
Machine Learning models as Mathematics:
interpreting explainable AI in non-causal

terms

Stefan Buijsman

Forthcoming in Durán, J. & Pozzi, G. (eds.) Philosophy of
Science for Machine Learning: Core Issues and New

Perspectives. Springer Nature

Abstract

We would like to have a wide range of explanations for the behaviour
of machine learning systems. However, how should we understand these
explanations? Typically, attempts to clarify what an explanations for ques-
tions such as ’why am I getting this output for these inputs?’ have been ap-
proached from the philosophy of science, through an analogy with scientific
(and often causal) explanations. I show that ML systems are best thought
of as noncausal, specifically mathematical objects. We should therefore in-
terpret these explanations differently, through analogy with mathematical
explanations. I show that this still allows us to use much of the same the-
oretical apparatus, and argue that the asymmetry of many of the standard
ML explanations can be accounted for in virtue of the link these systems
have with concrete implementations.

1 Introduction

Machine Learning (ML) systems are notorious for requiring explanations. We
do not know why they give the outputs that they do, and we even do not
know why machine learning systems are as accurate as they are. In response, a
wide variety of tools has been developed to try to elucidate the outputs of ML
systems (Das and Rad, 2020), and theories have been developed to explain the
success of ML systems (Shwartz-Ziv and Tishby, 2017). There are feature im-
portance methods that calculate which input features were the most important
for a particular output (e.g. Ribeiro et al., 2016; Lundberg and Lee, 2017), coun-
terfactual methods that calculate the nearest alternative input for which the ML
system returns a different (desired) output (Karimi et al., 2020) and much more.
In turn, this has put forward the more philosophical issue of what it would
mean to explain the behaviour (in a broad sense) of ML systems. This chapter
focuses on that question, in particular in the light of the mathematical aspects

1



of machine learning systems. As discussed in section 2, we can understand ML
systems as implementing mathematical functions. We use optimization proce-
dures (typically stochastic gradient descent) to fit this function to the data set
that is available, with the aim to then classify, predict or produce new instances.
All of this suggests that ML systems are abstract objects. Moreover, this idea of
an ML system being linked to a mathematical function is also relied on by some
of the explainability methods just mentioned. For example, Simonyan et al.
(2013) highlight pixels for which the gradient of the implemented function is
particularly steep, thus directly using the mathematical function approximated
by ML systems in the XAI method.

I will dive into this mathematical aspect of ML systems throughout the
chapter. It is noteworthy, however, because most philosophical accounts at
the moment approach the interpretation of explanations of ML systems using
theories of scientific explanation, leaving the abstract, mathematical, nature of
machine learning aside. For example, the overview in (Beisbart and Räz, 2022,
p.2) mentions for a sub-type of ML systems: ”DNNs are mathematical mod-
els” but includes no accounts of XAI in terms of mathematical explanations.
More concretely, Buijsman (2022) and Watson and Floridi (2021) both use the
causal interventionist framework from Halpern and Pearl (2005) and Wood-
ward (2003) to present an account of explanations of ML systems. Erasmus
et al. (2021) apply four different accounts of scientific explanation (deductive-
nomological, Inductive Statistical, Causal-Mechanical and New Mechanist) to
the machine learning context. There is a strong tendency to appeal to accounts
of explanation from the philosophy of science, even though these have been
developed primarily for describing concrete phenomena.

At the same time, technical explainability tools suggest that an analogy
of this kind is suitable. Biswas et al. (2022) and Geiger et al. (2023), based
respectively on theoretical work by Buijsman (2022) and Beckers and Halpern
(2019), are examples of concrete explainability tools that use causal inference
techniques in order to provide answers to why-questions about the outputs of
ML models. In short, applying accounts developed for scientific explanations
to the case of ML systems is standard practice, and also seems to make practical
sense. Yet, there is a tension with the abstract, mathematical, nature of ML
systems.

In section 2 I discuss this tension in more detail, and argue that it is better
not to think of ML systems in strict causal terms. However, I do think that we
can make sense of interventions to ML systems, despite their being non-causal.
Here, I am sympathetic to the intervention liberalism of Emmerson (2021) as
well as to manipulationist accounts of mathematical explanations (Baron et al.,
2020). However, with the lack of causation there is a question of explaining
the asymmetry of explanations of ML systems. I tackle this question in section
3. Finally, if we view ML systems as mathematical, then it also makes sense
to consider the wider literature on mathematical explanations. In section 4 I
argue that this fruitfully applies to machine learning, as we can see for example
explanations by constraints (Lange, 2018) for the behaviour of ML systems.

2



2 Abstraction and explanations of ML outputs

2.1 The status of ML systems

The starting point for this chapter is that ML systems are a kind of abstract object,
that can be understood as a mathematical model (see Chapter 10). Machine
learning systems are often introduced as such. As an example, Zhou (2021)
introduces ML systems in the following setup. First, there is a data set D =
{x1, x2, . . . xn} ∈ X consisting of d-dimensional vectors xi = (xi1; xi2; . . . xid. This
data set is often labelled with outcomes y ∈ Y, formally structured in a training
set consisting of pairs (xi, yi).1 This allows us to tackle, among other learning
problems, prediction problems. This is the problem to establish a mapping f :
X → Y by learning from the training set. To do so, we need a learning algorithm
L (also known as an optimization procedure) which aims to minimize the error
between the learned f and the input-output pairs of the data set. While we can
dive into further mathematical details here, the point is that presentations of ML
systems proceed typically in this fashion: we start with a set of ordered pairs,
and through a mathematical procedure a function is fit to this set as best we can.
And so, we can interpret ML systems as approximating functions. Indeed, there
is a host of theoretical results showing that different classes of neural networks
(a type of ML system) can act as universal function approximators (Hornik
et al., 1989; Castro et al., 2000; Schäfer and Zimmermann, 2006), solidifying the
idea that ML systems in general approximate mathematical functions. Looking
at ML systems from this perspective, it seems that they are first and foremost
mathematical in nature.

