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Abstract: This chapter examines the epistemic value of (purely) predictive ML models for public 

health. By discussing a novel strand of research at the intersection of ML and economics that 

recasts policy problems as prediction problems, we argue – against skeptics – that predictive models 

can indeed be a useful guide for policy interventions, provided that certain conditions hold. Using 

behavioral approaches to policymaking such as Nudge theory as a contrast class, we carve out a 

distinct feature of the ML approach to public policy problems: the ML model itself may turn into 

a cognitive intervention. In underscoring the epistemic value of predictive models, we also highlight 

the importance of taking a broader perspective on what constitutes good evidence for 

policymaking. Moreover, by focusing on public health, we also contribute to the understanding of 

the specific methodological challenges of ML-driven science outside of traditional success areas. 
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1. Introduction 

Fueled by successes in image-based diagnostics and risk-prediction models, there is ongoing 

enthusiasm for using machine learning (ML) models as decision-support tools in clinical medicine 

(Gulshan et al. 2016; Esteva et al. 2017; Hyland et al. 2020). In comparison, the adequate role of 

ML applications has yet to be found in the context of public health. This may seem surprising, 

given that health data from virtually every domain of people’s lives are being collected digitally, 

potentially improving healthcare policies. A particular obstacle relates to the gap between 
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predictions and interventions: while predicting unknown outcomes from patterns of past 

observations can be useful, how can policymakers anticipate which interventions are most likely to 

change the outcome in desirable ways? Besides, ML models perform demonstrably well when they 

are deployed in environments that mirror their training conditions. Yet they demonstrably do not 

perform well beyond training conditions (Freiesleben and Grote 2023). The environment in public 

health contexts is typically unstable – culminating in prediction errors. In consequence, many 

researchers argue that purely predictive models are not the right tools to inform public health 

interventions (Athey 2017; Hernán et al. 2019).  

To overcome the gap between predictions and interventions, the proposed solution is to either 

supplement predictive ML models with causal inference methods or to embrace a causal attitude 

towards data science problems in public health altogether (Cui and Athey 2022; Hernán et al. 2019; 

Schölkopf et al. 2021). While this view has become increasingly influential, it is not unequivocally 

shared. For example, Broadbent and Grote (2022) contend that it is misguided to impose causal 

constraints on ML models in epidemiology, since such constraints could prevent the discovery of 

novel statistical relationships that have the potential to revise the apparatus of public health 

concepts. However, their account sidesteps the issue of how the gap between predictions and 

healthcare interventions can be diminished. We do not try to settle the dispute between predictive 

and causal modeling cultures in public health in this chapter. Instead, we pursue the relatively 

modest goal of understanding how (and to what extent) purely predictive ML models can guide 

public health interventions.  

For this purpose, we particularly draw on a study from the field of health economics by 

Mullainathan and Obermeyer (2022) who are using ML models as a tool to precisely characterize 

inefficiencies in the healthcare systems by examining how physicians’ decisions deviate from 
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predicted risk in the diagnosis of heart attack.1 The upshot of the study is that physicians 

systematically overtest low-risk patients while undertesting high-risk patients. By developing a 

nuanced picture of the microfoundations of physician testing behavior, Mullainathan and 

Obermeyer conclude that current moral hazard models, such as low-testing regimes, can have 

perverse effects (see also Hausman 2021). The approach taken in this study is paradigmatic for a 

strand of research at the intersection of ML and economics that recasts the design of optimal 

policies in criminal justice, social welfare, or healthcare as prediction problems (Kleinberg et al. 

2015; Kleinberg et al. 2018).  

That said, whereas Mullainathan and Obermeyer’s (2022) modeling of physicians’ decision-making 

allows ruling out misguided policies, it is unclear how it can translate into the design of more 

efficient public health interventions – other than providing physicians with algorithmic decision-

support tools. This issue is closely linked to the granularity of the relevant risk-prediction model. 

In that respect, there are some striking discontinuities between the ML approach and other 

strategies of policy-design grounded in the behavioral sciences. A pertinent example here is Nudge 

theory. Guided by the assumption that decisions can result from two styles of information 

processing, the objective is to intervene in the decision architecture in a way that counteracts biases 

and ultimately enables people to act rationally/in desirable ways (Thaler and Sunstein 2008). By 

contrast, the ML approach to public health problems is likely to result in interventions that diminish 

the role of policymakers: the ML model sets the bar for which payoff function to maximize and 

for what counts as the optimal decision-rule, leaving little room for policymakers. Hence, through 

a careful analysis of the methodology and its underlying constraints, the hope is to gain a clearer 

picture regarding the scope of ML approaches to public health problems. In this vein, this chapter 

 
1 Although analyzing the decisions of individual physicians, the study is adopting a public-health perspective because 
its ultimate aim is to ground health-related policies on said individual decisions rather than on aggregate views 
(Mullainathan and Obermeyer 2022, p. 723). 
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also provides important groundwork that allows science and society alike to think more 

systematically about the role of ML approaches within the context of evidence-based policymaking.  

The chapter proceeds as follows: Section 2 explains the gap between prediction and intervention 

in ML approaches to public health by pointing out various factors that might undermine the 

external validity of purely predictive models. Section 3 studies the methodology of the ML 

approach to policy problems. Of particular importance here is specifying what it means to reframe 

policy problems as prediction problems, as opposed to matters of causal inference. Furthermore, 

(dis)continuities between the ML approach inspired by behavioral science will be highlighted. 

Finally, Section 4 considers to what extent the ML approach to public health problems manages to 

overcome the gap between predictions and interventions. For this purpose, we examine the paper 

by Mullainathan and Obermeyer (2022) as a case-study. To carve out the opportunities and pitfalls 

of the ML approach, Nudge theory is taken as a contrast class. Overall, we hope that this chapter 

stimulates further reflection on the proper role of ML approaches in public health, while also 

broadening the debate on the epistemology and methodology of policymaking.  

