.

Hume regarded such reinforcement learning to be a fortunate natural endowment of

human psychology:

Custom . . . is the great guide of human life. It is that principle alone

which renders our experience useful to us, and makes us expect, for the

future, a similar train of events with those that have appeared in the past.

Without the influence of custom, we should be entirely ignorant of every

matter of fact beyond what is immediately present to the memory and

senses. We should never know how to adjust means to ends, or to employ
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our natural powers in the production of any effect. There would be an end

at once of all action, as well as of the chief part of speculation (1975,

44–45).

And he took its effect to be as “unavoidable as to feel the passion of love, when we

receive benefits; or hatred, when we meet with injuries” (1975, 46).1

There is a great deal of evidence that Hume was right to believe that both humans

and other animals very often learn by means of some form of reinforcement with

punishment.2 That said, humans and many animals are also capable of learning in other

context-specific ways.

A natural extension of Hume’s account of how we learn would consider how a

reinforcement learner might develop and learn to implement other methods of learning,

methods better suited to particular practical contexts. Barrett (2023) takes up this

theme, offering a general Humean strategy for how an agent might use simple

reinforcement to learn how to learn better. Here, in contrast, we focus on a narrower

problem regarding natural learning. Specifically, we consider how rhesus monkeys might

1See Barrett (2023) and Morris and Brown (2019) for further discussion of the nature

and role of custom in Hume’s account of learning and his “sceptical solution” to the

problem of induction.
2See Herrnstein (1970) for a description of such experiments and a formal account of

positive reinforcement. See Roth and Erev (1995), Erev and Roth (1998), and Bereby-

Meyer and Erev (1998) for examples of reinforcement learning in humans subjects. See

Fudenberg and Levine (1998) and Skyrms (2010) for discussions of reinforcement and

closely-allied types of learning in the context of games and Huttegger (2017) for a discus-

sion of a discussion of the basic ideas behind reinforcement learning and rational learning

more generally.
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learn how to learn more efficiently using a form of self-tuning reinforcement learning in

the context of a classic experimental study by Harry Harlow (1949).3 This dynamics

allows a reinforcement learner to learn how to learn in a way that is better suited to a

particular type of problem while also learning how to apply the new form of learning to

the problem. We take this sort of reinforcement learning to accord well with Hume’s

commitment to custom.

The argument proceeds as follows. In section 2 we introduce two kinds of learning,

reinforcement and win-stay/lose-shift. In section 3 we explain how the learning to learn

achieved by Harlow’s subjects can be thought of as a gradual transition from the former

to the latter. In sections 4 and 5 we argue that this transition is well modeled by a kind

of “heating up” where the two parameters governing a reinforcement learner’s behavioral

and attentional dispositions are gradually increased over time. In sections 6 and 7 we

present a model where the heating-up process is realized by a higher-order reinforcement

process that operates on a learner’s dispositions to stay with or shift away from actions

depending on whether they recently led to practical success or failure. This second

model shows that learning to learn of the kind achieved by Harlow’s monkeys can be

accomplished by a self-tuning process that involves nothing more sophisticated than

reinforcement of strategic dispositions when they produce successful actions and

3Harlow discusses learning to learn in terms of learning set formation, the development

of different methods of learning suited to different practical contexts. The 1949 paper we

discuss was the first of several papers, by Harlow and others, investigating the development

learning sets in animals. The original paper remains a classic in comparative psychology.

See Schrier (1984) for more details on the reception of Harlow’s research and its influence

on subsequent work on animal learning. See Barrett (2024) for a discussion of other

self-tuning forms of reinforcement learning.
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punishment of strategic dispositions when they produce unsuccessful actions. The

two-tiered formulation of reinforcement with punishment that we describe is both simple

and highly adaptable. In section 8 we briefly discuss the results.

2. Two forms of learning

Edward Thorndike (1898) was one of the first to investigate in detail how animals

learn by reinforcement with punishment. He summarized the results of his experiments

on cats, dogs, and chicks in two laws. The first was the law of effect:

Of several responses made to the same situation, those which are

accompanied or closely followed by satisfaction to the animal will, other

things being equal, be more firmly connected with the situation, so that,

when it recurs, they will be more likely to recur; those which are

accompanied or closely followed by discomfort to the animal will, other

things being equal, have their connections with that situation weakened,

so that, when it recurs, they will be less likely to occur. The greater the

satisfaction or discomfort, the greater the strengthening or weakening of

the bond.

The second was the law of exercise:

Any response to a situation will, other things being equal, be more

strongly connected with the situation in proportion to the number of

times it has been connected with that situation and to the average vigor

and duration of the connections. (Thorndike 1911, 244)

Together these laws capture the key features of reinforcement with punishment. Namely,

an animal is more likely to perform an action when it has been rewarded in connection
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with that type of action, less likely to perform it when it has been punished, and both

the magnitude and the number of rewards and punishments matter in a cumulative way

to the animal’s subsequent probabilistic dispositions.4

In its most basic form reinforcement with punishment learning can be modeled as

follows.5 Let qk(t) be an agent’s propensity for action k at time t. Her propensities

evolve according to the update rule:

qk(t+ 1) =

 qk(t) + π(t) if action k was taken

qk(t) otherwise.