However, the tendency to think otherwise is not a surprising one. When
reading Erasmus et al. (2021, p.845), they describe the situation as follows for a
medical imaging algorithm (MAIS): ”Feeding the mammogram image into the
input layer of the ResNet18 [A type of ML system, SB] and the convolutional
operations of each layer are causal processes, while the signals sent between
the different nodes and layers are causal interactions. These causal processes
and interactions lead to the output of the MAIS.” And indeed, we enter the
input on a specific computer, that will then execute step by step the algorithm
until it displays the resulting outcome of the calculations. There are specific
causal processes on the computer chip that instantiate these calculations. So,
there certainly is a causal process going on here in the concrete application of
the ML system, as operations are executed in order in a physical system. If we
want to explain an ML system, can’t we focus our explanations on those causal
processes?

One answer is to point again to the idea that ML systems are approximat-
ing mathematical functions and thus that we want to gain insight into the
behaviour of those approximated functions. That is different from wanting to
understand the causal processes used in the function approximation. A second
argument for why the causal processes are not what we should consider in XAI

1Unsupervised learning, which can for example aim to cluster the data set into groups that are
relevantly similar, does not use labelling of this kind, but instead only uses the data set D.

3



comes from the debate on the ontology of software more generally. Machine
learning systems are a type of software, and we want explanations for the out-
puts/behaviour of these software systems. In other words, the phenomenon
that we want to explain is a type of software, and so if we want to know the
ontological status of what XAI aims to explain then it makes sense to look at the
ontology of software. The debates here also highlight the same tension between
abstraction and concreteness, as for example Colburn (1999) defines software
as a ”concrete abstraction”, because it always requires reference to a medium of
description (a programming language) and a medium of execution (the hard-
ware on which the software will run). Colburn reasons that this reference to
concrete implementations where the software runs on physical hardware is es-
sential, but that software is nevertheless an abstraction as programmers prefer
to abstract away from implementation to consider software as something that
will run on any machine.

Still, it is hard to make sense of this position that software is both abstract
and concrete at the same time. Instead, more recent accounts such as those by
Irmak (2012), Turner (2011) and Duncan (2017) have focused on software as an
abstract object, but more specifically an abstract artifact. The idea here is that
software has a function, and is created with that intended function in mind, thus
making it a kind of artifact. However, software cannot be identified with any
concrete implementations on particular computers, and comes with a standard
of correctness (bugs in the code and faults in execution). Specifically, (Duncan,
2017, p.27) defines a software program as: ”a specification that consists of
one or more programming language instructions and whose concretization is
embodied by an artifact that is designed so that a physical machine may read the
concretized instructions.” This entails that software is an abstract specification
rather than a concrete implementation, but it has to be such that it links to
concrete versions (e.g. physical memory states of a computer) that can be read
and executed.

This idea of software as a specification is also found in the work of Prim-
iero (2016), based on Floridi’s Levels of Abstraction. There, the highest level
of abstraction is the intention of the programmer, which we hope to satisfy
through the design of an algorithm. ”An algorithm is the abstract representa-
tion of a mathematical function required to fulfil a task” (Primiero, 2016, p.98).
This algorithm is then implemented in a programming language, which de-
notes the instructions in machine code and finally controls electrical charges
in the hardware. The software is viewed as a type of abstract object, and
specifically a mathematical object, but guided by an intention and linked to
concrete implementations. We should, then, consider that ML systems are (as a
kind of software/algorithm) likewise abstract objects that are linked to concrete
implementations but not identified with them. That means that we cannot,
strictly speaking, talk about causes in the ML system even if there are causal
links between the execution steps of the concrete implementations. As a re-
sult, direct applications of philosophical accounts of explanation such as the
causal-mechanical account of explanation to ML systems fail.

In short, I see two complementary reasons why we should resist a causal/scientific

4



interpretation of explainable AI. First, ML systems are plausibly interpreted as
mathematical structures that approximate functions. They are mathematically
defined and analysed, and so we should interpret explainable AI as the endeav-
our to further illuminate the behaviour of these mathematical objects. Second,
AI systems are implemented as pieces of software and explainable AI aims to
offer insight into the behaviour of AI qua software that produces outputs. As
software is plausibly interpreted as abstract (and mathematical) in nature, we
should thus also for this reason consider explainable AI as an endeavour to
explain the behaviour of abstract (mathematical) objects. On both counts, then,
an interpretation of AI in strictly causal/scientific terms is inappropriate.