2. The Prediction-Intervention Gap  

The objective in (supervised) ML is to facilitate the learning of mathematical functions that achieve 

high predictive accuracy on new data. Clinical medicine in particular has shown to be a beneficiary 

of the recent breakthroughs of ML in image-based classification and risk modeling. For instance, 

using measurements from multiple organ systems as input data, Hyland et al. (2020) developed an 

ML model that predicts circulatory failure in patients in the intensive care unit (ICU) with an 

accuracy of up to 90%. ICU patients cannot be monitored continuously by nurses or physicians, 

and it is exceedingly difficult for them to process the large quantities of data from many patients 

stored in electronic patient-data management systems. The risk-prediction model might therefore 
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act as an early-warning system for deteriorating patients, potentially enabling timely interventions 

and decreasing the number of false alerts.2 

This study is exemplary for dozens of ML applications meant to be used as decision-support tools 

in clinical medicine. By contrast, studies on public health applications of ML are still scarce – at 

least when measured in the currency of publications in high-profile (medical) journals. With ‘public 

health’, we refer to the societal practice that deals with the health of a country or region, driven by 

goals that manifest in policy documents and regulations (Munthe 2008, p. 39; see also Verweij and 

Dawson 2007). For example, while many leading research groups have been eager to develop ML-

based forecasting models in the course of the SARS-CoV-19 pandemic, national health institutions 

usually were inclined to stick to stochastic compartmental epidemiological models, such as the 

Susceptible-Exposed-Infectious-Recovered (SEIR) model to control for the effectiveness of social 

distancing policies and mask mandates.3 There is little need to argue that powerful predictive 

models can be useful for evidence-based policymaking. So why is it that ML applications still play 

an ancillary role in the methodological repertoire of public health? 

Especially when factoring out material constraints – e.g., a lack of available datasets for public 

health purposes – then the underlying problem can be expressed by a simple slogan: predictions 

are not interventions. However, behind this slogan lies a multi-layered set of issues. We follow the 

orthodoxy in ML and define ‘prediction’ as an estimation of unknown outcomes based on patterns 

found in past observations (Hardt and Recht 2022, p. 16). Predictions and interventions can be 

individuated by their distinct causal roles. Predictions are causally upstream to interventions. If a 

model predicts an increase in virus spread, then this might guide policies to contain the spread. By 

contrast, the intervention/policy sets out to change the healthcare system. For a predictive model 

 
2 In general, applications of this kind are at risk of hiding the ML model’s ignorance with respect to one particular 
patient behind a high average accuracy, thereby running into a setting that resembles the well-known reference class 
problem. However, see Buchholz (2023b) for an analysis of this problem and of situations in which it might not be 
that much of a problem after all. 
3 With some exceptions, such as the city of Valencia using ML-based prediction models to forecast virus spread in 
real-time (Díaz-Lozano et al. 2022). For a comprehensive treatment of ML applications amidst the SARS-CoV-19 
pandemic, see Syrowatka et al. (2021) for review.  
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to guide interventions, it must meet the conditions of robustness and control. The condition of 

robustness states that the model maintains its predictive performance (to a significant degree) in a 

deployment scenario regardless of (reasonable) changes in the probability distribution of the data 

(Freiesleben and Grote 2023). This is meant to counteract the threat that predictions are based on 

artifacts. This, in turn, facilitates trust in the model. In contrast, the condition of control states that 

it must be possible to extract actionable insights from the model about how and when to intervene 

(see also Cui and Athey 2022). 

Recall the risk-prediction model by Hyland et al. (2020): One reason for its clinical utility is that it 

is being used in narrowly confined settings. The medical devices measuring patients’ organ systems 

are likely to remain stable over time and ICU patient management is highly regulated. Once the 

predicted risk reaches a pre-defined threshold, the alarm will go off and a physician will initiate the 

corresponding treatment. Especially since physicians have background knowledge concerning 

patients’ physiology and appropriate treatment options, there is a straightforward path from 

predicted risk to intervention. Even still, dataset shifts (e.g., the model gets applied to new 

demographics or policies in the clinic have changed) might induce malfunctions. However – for 

the most part – these are controllable and can be mitigated by retraining the model (Finlayson et 

al. 2021; Freiesleben and Grote 2023).  

2.1 Skepticism Against (Purely) Predictive Models 

In contrast to the setting studied by Hyland et al. (2020), many environments that are of concern 

for public health lack clear boundaries and are subject to rapid changes. The predictive performance 

of an epidemiological model might be impacted by seasonal changes in virus spread or changes in 

the population’s behavior. A case in point is Google’s Flu Trends (GFT), trying to predict the 

prevalence of flu from people’s online searches. One reason that led to the cancelation of GFT 

was a steep increase in online searches on flu, leading the model to drastically overestimate flu 

prevalence. This was particularly due to flu being prominently discussed in the news in fall 2013 
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(Lazer et al. 2014). Moreover, some changes to the environment can be even triggered by the 

deployment of the model itself, e.g., when people strategically adjust their behavior to game its 

functionality. This issue is commonly discussed as the performativity of (ML-based) predictions 

(Perdomo et al. 2020).4 

Further complications arise when seeking to extract actionable information from ML models to 

guide policies. Critics of current ML are keen to point out that ML models often do not achieve 

high predictive accuracy by registering meaningful variables, but by exploiting spurious associations 

(Pearl and Mackenzie 2019, Ch. 10; Geirhos et al. 2020). In this case, any information extracted 

from the model could mislead policymakers. Another problem results from the challenge to extract 

meaningful information from highly complex and, thus, opaque ML models in the first place – and 

from the question to what extent the relevant opacity can be ameliorated by making said models 

explainable (Creel 2020; Sullivan 2022; Boge 2022).5 After all, policymakers do not just want to 

predict an outcome of interest but to understand which adjustments are necessary to steer the 

outcome in a desirable way. Closely related thereto, for evaluating suitable policies, it is not only 

important to predict a given outcome based on observed data, but also to simulate how the 

predicted output were to change if a new policy gets released (Athey 2017).  