Here π(t) is the payoff received by an agent taking the action k on round t. It may be

positive for reinforcement or negative for punishment depending on the degree of success

or failure resulting from the action. If one allows for punishment, then one needs to do

something to prevent negative propensities. One strategy is to specify a limit b > 0, then

to stipulate that if a punishment would result in qk(t+ 1) < b, then qk(t+ 1) = b.

An agent’s propensities, in turn, determine her probabilistic dispositions. This works

by means of the response rule:

pk(t) =
qk(t)∑
j qj(t)

,

where pk(t) is the probability that the agent takes action i at time t. In order to say how

the process gets started, one must also specify a set of initial propensities qk(0).

While both humans and animals often learn by this or a similar variety of

reinforcement, they also learn in other ways. Sometimes an agent considering multiple

4See Thorndike (1898) (1901) (1911) for descriptions of his experiments and his under-

standing of how reinforcement learning works.
5This way of characterizing the dynamics follows Roth and Erev (1995) and Erev and

Roth (1998).
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possible actions begins by picking one at random. If her guess leads to success, then she

repeats the same action the next time she finds herself in a similar situation. But if her

attempt results in failure, then she tries a different response at random the next time

around.

Win-stay/lose-shift learning formalizes this type of trial-and-error learning. Consider a

learner who confronts a series of trials each of which results in either success or failure

depending on which of a finite number of acts she chooses on that trial. As above, we

will use t to denote the current time-step. At t = 0, a win-stay/lose-shift learner chooses

each available act with equal probability. At each subsequent step, if she chose act a at t

and that choice led to successful action, then she chooses a again at t+ 1; if she chose a

at t and failed on that trial, she chooses an act at random and without bias from the set

of all available acts except for a at t+ 1.

Win-stay/lose-shift does better than reinforcement in some learning problems. Harlow

(1949) presented rhesus monkeys with a series of such problems and recorded their

behavior. The monkeys started as reinforcement learners then slowly learned how to

learn by win-stay/lose-shift in a context-specific way that involved the coevolution of

what they took to be salient as they learned. We show that the learning accomplished by

Harlow’s monkeys is well-modeled by a process in which they gradually shift from

implementing a simple form of reinforcement learning to implementing a learning rule

that closely approximates the behavior of a win-stay/lose-shift learner even as they learn

by reinforcement how to apply the new form of learning to the particular type of

problem they face.
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One might think of this co-evolutionary process as a self-assembling discrimination

game.6 In a self-assembling game, structural features of a strategic interaction, such as

the payoff structure or the players’ strategy sets, evolve alongside the strategic

dispositions of the players. In the game played by Harlow’s monkeys, both the learning

dynamics they use to update their dispositions and the features of the world on which

they condition their actions coevolve as they play.

3. Harlow’s monkeys

Harry Harlow (1949) performed a series of experiments to determine how rhesus

monkeys might learn how to learn in the context of a particular type of problem. Here

we are primarily concerned with his first experiment.

In Harlow’s first experiment, the monkeys were presented with a series of

discrimination problems. Each problem consisted of a different pair of objects O1 and O2

that were easily distinguishable, with one of these, say O1, always covering a small piece

of food. As a concrete example, O1 might be a handkerchief and O2 a small pillow for a

given problem. The two objects were then placed randomly to the left and right before

the monkey. The monkey was rewarded if it chose the object covering the food. Each

problem was repeated a number of times with the objects O1 and O2 randomly placed

before the monkey on each trial and with the same object O1 always covering the food.

Then the experimenter introduced a new learning problem with two new objects and

with the food always under one of those. The full experiment consisted of a series of 344

such problems using 344 different pairs of stimuli (objects) run on a group of eight

monkeys (1949, 52).

6See Barrett and Skyrms (2017) for a general account of the self-assembly of games by

ritualization.
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Figure 1. Harlow’s 1949 learning set data: Discrimination learning curves
on successive blocks of problems.

Harlow found that the monkeys initially learned to select the right object within a

problem by means of a process that is closely modeled by simple reinforcement learning.

But in later problems, the monkeys learned where the food was much faster and in a

qualitatively different way. Figure 1, reproduced from Harlow’s original paper, captures

this phenomenon visually, plotting the monkeys’ mean aggregate success rates in the first

six trials of successive blocks of problems.

By learning across problems, the monkeys learned how to learn more efficiently within

each problem. Instead of their usual reinforcement learning, they gradually began to

learn by means of a form of a win-stay/lose-shift.7 They would choose an object on their

7See Cochran and Barrett (2021) and (2022) for discussions of various forms of win-

stay/lose-shift learning and their use by human subjects.
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first trial blindly. If the food was there, they would stay with that object no matter

where it might be located on a future trial. If the food wasn’t there, they would choose

the other object regardless of where it might be located on a future trial.8

Harlow referred to this type of acquired skill as a learning set, a way of learning in the

context of a particular type of problem. In allowing for more efficient forms of learning,

he said, the formation of a new learning set “delivers the animal from Thorndikian

bondage.” (1949, 59). The monkeys are no longer dependent on their usual

reinforcement learning, a form of learning that does not work nearly as well as

win-stay/lose-shift for the task at hand.