2.2 Interpreting explanations of machine learning systems

How, then, can we make sense of explanations of ML outputs? I hold that there
is still a suitable dependence relation to be found in the case of ML systems,
such that ML outputs depend on the inputs, and the function approximated
by the ML system depends on the training data and optimization procedure.
We can cash out this dependence in terms of counterfactuals or interventions
(depending on how liberal one wants to be with talk of interventions, which
on many accounts are restricted to causation; cf Emmerson (2021)). We can
then get an account of ML explanations closely aligned with the philosophy
of science-inspired accounts, specifically those related to the manipulationist
account of Woodward (2003). Furthermore, it can help us make sense of the
formal machinery used in explainability methods such as Biswas et al. (2022)
and Geiger et al. (2023), which is currently presented as based on causation.

The basic intuition behind this is as follows: although the ML system is
independent from the physical implementation, we still select the data set our-
selves, we pick an optimization procedure and learning parameters (e.g. in the
case of a neural network we pick the network architecture, hyperparameters
and initialization of the network weights). All of these choices impact the re-
sulting ML system: if we had chosen something else here, we could have gotten
a different ML system (approximating a different function). Furthermore, once
we have an ML system that is optimized on the data set, there is an intuitive
sense in which the output depends on the input. If the input had been different,
then the output could be different as well. Similarly, if the internal parameters
of the ML system (e.g. an artificial neuron in the case of a neural network, or a
decision tree in the case of a random forest) had been different, then the output
could have been different even when the input is kept fixed. As a range of
philosophers has suggested (Baron et al., 2020; Jansson and Saatsi, 2019; Reut-
linger, 2018; Woodward, 2018), we can then extend the manipulationist account
of explanation from a purely causal one to one about counterfactual depen-
dence. Explanations display patterns of counterfactual dependence between
the explanandum and the explanans and we can find these kinds of patterns in
ML systems.

Counterfactual dependence is, of course, still difficult to make sense of
in mathematics. 2 + 2 could not be 5, no matter what we do, and similarly

5



theorems and results of calculations are necessary truths. Still, Baron et al.
(2020) suggest one way in which we can make sense of such counterfactuals
even in a purely mathematical setting. They define the truth-conditions of these
counterfactuals using a closeness-based semantics: ”A� B is true at a world
ω iff some possible or impossible world in which both A and B are true is closer
to ω than any possible or impossible world in which A is true and B is false, if
there are any possible or impossible worlds in which A is true.” (Baron et al.,
2020, p.4) Impossible worlds are needed due to the impossibility that actual
mathematical truths are false and the closeness of worlds is then determined
based on similarity: if B is more similar to A than C is, then B is closer to A than
C. This gives an account of counterfactuals that is applicable to mathematics
(Baron et al. (2020) show as much by applying it to a number of mathematical
proofs) and can be used to further specify the idea of counterfactual dependence
in this setting.

Specifically in the case of ML systems there is then a range of different types
of counterfactual dependence that we can be interested in when demanding
explanations. Most technical explainability methods focus on the pattern of
dependence of the output on the input. What would happen to the output were
we to have a different input to the ML system? Counterfactuals on the closeness-
based account would evaluate this in the expected manner: the outcome is
simply that which would result from a different input to the actual ML system.
This helps us to figure out what function the ML system approximates, and
consequently to anticipate what it will output in new situations. In that sense,
there is a clear analogy to causal manipulationist accounts: by figuring out how
the outputs (counterfactually) depend on the inputs, we know what we need
to do in order to obtain a different output.

Alternatively, we can also be interested in why the ML system approximates
one function rather than another. Here, the dependence of the ML system on
the learning parameters, optimization method and training data are the focus.
While there are few technical tools that focus on these dependencies, computer
scientists are well-aware of a number of these dependencies. For example, it is
common knowledge that biases in the training data often get picked up by the
ML systems that are trained on this data. In the case of facial recognition systems
this was clear in terms of the accuracy of these systems. First, a big discrepancy
in accuracy was observed between faces of people with light skin colours (for
which the system worked well) and faces of people with darker skin colours
(for which the system was far less accurate) (Lohr, 2022). Then, this discrepancy
was diagnosed as the result of a bias in the data set: the data consisted primarily
of faces of people with light skin colours. By fixing the representativeness of
the data set, the discrepancy in accuracy has been significantly reduced. If we
interpret this in terms of an explanation in response to a why-question we can
think of it as follows: the question was ’why is there such a large difference in
accuracy between skin tones, rather than a much smaller one?’ and the answer
can be formulated in terms of the presence/absence of dark skin tones in the
data set. Adjust that (i.e. had there been more data points of this kind in the
training data) and the discrepancy becomes smaller.

6



In line with the somewhat unusual status of software systems in general,
we can see these counterfactuals as closely linked to concrete actions we can
take. To evaluate what a change to the inputs of an ML system would do,
the easiest route is to simply execute an implementation of the ML system on
the alternative input. Likewise, if we want to know whether a change to the
composition of the data set leads to a suitably different function approximation,
often the simplest way of finding this out is to simply gather more data and
run the training procedure on the new data set. That is quite different from the
steps needed to evaluate the counterfactuals in pure mathematics that Baron
et al. (2020) discuss. We still shouldn’t interpret them as causal in nature, but
the causal steps that we can take for specific implementations can help us in
finding out the counterfactual dependencies for ML systems. As long as the
specific implementation has no malfunctions (the code contains no bugs, the
hardware operates properly), the answers will be the same for the implementa-
tion as for the abstract ML system. However, this qualification of ’no bugs, no
malfunctions’ is precisely the qualifier that leads us to assign a different status
to the ML system, and thus to the conclusion that we shouldn’t speak directly
of causes in explanations of these systems.