A widely shared view is that tackling these problems requires a different set of statistical techniques 

than pure predictive modeling.6 For instance, Hernán et al. (2019) are skeptical about the premise 

that predictive models can inform public health policies. On their view, predictive models inform 

us that a certain decision must be made but they cannot guide the respective decision itself. 

 
4 See also Northcott (2017, p. 633) on the openness of social environments. 
5 Speaking of relevant opacity is meant to emphasize the insight put forward, for instance, by Buchholz (2023a) that 
ML models are not opaque per se, but different aspects of them are deemed opaque by different individuals, thus 
making the issue of explainability a highly granular epistemic endeavor. 
6 There are statistical techniques, for instance linear regression models, that can be used both for making predictions 
and – provided specific assumptions are met – for inferring causal relationships between variables. Standard ML 
methods like deep neural networks or support vector machines, however, can exclusively be used for the former. 
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Ultimately, what matters is that policymakers can tackle “what if”-questions – which, according to 

Hernán et al., can only be achieved by causal inference techniques (p. 49). 

In response to these kinds of arguments, several authors have tried to make progress on a 

methodological shift that involves either amalgamating or at least complementing ML models with 

causal inference techniques. What is at stake here is capturing dependencies between the effect 

variable X and the outcome variable Y that remain invariant across different settings. As argued by 

Schölkopf et al. (2021), such an approach would lead to models that are more robust and thus 

better able to generalize to data that have been sampled under different conditions than the original 

training set. To make steps into this direction, Schölkopf et al. (2021) suggest abandoning the 

crucial – and, in fact, often unrealistic – i.i.d.-assumption of ML according to which all instances in 

the training and test data must be sampled independently from each other as well as from the 

identical probability distribution. Instead, they argue that one should impose weaker assumptions, 

for instance, that “the data on which the model will be applied comes from a possibly different 

distribution but involving (mostly) the same causal mechanisms” (p. 624). In practice, this could 

be achieved by using a more diverse training set and by employing techniques of data augmentation 

both of which would force the model to learn “underlying invariances or symmetries present in 

the augmented data distribution” (p. 626).7 

A similar approach is pursued with the stable learning framework that has recently been proposed 

by Cui and Athey (2022): Instead of assuming that the training and test data come from the same 

distribution, the framework relies on the assumption that both might be from different so-called 

environments. The overall aim of stable learning then is to learn the mapping between a potentially 

larger number of treatment variables and the outcome, thereby determining a model that “can 

achieve uniformly good performance on any possible environment” (p. 112). Note that, in this 

context, ‘performance’ is taken to be predictive performance. This reveals how the stable learning 

 
7 A common example for data augmentation in the case of image classification is the transformation of training 
instances by, e.g., rotating images or varying a few pixels. 
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framework amalgamates the traditional ML paradigm with a notion of causality according to which 

a model that captures (parts of) the causal structure of an underlying phenomenon is robust to 

interventions and, thus, remains stable across different environments. 

In a similar vein, Hofman et al. (2021) propose an integrative modeling framework for the purpose 

of reconciling predictive and explanatory modeling approaches in computational social science. 

Roughly, their idea is to use explanatory models to identify and estimate causal effects. The validity 

of the causal assumptions will then be determined by whether they enable predicting outcomes 

that can be considered, yet again, as being out-of-distribution relative to the training data. To map 

the explanatory models onto the predictive models, Hofman et al. suggest various methods, ranging 

from counterfactual sanity checks to sophisticated knowledge extraction techniques (see also 

Hinton et al. 2015).8 

2.2. The Epistemic Value of Purely Predictive Models: A Modest Defense 

The picture that emerges against the backdrop of the last section is that predictive models are ill-

suited to guide public health interventions, at least unless they are supplemented by causal inference 

techniques. While it falls outside of this chapter’s scope to further engage with the technicalities of 

the respective causal inference frameworks, we want to argue that it might be premature to abandon 

the prospect of using purely predictive models for improving public health policies.  

Consider a pragmatic concern: Even though the proposals to bridge predictive models with causal 

inference techniques are highly persuasive, these are still theoretical frameworks. As it stands, we 

are not aware of any application of the stable learning framework within the context of public 

health/policy. By contrast, training a powerful predictive ML model can be a matter of weeks, 

provided that there is enough data, computational resources, and expertise. Hence, until methods 

that combine ML models with causal inference techniques have been fleshed out, it could be useful 

 
8 For a more detailed discussion of said integrative modelling framework as well as its perks and perils in the social 
sciences, see Buchholz and Grote (2023). 
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to suspend any constraints on using purely predictive models for public health purposes. A 

substantive argument for skepticisms against causal ML is that the relevant frameworks typically 

rely on (overly) strong assumptions, such as un-confoundedness in the data, which cannot be 

presumed for real-world settings (see also Gelman 2010).  