In learning how to learn better, the monkeys coevolve a new learning dynamics and

new associated saliences that allow for the effective use of the new dynamics.9 The

monkeys’ probabilistic dispositions gradually shift from those associated with

reinforcement learning to those associated with win-stay/lose-shift learning over

subsequent problems. And they learn that objects matter and locations don’t, and they

learn to use win-stay/lose-shift not simple reinforcement for this type of problem. In this

way, the coevolved saliences provide conditions for both when and how the new

dynamics is used.

8Harlow reported that some of the monkeys were eventually able to solve 20 to 30

consecutive problems with no errors whatsoever after their first blind trial (1949, 56).
9The notion of salience at work here is one on which a feature of an agent’s environment

is salient for that agent if she is disposed to notice and condition her response on that

feature’s state. When we speak of the saliences of an agent, we mean this as shorthand

for the agent’s dispositions to attend to and condition her actions on the various bits of

her environment.
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In brief, the monkeys begin as reinforcement learners who consider both position and

object quality, then gradually learn to use win-stay/lose-shift on object quality.10 In

doing so, they self-assemble a new way of learning in the context of this particular type

of task.

Harlow also described a series of experiments where children are presented with a

similar task. The children learned in much the same way as the monkeys but were faster

in moving from reinforcement learning to win-stay/lose-shift learning with the associated

saliences (1949, 55 and 59).

While it is unclear precisely how the monkeys or children are learning how to learn,

one can model how a reinforcement learner might learn to use win-stay/lose-shift with

appropriate attendant saliences. We will consider how they might learn new saliences by

reinforcing on what they attended to when their action was successful and how they

might gradually evolve from learning by simple reinforcement to learning by

win-stay/lose-shift by updating the magnitudes by which they reinforce on success and

punish on failure as the play.

In the first model, we show that the monkeys’ transition from gradual reinforcement

learning to win-stay/lose-shift can be thought of as a kind of “heating up” of the

monkeys’ act- and salience-level learning, in which they are always learning by a form of

reinforcement or punishment but the magnitudes by which they reinforce on success and

punish on failure grow over time. The first model, however, does not consider how this

heating-up process might be realized by a learning mechanism. This is addressed by the

10In his subsequent experiments, Harlow showed how the monkeys might learn to take

position rather than object quality as salient and even switch between the two learned

saliences (1949, 56–9). Of course, the monkeys are using pre-evolved and pre-learned

saliences from the start. They must even to know that each trial involves making a choice.
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second model, which we introduce in section 4. The second model shows how a shift in

learning like that achieved by Harlow’s monkeys might be accomplished by a learner who

implements a self-tuning form of reinforcement with punishment learning over

higher-order dispositions to repeat or shift away from actions depending on whether they

were successful. 11

4. the first model

Consider an agent who learns by reinforcement with punishment over a sequence of

learning problems both what to attend to and how to act. One might picture how she

learns by considering a set of urns from which she might draw balls to determine her

actions and add or remove balls to update her dispositions.12 All draws from urns are

random and without bias. We will start with a description of how learning occurs within

a problem, then discuss how learning evolves across problems.

Each learning problem consists of a sequence of trials in which the agent chooses one

of two objects O1 or O2. At the beginning of a problem, one of these objects is randomly

selected as the reward object and remains the reward object for each trial of the

problem. On problem n, the reward for success is in and the punishment for failure is jn

on each trial. The positions of the objects are randomly determined between trials.

11See Barrett (2020) and (2024) for how to model the evolution of salience and Herrmann

and VanDrunen (2022) for an application to the evolution of saliences in the context of

basic Lewis-Skyrms signaling games.
12We will also allow for fractional changes in the number of balls of each type in an urn.

This will affect the probability of drawing a ball of a given type in precisely the way one

would expect.
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Figure 2. The urn model

At the beginning of a trial, the agent draws from a salience urn containing Q balls and

P balls as in figure 2. Before the first problem, this urn contains one ball of each type.

The result of the draw determines which type of stimulus the monkey attends to in

determining her action.

If the agent draws a Q ball from the salience urn, then she chooses an object to select

on the trial by a draw from her quality urn. Before the first trial of each problem, this

urn contains one O1 ball and one O2 ball. If the agent chooses the reward object, then

she is successful, and she returns the balls she drew from the salience urn and the quality

urn and adds in new balls of the same type to each. If she selects the non-reward object,

then she is unsuccessful, and as long as doing so will not drive the weight associated with

the relevant type below a small l > 0, she returns the ball she drew to the urn from which

she drew it then removes j many balls of its type from each of the two urns. If removing

jn balls would drive the associated weight below l, then she sets the weight associated

with that type to l. The weights associated with each disposition are thus bounded from

below by l. This prevents initially possible strategies from being completely eliminated.13

13While thinking of whole balls provides an intuitive picture of the process, the weights

for each type in an urn are typically fractional. Specifically, each of the simulations in the
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The process is analogous if a P ball is drawn from the salience urn. In this case, the

agent determines which object to select on the trial by a draw from her position urn.