I see a number of benefits to this particular treatment of explanations of
ML systems. First, it sticks closely to the steps we actually take to try to
explain various aspects of these systems (though for more global/theoretical
explanations of ML systems, see section 4). We adjust inputs, parameters,
training data and more in an effort to understand what works and what doesn’t.
A wide range of current explainability tools, from counterfactual methods to
feature importance (which is based either on a calculated gradient indicating
what will cause the biggest change in outputs or on a sample of the local
neighbourhood of similar inputs), looks precisely at what the ML system would
output were the inputs to be different. Second, it helps us make sense of
the recent causal inference-inspired methods. These are based on the use of
structural equation models, stating how different variables depend on one
another. Usually they are reserved for causal dependence, but Baron et al.
(2020) claim that they can also be applied to mathematics and the kind of
counterfactuals considered here.

They don’t give much of an explanation as to how we can make sense
of structural equation models in a non-causal context, so it is worthwhile to
explore that here. SEMs do not themselves require that the relation explored
is that of causation, but of course we do need to have a relation with the right
set of features. Starting with the list of conditions that Woodward (2003) gives
for interventions we can see how many might apply to this counterfactual
dependence within ML systems.

1. I causes X

2. I acts as a switch for all other variables that cause X. That is,
certain values of I are such that when I attains those values, X
ceases to depend on the values of other variables that cause X
and instead depends only on the value taken by I

7



3. Any directed path from I to Y goes through X. That is, I does
not directly cause Y and is not a cause of any causes of Y that
are distinct from X except, of course, for those causes of Y, if
any, that are built into the I→ X→ Y connection itself; that is,
except for (a) any causes of Y that are effects of X (i.e., variables
that are causally between X and Y) and (b) any causes of Y that
are between I and X and have no effect on Y independently of
X;

4. I is (statistically) independent of any variable Z that causes Y
and that is on a direct path that does not go through X.

(Woodward, 2003, p.98)

If we remove the notion of ’cause’ here and consider what happens in the
proposed ML setting, how much remains? The first condition can be met in
terms of the alternative situation being considered being precisely one where
X (e.g. input or data set) is changed. Criterion number 2 can easily be satisfied
even in the abstract setting: changing the input value, data set or even some
internal part of the ML system’s algorithm is done in such a way that this
changed variable ceases to depend on exogenous variables. Condition 3 can,
at least in the context of ML systems, also be guaranteed: we know that e.g.
any change to the input will only affect the output by going through the func-
tion implemented by the ML system. Likewise, any change to the data set only
changes the learned function via the optimization procedure. Finally, condition
4 is satisfied as long as we make sure that the change of input, data set etc. does
not relate to other parts of the ML system. The remaining question is whether
counterfactual dependence can indeed stand in for causation. The main worry
here (and on any account that understands mathematical explanations using
counterfactual dependence) is whether it is appropriately asymmetric. Do
these dependencies go only in one direction? If so, then it seems that we have a
situation where we can use structural equation modelling based on changes to
parts of an ML system. And indeed, various accounts of mathematical expla-
nation (I already mentioned Baron et al. (2020), but Gijsbers (2017) also presents
a ‘quasi-interventionist’ account of mathematical explanation that looks at this
kind of counterfactual dependence for the explanatory power of some proofs)
However, that asymmetry in the counterfactual dependence is far from obvious
and so has to be examined in the next section.

First, though, one may wonder whether this kind of counterfactual depen-
dence is the only possible interpretation of ML explanations, now that we need
to look at theories of mathematical rather than of scientific explanation. Causal-
mechanistic (Salmon, 1984) and unificationist theories (Kitcher, 1989) are the
prominent alternatives for scientific explanation, so can we find analogues
for these accounts when it comes to mathematical explanations such as those
discussed here? They are certainly harder to find in the literature, but Frans
and Weber (2014) defend a mechanistic account of mathematical explanations
based on the mechanistic account of Bechtel and Abrahamsen (2005). It should
be noted, however, that while the inspiration is mechanistic it gets very close to

8



a Woodwardian account that accounts for explanations in terms of difference-
makers. They specifically argue that a particular proof is explanatory by: ”(a)
identifying a dependency to be explained, (b) identifying entities, (c) substitut-
ing the notion of activities with the notion of difference-makers, and (d) show
that these difference-makers are organized such that the truth of the theorem is
established.” (Frans and Weber, 2014, p.240) In the specific case of ML systems
proofs are less applicable, as we do not explain a theorem but rather a (set of)
output(s). Still, there are mechanistic accounts applied to ML systems (which
we could interpret as a mechanism between inputs and outputs) and so the
translation to the mathematical setting is worth exploring, with less emphasis
on difference-making. One might argue that when explaining why a particular
output is obtained from a particular input we are in fact after a mechanism
sketch of the operations performed on the input in order to produce the output.
Explainability methods that aim to capture the black box behaviour in decision
trees (Nauta et al., 2021) or with structural equation models (Geiger et al., 2023;
Wu et al., 2023) would be good candidates for such a view, as they aim to find
easier to comprehend operations that yield similar (and of course ideally the
same) results. Of course, some adjustments will be needed: the mechanisms are
not actually causal and talk of activities as in Bechtel and Abrahamsen (2005)
is also not quite fitting for the mathematical setting. Substituting something
like ‘operations’ in its place, as these are performed on the inputs and then on
successive hidden layers, suffices for the specific case of ML systems, but of
course will not do for mathematical explanations in general. So, if we do need
a substitution in terms of difference-making here, as Frans and Weber (2014)
suggest, then ultimately there will be little to distinguish a mechanistic ap-
proach to the explanations of ML systems from a Woodwardian/interventionist
approach.