Then, there are methodological considerations: As the environment in public health contexts is 

oftentimes messy, it can be challenging to identify and estimate the true causal structure. Public 

health is an undertheorized domain, many of the necessary assumptions to establish causal claims 

are difficult to test or might only be justified by large-scale randomized controlled trials (RCTs), of 

which there are not enough (see also Cui and Athey 2022). The lack of RCTs for public health 

purposes is closely tied to logistical (conducting RCTs can be very expensive and time-consuming) 

and ethical considerations (since they entail that one group receives worse treatment in what are 

often high-stakes settings). Resulting from this is the problem to delineate causal effects from 

confounders. The fact that explanatory models in the social sciences oftentimes lack predictive 

power showcases the difficulty to identify the causal structure in social environments. Indeed, it is 

debatable whether social environments that have a robust causal structure, holding reliably across 

cases, exist in the first place (Northcott 2020; 2022). And while simpler epidemiological models 

like the SEIR model are also not strictly speaking causal, they provide researchers and policymakers 

with a lot of control, since it is easy to see how manipulations of individual features affect the 

outcome of interest.  

Moreover, although one should be cautious to not naively interpreting the function of a predictive 

model as indicating the discovered structure, it is reasonable to assume that if an ML model predicts 

social phenomena at high accuracy, then some structure (or at least stable parameters that can guide 

policy-interventions) will have been found (Mullainathan and Spiess 2017, p. 98). One particular 

promise of using ML models is that they enable discovering structures that so far were elusive to 

researchers and policymakers. Applied to the context of public health, this could include cross-

connections between different kinds of data (e.g., electronic health records, mobility data, lifestyle 
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data, and so on) (Broadbent and Grote 2022). At least in principle, this might be valuable for 

developing better public health interventions.  

However, a prerequisite for assessing how ML models can guide public health interventions is to 

test them against practical reality: Which phenomena can be predicted at high accuracy – and which 

cannot? How can researchers ensure the model’s external validity? What are inherent 

methodological constraints? How can policymakers draw actionable insights from the model? What 

sorts of interventions might the model guide? Answering these questions requires a pronounced 

understanding of ML approaches to public health.  

3. The Machine Learning Approach to Policy Problems 

In what follows, we turn to a detailed methodological analysis of the ML approach to policy 

problems. The distinctive feature of this approach – receiving increased attention in economics – 

is that it tries to solve policy problems by using predictive algorithms, while disentangling policy 

choices from causal inference.  

3.1. Prediction Policy Problems 

According to a paper by Kleinberg et al. (2015), policy problems differ regarding their 

methodological requirements: If a policymaker facing a drought must decide whether to invest in 

a rain dance to increase the chance of rain, then causal inference techniques are necessary. What 

matters is whether rain dances cause rain. By contrast, if the task is to decide whether to take an 

umbrella to work to avoid getting wet considering the clouds at the sky, then this is not a causal 

inference but a prediction problem. Unlike the rain dance example, taking an umbrella has no direct 

effect on rain. However, to evaluate the utility of taking an umbrella to work, it is important to 

estimate the chance of rain. Put differently, it is unknown whether it will rain, and a corresponding 

prediction is needed to decide about taking an umbrella, while the causal relationship between using 

an umbrella and staying dry in the case of rain is known and, thus, requires no further investigation. 

The claim is that such prediction policy problems have been neglected so far and that ML models 



12 

 

can help in solving them more effectively, when compared to traditional statistical methods such 

as regression analysis (p. 491).  

Kleinberg et al. (2015) do not formally define prediction policy problems but provide a list of 

illustrative examples for potential empirical applications. Among those are predicting which teacher 

will have the greatest value added, predicting unemployment spell length to help workers decide 

on savings rates and job search strategies, targeting health inspections, predicting highest risk youth 

for targeted interventions, or predicting the creditworthiness of borrowers in lending decisions (p. 

494). If we abstract from these examples, the common structure of prediction policy problems is 

that there is a known loss function, and the task is to minimize error when predicting a target 

variable Y from input data X. To this list, we can add some conditions that need to be met 

whenever some problem ought to be solved by ML techniques: There must be enough data to train 

the ML model, the target variable needs to be narrowly confined as a precondition for keeping 

measurement error small, and the background conditions need to be stable over time. In 

consequence, prediction policy problems relate to routine tasks, as opposed to predicting black 

swan events. For instance, predicting the spread of a novel virus, whose characteristics are not yet 

well understood, clearly falls outside of their scope.9  

To showcase the structure of prediction policy problems, consider a lending decision. Here, a bank 

is confronted with a binary decision whether to grant or deny a loan application based on the 

predicted creditworthiness of the borrower. Similarly, while the impact of hiring an additional 

teacher can be well estimated, hiring the right teacher requires predicting individual teacher quality 

from information available at the time of hiring (Mullainathan and Spiess 2017, p. 102). Still, things 

might not be as simple. A skeptic might object that assessing the suitability of a teacher for a 

particular school may largely hinge on a few causal factors – e.g., their professional skills and certain 

 
9 At a more abstract level, the underlying problem is that the remarkable success of ML models in interpolating from 
data is not matched in terms of extrapolation. For an intuitive explanation of the difference between interpolation and 
extrapolation, see also Freiesleben and Grote (2023).  
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psychological traits – rather than being a matter of some large-scale prediction exercise. After all, 

how can an ML model predict whether a teacher fits well into a particular school culture? Likewise, 

without knowing why certain youths are at risk, any targeted intervention might go astray. The 

point is that many actual examples of prediction policy problems involve more considerate choices 

than merely finding a decision-rule that facilitates minimizing error in a known payoff function. 

Somewhat pointedly formulated, it might be argued that many alleged prediction policy problems 

fall prey to the ‘law of the instrument’ (Maslow 1966): suddenly, policymakers have access to vast 

amounts of data and highly predictive models, with the result that everything turns into a prediction 

problem.  