Before the first trial of each problem, this urn contains one R ball and one L ball. If an

R is drawn, the agent selects the object on the right; and if an L is drawn, she selects

the object on the left. Reinforcement and punishment on the trial works the same way

as it does on a quality draw.

An agent also adjusts how she learns between trials by updating the magnitude by

which she reinforces on success in and punishes on failure jn. Specifically, we will

suppose that an agent’s (+in,−jn) reinforcement with punishment learning evolves by

the following recursive rule:

in+1 = αin + β

jn+1 = αjn + β

where α > 0 and β ≥ 0 are constant over the full multi-problem experiment. While a

more complex model would allow for different scale and shift parameters for

next section starts with one ball of each type in each urn, a punishment level of 0.25, and

a lower bound on each weight of l = 10−14. The lower bound allows the reinforcement

learner to retain an unsuccessful strategy that has a long track-record of failure as at least

an in-principle possibility and perhaps even try it again later, particularly if nothing else

has worked well either. While our particular choice of l is more or less arbitrary, choosing a

value that is small relative to the initial propensities ensures that punishments occurring

early in the learning process can significantly affect subsequent choice probabilities, as

is necessary for the possibility of generating win-stay/lose-shift-like behavior in an agent

implementing reinforcement learning with punishment.
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reinforcement and punishment, we will suppose that the two parameters are the same in

both contexts. We will also suppose that the magnitudes of reinforcements and

punishments for act-level learning change from trial to trial according to the recursive

rule, while the magnitudes of the reinforcement and punishments are constant for the

learning of saliences.

An agent’s salience urn is not reset between problems. This is so she might learn

whether the series of problems she faces involve object quality or position. In contrast,

her object and position urns are reset at the beginning of each new problem. This

corresponds to the appearance of a new set of objects for which the agent needs to evolve

effective dispositions.

While we are interested in the quantitative fit with Harlow’s data, our primary

concern is the basic structure of the model. We will start with a particularly simple set

of parameters then discuss other settings that also work well.

Harlow’s experiments do not allow us to determine precisely how the monkeys learn

how to learn, but they do say something about how they learn how to learn in aggregate

when repeatedly presented with the same special sort of problem.14 The recursive rule is

designed to capture this aspect of their higher-order learning. Later, we will consider a

model in which this higher-order learning is modeled explicitly.

14Harlow also presents evidence from experiments where saliences may change from

problem to problem. This is a step in the right direction, but to get a better understanding

of the second-order dynamics of individual agents, one would need data for each agent

rather than aggregate data. Further, it would also be useful to know how the monkeys

behave when faced with problems where, for example, the reward alternates between

objects within a problem.
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Monotonically increasing act-level reinforcements and punishments represent a

monkey’s sharpening sense of the type of learning problem it faces in Harlow’s first

experiment. If the monkey tries an object and succeeds, then it will reinforce more on

that object than it would have in earlier problems in the degree to which it has learned

that when an object works in a problem, then it will work again if it tries it again.

Similarly, if the monkey tries an object and fails, then it will punish more on that object

than it would have in earlier problems in the degree to which it has learned that when an

object doesn’t work in a problem, then it will still not work if it tries it again.

5. first model: results

Following Harlow’s experimental design, a single run of the model consists in a series

of 344 problems. The first 32 problems involve 50 trials each, followed by 200 six-trial

problems and 112 nine-trial problems.

The following parameters for a single simulated agent provide a close qualitative fit

with Harlow’s experimental data for the mean aggregate behavior of his eight monkeys:

i1 = 1

j1 = 0.25

α = 1

β = 0.0004

Since α = 1, this transformation just additively shifts the reinforcements and

punishments with no rescaling between trials. And since β = 0.0004, the difference in

learning dispositions between contiguous trials is small.
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Figure 3. Harlow’s experimental data compared to simulation data from
our model on parameters i1 = 1, j1 = 0.25, α = 0, β = 0.0004.

These parameters generate a sequence of learning curves that capture the steepening

pattern across problems that Harlow reports in his experiment. This is illustrated in the

comparison between Harlow’s experimental data and the simulation data from the

treatment where act-level and salience learning coevolves as illustrated in figure 3.15

Although we are primarily interested in the basic structure of the model and the

qualitative steepening pattern reflecting the gradual transition from simple reinforcement

to win-stay/lose-shift, it is worth noting that the quantitative fit with the experimental

data is close. The model thus offers not only an account of how a reinforcement learner

might in principle come to implement win-stay-lose-shift; it is able to closely

approximate the aggregate learning data from a particular case of such learning to learn.

That said, the closeness of the fit varies somewhat across problem blocks.