Unificationism does seem to offer a different story. On such an account, what
does the explaining is the unification of a range of phenomena under a single
argument schema. Perhaps this can be done through identifying difference-
makers (Bangu (2017) for example argues for a somewhat revised version of
unificationism in which case causes can be seen as one type of unifier), but the
pinpointing of difference-makers is not central to the account. So, we might for
example accept explanations in this case that group together a large number
of similar cases without telling us what happens should relevant conditions
change. This seems to make the application to mathematics even simpler, as
there is no need to figure out what interventions and difference-making mean
when it comes to mathematical objects. As such, we can propose unificationism
as another candidate theory for explanations of ML systems: these explanations
should aim to group input-output pairs together under a unifying argument
schema. The success of such an account of course depends on how plausible
unificationism then is in this domain; Knowles (2021) has recently argued
against unificationist accounts of mathematical explanations. With the space
available here I won’t go into that debate, the point is rather that the shift from
interpreting ML as scientific to interpreting it as mathematical need not hamper
our efforts to apply the familiar accounts of explanation. They do need some

9



adjustment though, especially when it comes to accounting for the asymmetry
of ML explanations. I turn to that issue next.

3 The asymmetry of ML explanations

Mathematical equations are symmetrical, as opposed to causal relations, and so
there is a question whether the counterfactual dependence in the mathematical
case is appropriately asymmetrical. For example, it is (often, as techniques such
as differential privacy aim to counter precisely this inference) possible to work
out the data set on which the ML system was optimized even without having
full access to the ML system (Shokri et al., 2017; Olatunji et al., 2021; Hu et al.,
2022). Were we to know exactly what the initialization, optimization procedure
and outcome were, then we can expect that the training data can be retrieved
as well. In short, it seems that there is a problem (as with other mathematical
explanations; cf. Lange (2021)) with the asymmetry of explanations. For while
the counterfactual dependence may be symmetrical, there is an intuitive idea
(reflected in XAI practices) that we should explain the output of an ML system
in terms of the inputs, and the behaviour of the ML system in terms of the
training data and procedure. What ensures that the counterfactual dependence
discussed in section 2 will only ever go in this intuitive direction?

Baron et al. (2020), in a similar vein to Jansson and Saatsi (2019), argue
that asymmetry is guaranteed on the counterfactual account in virtue of the
indeterminacy of counterfactuals going in the ’unintuitive’ direction. So, while
a change in input to an ML system has a clear effect on the output, the idea
is that a specific change in output can be realized in many different ways by
changing the input. As a result, there is not one unique change in input that
corresponds to this change of output. Hence, we do not have a unique (true)
counterfactual from output to input, guaranteeing the asymmetry of this kind
of counterfactual dependence. (Jansson and Saatsi, 2019, p.17) state the same
though as: ”Fixing the explanans variable to its actual value should fix the
explanandum variable to its actual value”.

Lange (2021) has recently criticized this approach to ensuring the asymme-
try of mathematical/abstract explanations. He argues that a good number of
causal explanations do not match this kind of asymmetry. For example, when
considering that the window broke because the rock hit it, then there is no
particular counterfactual that holds in the situation that the rock did not hit
the window (other than that the window doesn’t break). This particular inde-
terminacy need not be a problem, as both Baron et al. (2020) and Jansson and
Saatsi (2019) focus only on whether the explanandum variable is fixed, and that
is indeed the case here (as Lange admits, not throwing the rock will fix that the
window does not break). However, it does seem to go the other way: if we’re
clear enough about the situation, it seems likely that the counterfactual ’had the
window not been broken, then the stone would not have been thrown’ is true in
the closest possible world. After all, this requires by far the fewest changes; far
fewer than, e.g. ensuring that the glass was bullet-proof and therefore does not

10



break when the stone hits. In addition, it brings us back to a symmetrical setup
in terms of counterfactuals: had the stone not been thrown, the window would
not have broken and had the window not broken, the stone would not have
been thrown. Indeterminacy in one direction does not seem to offer a way out.
Lange, in a second argument, echoes this sentiment: in the example of mother
distributing 23 strawberries over 3 children we can reason just as well from
her having given 7 strawberries to each child with 2 left over to the number
of children and strawberries, and link adjustments to the result (her attempt
at dividing) to what would then change to the initial situation (the number of
children and strawberries). In the end, the indeterminacy seems to go away if
we fill in sufficiently many details.

The case of ML systems further reinforces that issue. Here, we have a range
of tools precisely designed to calculate the minimal change to the input in
order to achieve a desired output known as counterfactual methods/algorithmic
recourse (see Karimi et al. (2020) for a review). These methods do, for a given
distance function over the inputs, return a unique alternative input that leads to
the specified alternative output. In practice it is very difficult to create realistic
distance functions, but this doesn’t matter for the principled argument here.
For these technical tools further solidify the claim that if we specify the situation
and the notion of ’closer’ enough then there will be true counterfactuals in both
directions. So, the asymmetry of mathematical/abstract explanations is an issue
when we understand such explanations on the basis of counterfactuals (and see
Lange (2021) for further discussion of other attempts to ground the asymmetry).