Moreover, not everything that may seem like a natural candidate for a prediction policy problem is 

in fact predictable. For example, to assess whether medical spending in the last year of a life is 

wasteful – amounting to one-quarter of a person’s health-costs in total – Einav et al. (2018) used 

ML techniques to predict mortality among patients. The result being that less than 5% of spending 

is accounted for by individuals with predicted mortality above 50%. With that in mind, the 

unpredictability of mortality can also be deemed as evidence that medical spending at the end of 

the life is not wasteful. In a similar manner, a mass collaboration of 160 teams has shown low 

accuracy in predicting life trajectories from the Fragile Families and Child Wellbeing Study dataset 

(Salganik et al. 2020). However, what makes said phenomena unpredictable is not yet well-settled; 

either the available data proves to be insufficient, or the phenomenon of interest happens to be 

too complex to be operationalized as a prediction target. We will put this issue aside for now, but 

see Buchholz and Grote (2023) for details.  

The programmatic considerations on the nature of prediction policy problems culminated in an 

influential study, in which Kleinberg et al. (2018) examine how ML models can be used to 

understand and improve judges’ decisions whether to release defendants pre-trial in the US criminal 

justice system. Importantly, such decisions are generally assumed to solely hinge on the likelihood 

of the defendant to commit further crimes if they get released. Pre-trial decisions are therefore 
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paradigmatic of a prediction policy problem for ML. The target variable is narrowly confined, and 

the data are extensive, provided that there are ten million arrests in the US per year. For the study, 

Kleinberg et al. use a dataset of 758,027 defendants who were arrested in New York City between 

2008 and 2013, including detailed information on the defendants – e.g., whether they were released 

pre-trial and went on committing further crimes in-case. From a methodological perspective, the 

basic idea of the study is to train an ML model on the dataset for the aims of identifying the optimal 

decision function for pre-trial decisions. The model then acts as a benchmark, measuring judges’ 

decision-making. One result being that judges are prone to release roughly half of the defendants, 

predicted to be within the riskiest 1% of defendants. This even applies to strict judges, drawing 

additional detainees from the whole risk distribution. As an upshot, Kleinberg et al. argue that if 

strict judges were to decide in accordance with the algorithmically predicted risk, they could achieve 

the same reduction in crime by only arresting half as many defendants. (p. 240). 

With that in mind, a particular merit of the study is that Kleinberg et al. (2018) are very explicit 

about the challenges in comparing ML-based risk models to judges’ decisions: There is no data on 

whether incarcerated defendants would have committed crimes if they would have been released, 

deviance from the algorithmically predicted risk can be attributed to different motivational factors 

on the judge’s side, and there are certain kinds of evidence available to judges that the respective 

ML models cannot register. To counteract these obstacles, Kleinberg et al. use different techniques 

from the econometrics toolkit. These will be explained in greater detail at a later point in this 

chapter.  

3.2 Diagnosing Error in Human Judgement 

While paradigmatic for the ML approach to policy problems, the study by Kleinberg et al. (2018) 

itself can be situated in the tradition of two research strands concerned with understanding 

inaccuracies in human judgement. The first one is comparative research on two distinct methods 

of judgment, namely clinical versus actuarial judgement (Dawes, Faust, and Meehl 1989). Clinical 
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judgement relates to the combination or processing of information in the head of a human decision-

maker. By contrast, the actuarial judgement tries to eliminate the human component and 

conclusions are made based on empirically established relations. Assuming an antagonistic framing 

between the two methods, various studies in the realm of biomedical or psychiatric diagnoses find 

that clinical judgement is typically outperformed by simple statistical decision-rules (see also 

Goldberg 1970). A necessary condition for a fair comparison between the two methods is that the 

respective judgements use the same data. Moreover, it must be ensured by way of cross-validation 

that the accuracy of actuarial methods is not achieved by capitalizing on chance. The influence on 

the methodology of the ML approach to policy problems is evident – especially with regard to the 

antagonistic study design. However, one striking difference is that while actuarial methods rely on 

simple decision-rules, those of ML models tend to be staggeringly complex.  

The second research strand are the works of Kahneman and Tversky (1974; 1979), examining how 

people’s judgement formation about probabilities is systematically led astray by the reliance on 

availability heuristics, representativeness heuristics, and anchoring heuristics, and how people 

deviate from the axioms of Expected Utility Theory (EUT) on decisions about monetary payoffs 

in risky conditions. These findings, which are drawn from controlled experiments, are considered 

to provide evidence for the irrationality of human decision-making. The impact of Kahneman and 

Tversky’s work can hardly be overstated. It has given rise to the field of behavioral economics, 

trying to revise the microfoundations of economic theorizing by integrating insights from 

psychology and the cognitive sciences. Closely related thereto, it animated a behavioral turn in 

policymaking, using insights from behavioral science as a guide for public policy interventions – 

most notably in the guise of Nudge theory (Thaler and Sunstein 2008) and its competitor, Boost 

theory (Hertwig and Grüne-Yanoff 2017).10 Roughly, the basic idea of Nudges is to promote 

societal changes by way of small manipulations of the decision-architecture, thus accounting for 

 
10 See Malecka (2021) for a critical analysis of the kind of knowledge provided by the behavioral sciences for public 
policy.  
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people’s behavioral biases. Boosts again intervene on people’s decision-making competences either 

by improved information presentation or by providing them with simple yet effective decision-

rules. 

Provided that the focus of the ML approach to policy problems is on understanding and improving 

decision-making, it falls squarely into the paradigm of the behavioral turn to policymaking. 