Figure 4 reports the mean absolute difference between the percent correct responses in

Harlow’s experiment and in the two simulated treatments using the parameter settings

15The experimental data is estimated from Harlow’s figures. The resolution of each data

point is approximately 2%.
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Figure 4. Mean absolute difference between the percent correct responses
in Harlow’s experiment (figure 1) and in the simulations. Only trials 2–6
are counted in each problem, and the average is taken over all of the trials
in each block of problems.

above. Only trials 2–6 are counted in each problem. Starting with trial 2, the monkeys

have the chance to shift on object choice if their first guess was incorrect, and we only

use data up to trial 6 as that is all Harlow reports. Averages are taken over all of the

trials in each block of problems.

As indicated in figure 4, the worst match between simulation results and the

experimental data is in the first and last problem blocks, 1–8 and 289–344, but even here

the difference between the predicted success rate on each treatment and the

experimental data is never more than 6%. Given the relatively low resolution of the

experimental data itself, this is a very close quantitative fit.

The upshot is that additively shifting reinforcements and punishments by a constant

between trials provides an account of how the monkeys learn how to learn that fits well

with the experimental data. As they update their own learning dynamics, they gradually

come to act as win-stay/lose-shift learners. And they learn to pay attention to objects,
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not locations, in the context of this type of problem. In this the simulated agents behave

just as the rhesus monkeys do in aggregate in Harlow’s experiment.

The model does surprisingly well under quite different parameter settings. Instead of

increasing reinforcements and punishments by means of iterated additive shifts (α = 1,

β > 0), one might rescale reinforcements and punishments after each trial (α > 1,

β = 0). Starting with the same initial values for i0 and j0 as above, a pure rescaling of

α = 1.0005 and β = 0 delivers a qualitative overall fit approximately as good as the pure

additive shift of α = 1.0005 and β = 0.0004, and it does somewhat better on the final

problem block than the additive shift. As with the original parameters, the mean

absolute difference between the model’s learning on the rescaling parameters and that of

Harlow’s monkeys for trials 2-6 never exceeds 0.06 for any problem block.

Unsurprisingly, there are also parameter settings that involve both an additive shift and

rescaling that provide a good qualitative match with Harlow’s data.

The robustness of the model under different parameter settings means that the model

gets the basic structure of the monkey’s higher-order learning right. In particular,

monotonically increasing levels of punishment and reward capture the aggregate shift in

the dispositions of the monkeys as they evolve from reinforcement learners to

win-stay/lose shift learners.

That different parameters settings work similarly well, however, also represents a

significant limit regarding what can infer from Harlow’s experiments. A second-order

learning dynamics that works by simple reinforcement (additive shift) is different in kind

from one that works by multiplicative reinforcement (rescaling).

There are two further things to note regarding the present model. The first concerns

the evolution of salience. The second concerns the form of reinforcement learning

required to capture the behavior of the monkeys.
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To this point, we have only considered how an agent might learn that object quality is

salient to learning within a problem, but the story is much the same for location. In

subsequent experiments, Harlow tried always placing the reward in the same position

rather than under the same object in a problem. The monkeys were able to learn how to

learn in the context of such problems by win-stay/lose-shift on position just they had on

object quality. The present model captures this behavior. Since quality and position are

symmetric, if the reward is always put in the same position, a simulated agent gradually

learns how to learn by win-stay/lose-switch on position rather than object quality,

agreeing well with the aggregate behavior of Harlow’s monkeys.

The second thing to note is that punishment is an essential feature of the present

model. While there are parameter settings that allow for the emergence of something

roughly akin to win-stay/lose-shift learning without punishment, one cannot get a good

match with Harlow’s aggregate data without punishment. The reason is relatively

straightforward. Since the object urns are reset between problems, the expected success

rate in trial 2 within a problem for a simple reinforcement learner without punishment

but with optimal saliences is bounded from above by 0.75.16 Hence no level of positive

16Suppose that with probability 1 a simple reinforcement learner without punishment

attends to the relevant dimension in every trial of problem n. At the beginning of the

problem, the object act urn is reset to one ball of each type. The agent will, hence, choose

the rewarded object in trial 1 with probability 0.5. Let in be large so that the probability

that the agent will choose the rewarded object in trial 2 conditional on having chosen the

correct object in trial 1 is 1-ϵ, where ϵ is small. If the punishment level jn is zero, then

the agent will choose the rewarded object in trial 2 with probability 0.5, conditional on

having chosen the unrewarded object in trial 1. Thus the probability of success in trial 2
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reinforcement alone, can generate a success rate of 0.97 in trial 2, as observed in the final

problems of Harlow’s first experiment.

6. the second model

The first model closely approximates the behavior of Harlow’s monkeys as they learn

how to learn in this type of discrimination problem. There is good reason, however, to

hesitate in taking the model as illustrating how they learn how to learn. The modeled

agent’s salience- and act-level learning is transformed by iterated additive

transformations of reinforcement and punishment values, but those transformations

occur automatically between problems independently of the agent’s experience. In a

genuine learning process, one should expect an agent’s dispositions to change over time

in response to the specific content of her experience.