The specific case of software has a serious benefit here in getting out of these
difficulties. Inherent to software is an asymmetry in terms of execution: an
earlier line of code/set of instructions is (in any implementation) to be executed
before the next. We can apply this more broadly to ML systems: we know that
the data set has to be there first, to then feed (step by step) into the optimization
procedure and finally for the ML system to process an input line by line to reach
an output. The specification of these steps may be an abstract object, but the
asymmetry in terms of what happens earlier and what happens later (and thus
which parts of the ML system can influence which other parts) is inherent. The
values used in the first line of code cannot depend on the values used in the
last line of code (at least, if we fully work out recursive functions for clarity’s
sake). That difference in dependence: we determine one value using another
in the execution of an ML system, and not the other way around, is a candidate
for the explanatory asymmetry.

This also aligns with the idea that an explanation displays a pattern of
counterfactual dependence. In these implementations, a change to one of the
earlier parts of the process (the data, the optimization procedure, the inputs)
will affect the later parts of the ML system, but not vice versa. Changing the
input will not affect the training data, and manually changing the output value
(during the execution of the ML system) will not change the input of the system.

However, how can we best understand this dependence? We could leave
it as is, and opt along with Lange (2021) for a kind of pluralism in where the
asymmetry of non-causal explanations comes from. In the case of software, we

11



might say, the asymmetry is grounded in what has to be done first in any im-
plementation of the ML system. We can rely on the asymmetry of causation in
these concrete implementations, and be done with it. This account of asymme-
try is not available in other cases of mathematical explanations, as these do not
link to concrete implementations in the same way. Algorithms, as step-by-step
procedures, are in that sense different from most other mathematical objects.
Even staying with the case of ML systems we can see this difference, as the
next section shows in a brief exploration of explanations by constraint of ML
systems.

4 Explanations by constraint in ML systems

There are further explanations of the behaviour of ML systems that we should
not forget. These are more closely related to the typical examples of mathe-
matical explanations of mathematical facts, for example to the explanations by
constraint presented in Lange (2018). One example, discussed in detail by Räz
(2022), is the attempt to explain why deep neural networks (as a type of ML
model) do not overfit despite being overparameterized. GPT-4, for example, is
reported to have over a trillion parameters, which we would normally expect
to promote literal memorization of the training data and thus very poor gen-
eralizability over new inputs. This does not happen, so why are DNN models
so good at handling new data? Here, the Information Bottleneck (IB) theory
developed by Shwartz-Ziv and Tishby (2017) offers one possible explanation.
According to this theory, the success is the result of a trade-off between com-
pression and prediction. This is a general trade-off that has to be made by
prediction methods, but the argument goes that deep neural network lead to
particularly good results on the trade-off; at or close to the theoretical (Pareto)
optimum. Shwartz-Ziv and Tishby (2017) observe that in the initial training
phases the DNN optimizes on predictive accuracy, storing more and more in-
formation about the input space in order to give the best possible results. After
this, there is a second phase in the training where they observed that the stored
information is then reduced (compressed), but in such a way as to minimize
the loss of predictive accuracy. The optimization procedure thus searches for
the information about the input space that is necessary to accurately predict the
output, but the end goal is to keep only the minimally sufficient information to
do so. Because of this second compression step DNNs do not overfit as much as
the number of parameters would lead us to expect, as compression ensures that
the irrelevant details of the training data are not used to determine the output.
Furthermore, we can interpret this as a high-level explanation by constraint (the
IB theory specifies a trade-off for any learning mechanism and DNNs make this
trade-off in a particular way) as well as a counterfactual explanation (had the
second, compression, phase not happened, DNNs would have overfit much
more).

A second example is the impossibility theorems regarding fairness metrics
for machine learning systems (Kleinberg et al., 2016). This theorem focuses

12



on three widely used statistical definitions of fairness between groups A and
B: (1) equal probability of being assigned to the positive predicted class, (2)
equal true positive rates, and (3) equal true negative rates. The impossibility
theorem shows that except for some very special cases (e.g. equal base rates
in groups A and B) it is impossible to satisfy all three of these definitions of
fairness at the same time. Hence, there will be a trade-off between them. We
can then use this theorem to explain why, for ML systems, we see that when
an ML system is (perfectly) fair according to one definition, it is not (perfectly)
fair according to the others. To cite on of their examples: ”suppose we want
to determine the risk that a person is a carrier for a disease X, and suppose
that a higher fraction of women than men are carriers. Then our results imply
that in any test designed to estimate the probability that someone is a carrier
of X, at least one of the following undesirable properties must hold: (a) the
test’s probability estimates are systematically skewed upward or downward
for at least one gender; or (b) the test assigns a higher average risk estimate
to healthy people (non-carriers) in one gender than the other; or (c) the test
assigns a higher average risk estimate to carriers of the disease in one gender
than the other.” (Kleinberg et al., 2016, p.17) So, when one wonders why we
observe this trade-off in practice, the impossibility theorems can explain this
fact in a principled manner. There is a constraint (specified by the theorem) on
the properties that the approximated functions can have. Had this constraint
not been there, presumably the situation would have been different.