However, compared to the works of Kahneman and Tversky and the subsequent research in 

psychology or behavioral economics, one important methodological difference is that there is a 

shift from controlled experiments towards the analysis of large-scale sets of retrospective data. This 

methodological shift poses many advantages. Instead of investigating the decision-making of a 

limited number of research subjects under stylized conditions, it has now become possible to study 

thousands of actual decisions. However, relying on retrospective data also has some caveats. Most 

importantly, the observed outcomes might have been affected by many confounding factors, not 

captured by the data. These confounders must be controlled for by conducting various empirical 

tests. In a similar vein, it is still unclear how the insights generated by the ML approach to policy 

problems can be translated into policy interventions. To get a better grip on these issues, we move 

on to a detailed discussion of the study by Mullainathan and Obermeyer (2022), trying to counteract 

inefficiencies in medical testing with ML models.11 

4. Predicting Inefficiencies in Healthcare 

It is commonly assumed that resources in the healthcare system are spent inefficiently – culminating 

in overdiagnosis and deteriorating patient outcomes. This problem is particularly pressing in 

medical testing, where it can be attributed to two causes. On the one hand, medical imaging 

techniques enable early screenings, leading to diagnoses that do not benefit patients because the 

diagnosed condition is not a harmful disease (Rogers and Mintzker 2016). On the other hand, there 

is the issue of moral hazard, diminishing the incentives to economize on treatment. Moral hazard 

 
11 We chose the study since we deem its methodology to be representative for a lot of research that takes place at the 
intersection of ML and public health. For a likeminded study, see Hastings et al. (2020).  
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is intimately linked to informational asymmetries between patients, physicians, and insurance 

providers, incentivizing physicians to perform expensive medical tests on patients (Hausman 2021). 

Beginning with a study by Abaluck et al. (2016), the view is gaining traction that the best way to 

tackle moral hazard involves examining physicians’ testing intensity conditional on observable risk 

factors in patients. Understanding why and how physicians allocate resources inefficiently is key to 

identifying adequate interventions for ameliorating moral hazard.  

4.1 Case Study: On Testing Patients for Heart Attack 

The objective of the study by Mullainathan and Obermeyer (2022) is to investigate how physicians 

diagnose heart attack. Testing for heart attack involves a blockage in the coronary arteries, which 

is a costly and invasive procedure. Even though diagnosing heart attack is a standard procedure for 

physicians in the emergency room, there are many ambiguities in the diagnosis, especially since 

many benign conditions share symptoms with heart attack. Diagnosing heart attack requires 

integrating a diverse set of data. For this reason, it can be best understood as a prediction problem.  

To study how physicians predict the risk of heart attack, Mullainathan and Obermeyer use a data-

corpus of 250,000 emergency visits at a large academic hospital, registering patients’ health records, 

tests given, resulting treatment, and patient outcomes. They then train an ML model to predict the 

outcome of testing, with the information available to physicians at the time of testing. The data are 

split into a training and a hold-out set. Importantly, the hold-out set is not used to benchmark 

physicians’ predictions against the ML model but to predict patient subgroups, where physicians 

might have erred. To validate whether physicians indeed made errors, Mullainathan and Obermeyer 

consider the patients’ health outcomes, assessing whether they show any major adverse cardiac 

events within 30 days of their visit. The testing efficiency is estimated by way of quality-adjusted 

life-year (QALY).12 One reason for looking at patients’ outcomes is that there is an informational 

asymmetry between the physician and the ML model. The model can assess electronic health 

 
12 See Herlitz (2018) for how QALYs are calculated.  
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records but is unable to capture additional information – e.g., self-reports by the patients, how they 

look, or results from ECGs and X-rays. Overall, the study finds that physicians overtest low-risk 

patients, while failing to test many apparently high-risk patients (pp. 680-1). 

Mullainathan and Obermeyer formulate two hypotheses why physicians under-/overtest: The first 

one is that – when compared to the ML model – physicians rely on an overly simple risk-prediction 

model and overregularize by giving too much weight to salient features in turn. The second 

hypothesis is tied to the fact that health care models have fueled moral hazard by paying for tests, 

rather than for outcomes. An important finding of the study is that the implementation of existing 

moral hazard amelioration strategies, such as incentivizing low-testing regimes, can have perverse 

effects: it will lead to a decrease in overtesting among low-risk patients, while at the same time 

increasing undertesting of high-risk patients.  

To rule out that high-risk patients were not tested for other reasons (e.g., they might have been too 

frail), the average age of the untested population and the fact whether they at least received an 

ECG were checked for (p. 701). Yet Mullainathan and Obermeyer acknowledge that the evidence 

provided for undertesting in physicians is only indirect. A potential confounding factor is that 

patients are first seen by nurses at the triage desk, before being examined by a physician. The 

involvement of the nurses in turn can influence the downstream decisions made by the physicians. 

For this purpose, a natural experiment is performed, in which the physicians’ predictions are plotted 

at different shifts, assessing whether the error-rate proves to be stable across different triage teams 

(pp. 704-6). 

To better understand why physicians are prone to making testing errors, it was analyzed how 

models for predicting physicians’ testing decisions deviate from models for predicting the actual 

risk. The starting point here is that physicians’ decision-making is boundedly rational: They are 

unable to process all the information available and compensate for their cognitive limitations by 

way of biases and heuristics (see also Wheeler 2020). This is contrasted by the complexity of the 
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optimal ML model that includes more than 16,000 variables. To investigate physicians’ decision-

making, Mullainathan and Obermeyer fit models at varying levels of complexity.13 By testing the 

different models against the hold-out data, they found that the model that best predicts physician 

choices uses 49 variables, while the optimal risk-prediction model uses 224. 

Note that the aim here is solely to shed light on the level of complexity in physicians’ decision-

making but not to approximate their actual decision-rule. In this respect, Mullainathan and 

Obermeyer make no assumptions regarding the properties of the models during training (p. 711). 