In this section, we consider higher-order learning process that would lead an agent to

gradually shift from implementing slower reinforcement learning to fast

win-stay/lose-shift-like learning in Harlow-style discrimination problems. The

meta-learning dynamics that describes the evolution of an agent’s first-order learning

parameters is a variety of reinforcement learning in which the agent reinforces and

punishes four higher-order strategies: (i) stick with strategies when they succeed, (ii)

abandon strategies when they succeed, (iii) stick with strategies when they fail, and (iv)

abandon strategies when they fail.

Reinforcing and punishing dispositions (i)-(iv) is operationalized in terms of

adjustments of the reinforcement and punishment levels governing the agent’s act- and

is (0.5)(1− ϵ) + (0.5)(0.5). Letting ϵ go to zero for very large reinforcements, the value of

expression asymptotically approaches 0.75 from below.
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salience-level learning. Before describing the model in detail, it will be helpful to

consider the motivation.

Note that for any fixed initial assignment of propensities over first-order acts, the

higher a reinforcement learner’s level of reinforcement, the more likely she is to repeat

successful actions; and the lower her level of reinforcement, the less likely she is to repeat

successful actions. Thus, increasing the level of reinforcement can be thought of as

reinforcing the disposition to repeat actions which just led to success, and decreasing the

level of reinforcement can be thought of as punishing the disposition to repeat actions

which just led to success. Similarly, for any fixed initial assignment of propensities over

first-order acts, the lower the learner’s level of punishment, the more likely she is to

repeat unsuccessful actions; and the higher the level of punishment, the less likely she is

to repeat unsuccessful actions. So, decreasing the level of punishment can be thought of

as reinforcing the disposition to repeat actions which just led to failure, and increasing

the level of punishment can be thought of as punishing the disposition to repeat actions

which just led to failure.

These observations provide the basis for the second model’s higher-order reinforcement

dynamics. Suppose that an agent performs two identical actions A1 and A2 under

identical conditions at contiguous times t1 and t2. If A1 was successful and A2 was

successful, then the agent would want to reinforce in the future more strongly than she

did since an identical action succeeded when it was repeated. In contrast, if A1 was

successful and A2 was unsuccessful, she would want to reinforce in the future less strongly

than she did, since an identical action failed when it was repeated. Similarly, if A1 was

unsuccessful and A2 was successful, then the agent would want to punish in the future

less strongly than she did since an identical action succeeded when it was repeated. And
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if A1 was unsuccessful and A2 was unsuccessful, she would want punish in the future

more strongly than she did, since an identical action failed when it was repeated.

Consider an agent facing a series of n many k-trial object quality discrimination

problems, formalized precisely as in the first model. And like the first model, suppose

the learner’s saliences and act-level dispositions evolve by reinforcement with

punishment, as described by the urn model in figure 2. As above, let it represent the

level of reinforcement for salience and act learning at time t, and let jt represent the

corresponding level of punishment at t, where timesteps are cumulative across problems

(so that, e.g., the first trial of the second problem occurs at t = k + 1, not t = 1). Let

s(t) denote the salient dimension on that trial, i.e. the feature of the stimulus objects the

learner attended to at t, and let Is(t, t+ 1) be a function whose value is 1 if

s(t) = s(t+ 1) and 0 otherwise. Let o(t) denote the outcome of the trial at timestep t,

where o(t) = 0 if the trial was unsuccessful and o(t) = 1 if the trial was successful. a(t)

will denote the act chosen at t, and Ia(t, t+ 1) is a function whose value is 1 if

a(t) = a(t+ 1) and 0 otherwise. γ > 1 and λ < 1 are constants. Figure 5 describes

precisely how reinforcement and punishment dispositions evolve, along with qualitative

descriptions relating the formal characterization to the interpretation in terms of

reinforcing and punishing on stay/shift dispositions.

In the present model γ and λ are constants by which the learner’s reinforcement and

punishment levels may be rescaled when the agent learns to learn from trial to trial.

This involves several modifications of the original model. Most importantly, higher-order

reinforcement on the present model is not automatic; rather, first-order levels of

reinforcement and punishment are only modified as a result of higher-order learning on

the basis of the agent’s experience. In the considering results from the first model, we

focused on the case in which reinforcement and punishment levels are updated by
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Figure 5. The higher-order learning dynamics (The last row indicates that
on any trial in which the agent’s salience shifted from the previous trial,
reinforcement and punishment levels remain unchanged.)

additive translations; in the second model, higher-order reinforcement is accomplished by

rescaling as this provides a natural way of avoiding the possibility of negative first-order

reinforcement or punishment levels. And while the first model modifies reinforcement

and punishment in lockstep, first-order reinforcement and punishment levels are never

modified simultaneously in the present model. Rather, they respond independently to

the learner’s experience.