We can make good sense of these mathematical explanations, as would
be expected given their similarity to cases already discussed in the literature
on mathematical explanation. However, the accompanying downside of this
similarity is that it is far less plausible to appeal to the asymmetry inherent
in the implementations of ML systems. These constraints, such as that it is
impossible to meet two fairness criteria at the same time, do not relate to
specific ML systems that can be implemented nor do they link to a procedure
in which one part is executed before another. As a result, we cannot use the
causal links in the implementation of an ML system to ground the asymmetry of
these non-causal explanations. A pluralist interpretation of these (noncausal)
explanations seems the most likely, at least in terms of our account of the
asymmetry of the explanations.

It may be tempting to avoid this kind of pluralism through an appeal to a
more general notion of ’grounding’ here to capture both types of mathematical
explanations. After all, there is a sense in which the outputs of an ML system
are grounded (as in, determined by) the inputs as well as the training data
and optimization procedure. Schaffer (2016) has proposed an understanding
of metaphysical grounding using structural equation models, which provides
a nice link to the explanations of ML outputs as discussed in section 2. Addi-
tionally, there have been suggestions to capture more standard mathematical
(and conceptual) explanations in terms of grounding (Poggiolesi and Genco,
2023). On a general gloss of the situation we could then say that the asym-
metry of explanations is accounted for in both cases through the idea that the
explanandum is grounded in the explanans.

13



Such a move towards uniformity would be misleading, however. The con-
ceptual grounding pushed by Poggiolesi and Genco (2023) relies on the use
of conceptual complexity. The idea is that more complex concepts may be in-
troduced (in the formal, proof-theoretic sense of having an introduction rule
in a deductive system) on the basis of less complex concepts. In this sense,
more complex concepts are grounded in less complex concepts and complexity
is understood in terms of being further down the proof-theoretic chain. The
fact that only introduction rules provide grounding helps to account for the
asymmetry of the grounding relation and, similarly, the asymmetry of concep-
tual explanations. We cannot have explanations of simpler concepts in terms
of more complex concepts (e.g. explaining A in terms of A ∧ B) because those
inference require us to use elimination rules, and thus A ∧ B is more complex
than A. Here the difference with the input-output type explanations becomes
clear again: such explanations involve calculations which, even if we could
cash them out in terms of a full deductive system, will not generally conform
to the idea that outputs are arrived at from inputs using introduction rules (if
we strictly follow the Peano axioms then one will typically use ∀-elimination
on ∀x∀y(x + S(y) = S(x + y)) and similar axioms for other mathematical oper-
ations). But on a more basic level there is no clear reason why the conceptual
complexity of an ML output (in this proof-theoretic sense) should be higher
than the conceptual complexity of the ML inputs. Since ML systems often aim
to predict, it may very well happen that values of a simpler (but harder to mea-
sure) concept are predicted using values of more complex concepts. We still
want explanations in the XAI sense to explain how the output values depend
on the input values, but these do not track conceptual complexity. ML systems
may well be an exceptional case of noncausal explanations here, but the point
remains that a unification (using at least these conceptions of grounding) only
succeeds by obscuring the underlying differences.

5 Conclusion

Explanations of ML systems have typically been considered through the lens
of scientific explanations. I have argued that ML systems are best seen as
abstract (and plausibly mathematical) objects, to which many of the accounts of
scientific explanation do not apply. However, similar accounts of mathematical
explanation can be used to interpret explanations of ML systems and to make
sense of the use of causal inference techniques in the case of ML systems.
Counterfactuals of the form ”had the input been x′ instead of x, the output
would have been y′ instead of y” can still be evaluated even without causal
relations. Furthermore, the changes that are made to values in an ML system
meet all the criteria for interventions aside from the presence of causal relations,
thus allowing us to interpret structural equation models in the ML case.

This does raise a worry, however, as without the presence of causality there
is no guarantee that the account will be appropriately asymmetrical. Counter-
factuals can go both ways, so how is the directionality of explanations ensured?

14



I argued that in the case of ML systems we can typically appeal to the direction
inherent to the instructions of which an ML system is made up. To further
strengthen this idea, we can also link counterfactuals to concrete implemen-
tations of the abstract ML system, where these instructions are executed with
causal links in between them.

While that covers a wide range of explanations of ML systems, it fails to
include a set of mathematical explanations that is not directly linked to con-
crete implementations. Explanations answering questions such as why deep
neural networks do not overfit, or why we observe a trade-off between fairness
metrics in ML systems, are better understood as explanations by constraint.
These are still compatible with current counterfactual accounts of non-causal
explanations, but there seems to be a big difference in how we will account for
their asymmetry. Pluralism on this front, as also suggested by Lange (2021)
based on a different set of mathematical explanations, seems the most plausible
option.

References

Bangu, S. (2017). Scientific explanation and understanding: unificationism
reconsidered. European Journal for Philosophy of Science, 7:103–126.

Baron, S., Colyvan, M., and Ripley, D. (2020). A counterfactual approach to
explanation in mathematics. Philosophia Mathematica, 28(1):1–34.

Bechtel, W. and Abrahamsen, A. (2005). Explanation: A mechanist alterna-
tive. Studies in History and Philosophy of Science Part C: Studies in History and
Philosophy of Biological and Biomedical Sciences, 36(2):421–441.

Beckers, S. and Halpern, J. Y. (2019). Abstracting causal models. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 2678–2685.

Beisbart, C. and Räz, T. (2022). Philosophy of science at sea: Clarifying the
interpretability of machine learning. Philosophy Compass, 17(6):e12830.