However, as a next step, they examine whether certain salient variables are overweighted by 

physicians – e.g., chest pain, age, and sex. This is meant to account for potential biases in physicians’ 

testing-decisions. Here, the strategy involves training a risk-prediction model with a subset of 

variables, denoting salient symptoms. Despite the restrictions concerning the input data, the model 

has been trained exactly the same way as the original risk-prediction model, against which it was 

benchmarked in turn.  

Again, the upshot is that the risk from symptoms is particularly predictive of physicians’ testing, 

suggesting that, as a category, these salient symptoms are overweighted. In addition, the model’s 

predictive accuracy has been tested for patients lacking said symptoms (pp. 716-720). The 

importance of empirical tests and models of varying complexity as a means to understanding ML 

models is an intriguing methodological insight from the study. Contrary to a suggestion that is 

commonly put forward within the philosophical debate on ML in science and, thus, somewhat 

surprisingly, methods that explain the model’s behavior post-hoc through summary statistics or by 

detecting counterfactual dependencies virtually play no role for the study. The iterative process, 

beginning with theoretical assumptions on the researchers’ side, followed by increasingly nuanced 

empirical tests, might be best captured by Sullivan’s (2022) notion of ‘link uncertainty’ according 

 
13 Where model complexity is measured in terms of the variables included in a given model. 
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to which an understanding of and with an ML model is achieved by connecting the model behavior 

to background theory. 

One problem of the study is that it relies on data from a single hospital, which is why there are 

concerns regarding the transferability of the ML model to novel settings. The testing behavior of 

the respective physicians may not be representative of physicians across other hospitals, which is 

why the ML model might overfit to the idiosyncrasies of that particular cohort. As a means to 

ensure its external validity, the ML model is tested against a nationally representative dataset of 

Medicare fee-for-service patients. Here, too, it was confirmed that physicians undertest high-risk 

patients while overtesting low-risk patients. However, as Mullainathan and Obermeyer (2022) point 

out, the dataset has significant limitations in that it is based on insurance claims, rather than EHR 

data and includes only few patient information. The heterogeneity and lack of standardization in 

medical data highlights the obstacles in validating ML models for healthcare purposes, especially 

since only very few external benchmark datasets exist. This may particularly affect the model’s 

performance for marginalized social groups – traditionally underrepresented in medical data.14  

4.2 From Predictions to Interventions 

It is obvious that Mullainathan and Obermeyer (2022) should be commended for many thoughtful 

methodological choices. Even still, what lessons can be drawn from the perspective of a 

policymaker, interested in diminishing moral hazard in medical testing? Here, the risk-prediction 

model by Mullainathan and Obermeyer turns out to be a mixed bag. Public health interventions 

can take many forms, with the most obvious candidate being the release of the policy that changes 

the incentive structure for physicians. For instance, one might incentivize testing by other means 

than via changes to the reimbursement schemes or by way of capacity constraints. However, the 

simultaneous presence of under- and overtesting suggests that such a policy is predestined to miss 

its mark, since it is insufficiently nuanced. Based on another empirical test, in which the behavior 

 
14 See Seyyed-Kalantari et al. (2021) for a good overview about how biases in medical data culminate in unfair 
treatment for marginalized social groups.  
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of lower-testing staff is compared to higher-testing staff, Mullainathan and Obermeyer find that a 

reduction in tests will equally affect low-risk and high-risk-patients. Thus, even though the policy 

would decrease overtesting, a low-testing regime could create perverse incentives in that it leads to 

worse outcomes for high-risk patients. The data also indicates that the accuracy does not increase 

if physicians were to test less (pp. 720-722).  

Similar issues are likely to arise regarding other policy proposals. Hausman (2021) recently argued 

that the best strategy to diminish moral hazard is to intervene on non-monetary incentives.15 For 

example, by imposing non-monetary costs, so-called ordeals, on different agents in the healthcare-

system, certain choices – e.g., abundant testing – become less attractive.16 Imposing ordeals 

increases the likelihood that physicians will conduct due diligence in their medical testing. However, 

just as in the case of changes to monetary incentives, the result might either be an increase in tests 

– benefitting undertested high-risk patients, while harming low-risk patients – or the other way 

around. After all, neither monetary nor non-monetary incentives manage to address the cognitive 

limitations of physicians that ground inefficiencies in medical testing. As an upshot, one benefit of 

the risk-prediction model is that it enables understanding why certain policies are not adequate for 

a given purpose.  

That being said, if the aim is to identify appropriate strategies for diminishing moral hazard in 

medical testing, then the risk-prediction model’s level of granularity turns out to be brittle. This is 

due to instrumental and – more speculatively – metaphysical reasons. Concerning the former, the 

underlying issue is that although empirical tests facilitate a high-level understanding of the risk-

prediction model, the actual decision-rule is still left obscure.17 It is therefore difficult to derive an 

epistemically accessible policy that accounts for optimal testing-strategies from the model. Turning 

 
15 However, note that Hausman’s primary aim is overcoming health inequalities that result from moral hazard.  
16 Any measure that does not impose financial costs, but rather non-monetary burdens such as “waiting or filling out 
forms” (Hausman 2021, p. 29) can be considered an example for such ordeals. 
17 See Creel (2020) and Boge (2022) for detailed analyses of the opacity problem in ML.  
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to the latter, the challenge is to identify a policy that fits to complicated natural phenomena yet, for 

practical purposes, must be simple (see also Mullainathan and Obermeyer 2022, p. 715).  