Another feature of the present model is that reinforcement and punishment levels

remain unchanged whenever the agent’s saliences shift between contiguous trials (i.e.,

whenever Is(t, t+ 1) = 0). The thought is that which dimension of the stimuli is salient

to the agent in a given trial determines a framing of the choice problem at hand and that

choices made in trials with different frames are not comparable. In particular, it is not



LEARNING HOW TO LEARN BY SELF-TUNING REINFORCEMENT 25

meaningful to treat the sequence of choices made in two contiguous trials in which the

learner switched saliences as an instance of staying with or shifting from a given strategy.

An example may be helpful. Consider a Harlow discrimination problem in which the

two stimulus objects are a red bowl and a green cup. Suppose that object quality is

salient to the learner in trial t. She therefore frames the problem at hand in terms of

choosing the right kind of object. On trial t+ 1 her salience changes. Now, she attends

to position, and thus sees the problem as requiring her to choose the correct location.

The example illustrates how a shift in the salience a learner uses marks a change in

how she frames her options: in trial t, she faces a choice between different types of

objects; in trial t+ 1 it faces a choice between different locations. Suppose she first (at t)

chooses the green cup, and then (at t+1) chooses the right-hand position, which happens

to be occupied by the green cup. Of course, from an outside perspective, the same object

was selected between the trials. But from the learner’s perspective, the acts choose the

right-hand position and choose the green cup are not comparable in the way they would

have to be in order for talk of the learner keeping the same strategy or switching to a new

strategy between t and t+ 1 to be meaningful. As a result, we suppose that the agent

does not update her dispositions to stay with or switch away from successful or

unsuccessful actions after two-trial sequences when her saliences change between trials.

7. second model: results

To investigate whether the second model can replicate the desired shift from gradual

reinforcement learning to win-stay/lose-shift, we ran a series of 1000 computer

simulations, each consisting in 1000 blocks of 10-trial Harlow discrimination problems.

Propensities for acts and saliences were bounded from below at 0.01. All initial
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propensities were set to 1; γ was set to 1.02 and λ was set to 0.98. Initial reinforcement

and punishment levels were i1 = 1 and j1 = 0.25, as in the earlier model.

On simulation, the modeled agent reliably learned that success in the type of problem

she was given required her to use large reinforcement and punishment levels, which led

to dispositions approximating those of win-stay/lose-shift learner. The mean cumulative

success rate over all 1000 problems, averaged across the 100 runs, was 0.91. Restricted to

the last 100 problems, the mean success rate across all runs rises to 0.929. This is close

to the optimal expected success rate of 0.95 for a true win-stay/lose-shift learner (with

fixed task-appropriate saliences) in this problem, indicating that the agent typically

successfully learned to attend to the task-relevant dimension and to very closely

approximate win-stay/lose-shift.17

The mean cumulative success rate on the last hundred problems was less than 0.9 on

just 47 of the 1000 runs. On all but two of these runs, the agent had mistakenly learned

to attend to the task-irrelevant dimension of the stimulus objects with high probability.

On these runs, the agent performed approximately as well as chance, with mean success

rates lying between 0.47 and 0.52.18 It is unsurprising that the agent’s performance was

17Recall that, conditional on its attending to the task-appropriate dimension, a win-

stay/lose-shift learner will succeed on the first trial of a given problem half the time on

average, and will succeed on every subsequent trial in that problem.
18For the two outliers, success rates for the last hundred problems were 0.57 and 0.62.

In one of these runs, the agent had learned to attend to the task-relevant dimension with

probability very close to 1; in the other, the agent’s final probability of attending to object

quality was 0.377.



LEARNING HOW TO LEARN BY SELF-TUNING REINFORCEMENT 27

close to chance in this case as the task-irrelevant dimension is uncorrelated with the

location of the reward.19

8. conclusion

It is natural to understand learning by Humean custom as learning by means of a form

of reinforcement with punishment. But for custom to provide a compelling account of

natural learning, one also needs to explain how an agent might start as a reinforcement

learner, then learn how to learn in a manner well suited to a particular type of problem.

Here we consider one way this might work in the context of a famous type of

discrimination problem.

Harlow showed that his monkeys were able to learn how to learn by

win-stay/lose-shift, a learning dynamics that is better suited to the type of problem they

face than their default reinforcement learning, and that they were able to learn how to

apply this new form of learning in a context-specific way by co-learning the saliences

relevant to that type of problem. The first model illustrates how a simple reinforcement

learner might learn saliences appropriate to the type of discrimination problem Harlow

describes while gradually shifting to learning by means of win-stay/lose-shift. Building

on this, the second model shows how a more subtle sort of reinforcement learner, one

equipped with a higher-order dynamics that allows her to reinforce and punish the

magnitudes of first-order reinforcements and punishments, might learn how to learn

more effectively in a Harlow-style problem as she learns.

19When the 47 outlier runs are removed, the mean success rate over the final hundred

problems of each run is 0.954, with noise just slightly better than the optimal expected

success rate.
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The learning dynamics in the second model is self-tuning. As an agent uses it, the

higher-order dynamics provides a way for her to learn how to adjust her first-order

learning to make it more effective given how well it is performing in the task at hand.