Biswas, S., Corti, L., Buijsman, S., and Yang, J. (2022). Chime: Causal human-in-
the-loop model explanations. In Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing, volume 10, pages 27–39.

Buijsman, S. (2022). Defining explanation and explanatory depth in xai. Minds
and Machines, 32(3):563–584.

Castro, J. L., Mantas, C. J., and Benıtez, J. (2000). Neural networks with a
continuous squashing function in the output are universal approximators.
Neural Networks, 13(6):561–563.

Colburn, T. R. (1999). Software, abstraction, and ontology. The Monist, 82(1):3–
19.

15



Das, A. and Rad, P. (2020). Opportunities and challenges in explainable artificial
intelligence (xai): A survey. arXiv preprint arXiv:2006.11371.

Duncan, W. D. (2017). Ontological distinctions between hardware and software.
Applied Ontology, 12(1):5–32.

Emmerson, N. (2021). A defence of manipulationist noncausal explanation:
The case for intervention liberalism. Erkenntnis, pages 1–23.

Erasmus, A., Brunet, T. D., and Fisher, E. (2021). What is interpretability?
Philosophy & Technology, 34(4):833–862.

Frans, J. and Weber, E. (2014). Mechanistic explanation and explanatory proofs
in mathematics. Philosophia Mathematica, 22(2):231–248.

Geiger, A., Potts, C., and Icard, T. (2023). Causal abstraction for faithful model
interpretation. arXiv preprint arXiv:2301.04709.

Gijsbers, V. (2017). A quasi-interventionist theory of mathematical explanation.
Logique et Analyse, (237):47–66.

Halpern, J. Y. and Pearl, J. (2005). Causes and explanations: A structural-model
approach. part i: Causes. The British journal for the philosophy of science.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366.

Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., and Zhang, X. (2022). Mem-
bership inference attacks on machine learning: A survey. ACM Computing
Surveys (CSUR), 54(11s):1–37.

Irmak, N. (2012). Software is an abstract artifact. Grazer Philosophische Studien,
86(1):55–72.

Jansson, L. and Saatsi, J. (2019). Explanatory abstractions. The British Journal for
the Philosophy of Science, 70(3):817–844.

Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. (2020). A survey of
algorithmic recourse: definitions, formulations, solutions, and prospects.
arXiv preprint arXiv:2010.04050.

Kitcher, P. (1989). Explanatory unification and the causal structure of the world.

Kleinberg, J., Mullainathan, S., and Raghavan, M. (2016). Inherent trade-offs in
the fair determination of risk scores. arXiv preprint arXiv:1609.05807.

Knowles, R. (2021). Unification and mathematical explanation. Philosophical
Studies, 178(12):3923–3943.

Lange, M. (2018). Because without cause: Scientific explanations by constraint.
Explanation beyond causation, pages 15–38.

16



Lange, M. (2021). Asymmetry as a challenge to counterfactual accounts of
non-causal explanation. Synthese, 198(4):3893–3918.

Lohr, S. (2022). Facial recognition is accurate, if you’re a white guy. In Ethics of
Data and Analytics, pages 143–147. Auerbach Publications.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30.

Nauta, M., Van Bree, R., and Seifert, C. (2021). Neural prototype trees for
interpretable fine-grained image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14933–14943.

Olatunji, I. E., Nejdl, W., and Khosla, M. (2021). Membership inference attack on
graph neural networks. In 2021 Third IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pages
11–20. IEEE.

Poggiolesi, F. and Genco, F. (2023). Conceptual (and hence mathematical)
explanation, conceptual grounding and proof. Erkenntnis, 88(4):1481–1507.

Primiero, G. (2016). Information in the philosophy of computer science. In
Floridi, L., editor, The Routledge handbook of philosophy of information, pages
90–106. Routledge.

Räz, T. (2022). Understanding deep learning with statistical relevance. Philoso-
phy of Science, 89(1):20–41.

Reutlinger, A. (2018). Extending the counterfactual theory of explanation. Ex-
planation beyond causation: Philosophical perspectives on non-causal explanations,
pages 74–95.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages
1135–1144.

Salmon, W. C. (1984). Scientific explanation and the causal structure of the world.
Princeton University Press.

Schäfer, A. M. and Zimmermann, H. G. (2006). Recurrent neural networks
are universal approximators. In Artificial Neural Networks–ICANN 2006: 16th
International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part
I 16, pages 632–640. Springer.

Schaffer, J. (2016). Grounding in the image of causation. Philosophical studies,
173(1):49–100.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership infer-
ence attacks against machine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE.

17



Shwartz-Ziv, R. and Tishby, N. (2017). Opening the black box of deep neural
networks via information. arXiv preprint arXiv:1703.00810.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Turner, R. (2011). Specification. Minds and Machines, 21:135–152.

Watson, D. S. and Floridi, L. (2021). The explanation game: a formal frame-
work for interpretable machine learning. In Ethics, Governance, and Policies in
Artificial Intelligence, pages 185–219. Springer.

Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford
university press.

Woodward, J. (2018). Some varieties of non-causal. Explanation beyond causation:
Philosophical perspectives on non-causal explanations, page 117.

Wu, Z., D’Oosterlinck, K., Geiger, A., Zur, A., and Potts, C. (2023). Causal proxy
models for concept-based model explanations. In International Conference on
Machine Learning, pages 37313–37334. PMLR.

Zhou, Z.-H. (2021). Machine learning. Springer Nature.

18