We have shown that this form of reinforcement is highly effective in the context of

Harlow-type problems. It is a topic for future research how well it will work in the

context of other learning problems where tuning matters.20

Hume was right to believe that humans and other animals very often learn by a form

of reinforcement. Here we have described a type of reinforcement learner who can learn

how to learn in a way that is well suited to a type of problem for which simple

reinforcement is not at all well suited. While Hume did not consider this type of

self-tuning reinforcement, it is compatible with his insistence that we learn by means of

custom. Here custom itself provides a mechanism for an agent to better learn by custom.

20Another place tuning matters is in Lewis-Skyrms signaling games. The sender and

receiver in a basic n × n × n signaling game can evolve successful signaling conventions

quickly using reinforcement with punishment if the levels at which they punish and re-

inforce are well-tuned to the complexity of the game. If the level of punishment it too

low, they get stuck in suboptimal pooling equilibria. If it too high, they cannot get the

traction required to learn. See Barrett and Gabriel (2023) for simulation results and a

discussion. Tuning also matters is in learning from neighbors on a network. As Zollman

and others have shown, if one learns too quickly, this can generate consensus without

sufficient exploration. How well suited the present dynamics is for problems like these is

an open empirical question.



LEARNING HOW TO LEARN BY SELF-TUNING REINFORCEMENT 29

References

[1] Barrett, Jeffrey A. (2024) Self-Assembling Games. Forthcoming with Oxford University Press.

[2] Barrett, Jeffrey A. (2023) “Humean Learning (How to Learn)” Philosohical Studies Volume 181,

pages 281–297.

[3] Barrett, Jeffrey A. (2020) “Self-Assembling Games and the Evolution of Salience,” British Journal

for the Philosophy of Science. https://www.journals.uchicago.edu/doi/10.1086/714789

[4] Barrett, Jeffrey A. and Brian Skyrms (2017). “Self-Assembling Games,” The British Journal for the

Philosophy of Science, 68(2), 329–353

[5] Beggs, Alan W. (2005) “On the Convergence of Reinforcement Learning,” Journal of Economic

Theory 122: 1–36.

[6] Bereby-Meyer, Yoella and Ido Erev (1998) “On Learning to Become a Successful Loser: A

Comparison of Alternative Abstractions of Learning Processes in the Loss Domain.” Journal of

Mathematical Psychology 42(2–3): 266–286.

[7] Cochran, Calvin T. and Jeffrey A. Barrett (2022) “The Efficacy of Human Learning in Lewis-Skyrms

Signaling Games.”

[8] Cochran, Calvin T. and Jeffrey A. Barrett (2021) “How Signaling Conventions are Established,”

Synthese 199(1-2): 4367–4391.

[9] Erev, Ido and Alvin E. Roth (1998) Predicting How People Play Games: Reinforcement Learning in

Experimental Games with Unique, Mixed Strategy Equilibria. American Economic Review 88:

848–81.

[10] Fudenberg, David, Drew Levine (1998) Learning and the Theory of Games MIT Press: Cambridge,

MA.

[11] Harlow, Harry F. (1949) “The Formation of Learning Sets,” Psychological Review 56:51–65.

[12] Herrmann, Daniel A. and Jacob VanDrunen (2022) “Sifting the Signal from the Noise,”

forthcoming in The British Journal for the Philosophy of Science.

[13] Herrnstein, Richard (1970) On the law of effect. Journal of the Experimental Analysis of Behavior

13:243–266.



30 CHRISTIAN TORSELL JEFFREY A. BARRETT

[14] Hume, David (1975) Enquiries Concerning Human Understanding and concerning the Principles of

Morals. Oxford: Oxford University Press.

[15] Huttegger, Simon (2017) The Probabilistic Foundations of Rational Learning Cambridge:

Cambridge University Press.

[16] Morris, William Edward and Charlotte R. Brown (2019) “David Hume,” The Stanford Encyclopedia

of Philosophy (Summer 2022 Edition), Edward N. Zalta (ed.), URL =

¡https://plato.stanford.edu/archives/sum2022/entries/hume/¿.

[17] Roth, Alvin E. and Ido Erev (1995) Learning in extensive form games: experimental data and

simple dynamical models in the intermediate term. Games and Economic Behavior 8: 164–212.

[18] Schrier, A. M. (1984). “Learning How to Learn: The Significance and Current Status of Learning

Set Formation.” Primates, 25, 95-102.

[19] Skyrms, Brian (2010) Signals: Evolution, Learning, & Information, New York: Oxford University

Press.

[20] Thorndike, Edward (1898) “Animal Intelligence: an Experimental Study of the Associative

Processes in Animals” The Psychological Review: Monograph Supplements, Vol. II., No. 4 (Whole

No. 8), June, 1898. The Macmillan Company: New York and London.

[21] Thorndike, Edward (1901). The human nature club: An introduction to the study of mental life

(2nd ed.). New York: Macmillan.

[22] Thorndike, Edward (1911). Animal intelligence. New York: Macmillan.