An alternative to policies are cognitive interventions. Unlike policies that aim at solving societal 

problems by inducing systemic changes, cognitive interventions shift the locus of attention to 

improving the decision-making capacity of individual physicians.18 Nudges or Boosts are the natural 

candidates here (Thaler and Sunstein 2008; Hertwig and Grüne-Yanoff 2017). As the study by 

Mullainathan and Obermeyer (2022) has shown, one source of error in medical testing is that 

physicians overweight certain salient variables. Although Nudges and Boosts are driven by different 

research programs, in both cases, the strategy for overcoming inefficiencies in testing might be to 

counteract the salience of variables by intervening on the information presentation.19  

Nevertheless, the prospects of using the risk-prediction model by Mullainathan and Obermeyer as 

a guide for designing Nudges/Boosts are limited. To begin with, their study only highlights that a 

subset of variables/symptoms gets overweighted by physicians, thereby biasing testing decisions. 

However, this does not explain why physicians attach greater importance to particular variables in 

their decisions. More importantly, if we accept Mullainathan’s and Obermeyer’s premises, then 

Nudges and Boosts again prove to be a too simple solution for tackling a complicated 

phenomenon. However, this does not preclude that Nudges and Boosts can be useful in improving 

clinical decision-making. Rather, they are unlikely to simultaneously mitigate undertesting and 

overtesting. Of course, it could also be that physicians’ overtesting and undertesting can be tackled 

by combining systemic interventions and Nudges or Boosts. However, the feasibility of such a 

mixed strategy is an empirical matter that can hardly be settled in this chapter.  

 
18 The distinction between systemic and individual interventions is based on work by Chater and Loewenstein (2022). 
They critically argue that the individualistic framing, typically inspired by the behavioral sciences, distracts from 
concerted systemic efforts by way of regulation or taxation. Those are deemed more efficient for overcoming issues 
such as obesity, addiction, or climate change.  
19 See Last et al. (2021) for a systematic review of physician-directed Nudges in healthcare. For Boosts, see also 
Marewski and Gigerenzer (2012).  
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This leaves policymakers with yet another cognitive intervention, namely, using the risk-prediction 

model as a decision-support tool for physicians. However, there are some crucial differences 

between the way that the algorithmic decision-support tool works as a cognitive intervention, when 

compared to Nudges and Boosts. Roughly, the latter seek to fix the cognitive limitations of the 

physician, while respecting their decisional authority – at least if one subscribes to the view that 

Nudges do not necessarily bypass the physicians’ reasoning processes (Levy 2019). In contrast, 

since the decision-support tool is vastly superior to the physician at predicting patients’ risk of heart 

attack, the physician’s role is basically to be deferential. The sole reason for not straightforwardly 

replacing physicians with risk-prediction models is that there are certain kinds of information that 

are elusive to the risk-prediction model, potentially confounding the risk estimate. Provided that a 

patient has a red face or reports that they are feeling pain in the chest area, then this information 

can be used to override the risk-prediction model (Mullainathan and Obermeyer 2022, p. 723).  

And yet, the epistemic rules about when to override algorithmic predictions are not well-

understood, especially since the information that risk-prediction models and physicians use is 

asymmetric in a two-fold way. Both will use a shared pool of information – e.g., a subset of the 

EHR data. The risk-prediction model, however, will use the comprehensive information of the 

EHR data, while the physician may consider information from additional diagnostic modalities (see 

also Ludwig and Mullainathan 2021, p. 86). In light of this, how to sort out disagreements? 

Intriguingly, these informational asymmetries pose a challenge for epistemological theories of 

disagreement – most pertinently the Equal Weight View – that so far are predominantly concerned 

with cases in which the disagreement between peers is tied to the same body of evidence 

(Christensen 2007; see also Grote forthcoming). Empirical investigations of the interplay between 

physicians and decision-support tools have shown that especially novices are prone to blindly 

following algorithmic recommendations (Gaube et al. 2021; Tschandl et al. 2020; see also Genin 

and Grote 2021).  
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We will not engage with the question how this interplay can be improved in this chapter; be it via 

careful epistemological theorizing or, more pragmatically, by way of best-practice models and 

regulations. For present purposes, what is at stake is that when purely predictive ML models are 

used for solving policy problems, then this is, in all likelihood, going to result in a novel kind of 

cognitive intervention. In addition, public health is consequentialist in its basic construction: 

Provided that the involvement of risk-prediction models promotes the health of populations – 

understood as an aggregate of individual health levels (Munthe 2008, p. 40) – there is nothing 

ethically troublesome per se in the automation of medical testing. That being said, if the aim is to 

identify systemic interventions for fixing moral hazard, causal inference techniques may prove to 

be indispensable after all. For example, a pronounced account of the conditional probabilities 

between the effect variables and the target variable potentially facilitates tailoring an intervention 

that manages to simultaneously address the issues of undertesting and overtesting. With that in 

mind, we hope that this chapter provides convincing arguments for why even in the absence of 

causal inference techniques, predictive models should be explored as a tool for guiding public 

health interventions.  

5. Conclusion  

The chapter’s leitmotif was the question why the enthusiasm for applying ML models in clinical 

medicine has not been echoed in the realm of public health. The answer is rooted in skepticism 

against purely predictive models, who are claimed to be neither sufficiently robust nor sufficiently 

informative to guide public health interventions. Against the widely held view that these deficits 

should be accounted for by blending ML models with causal inference techniques, we have argued 

that even purely predictive models can be a useful guide for public health interventions. To this 

end, we considered a novel strand of research that uses ML models for solving prediction policy 

problems. This research strand, again, can be seen as a part of the behavioral turn in policymaking. 

However, there are clear discontinuities regarding the methodology and the resulting kinds of 

interventions, when compared to existing policy-approaches grounded in the behavioral sciences 
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such as Nudges and Boosts. Based on a case-study from health economics, we discussed in detail 

how predictive models can foster understanding of inefficiencies in medical testing, while also 

providing tools for improving public health outcomes. However, the utility of ML models is 

restricted in a two-fold way: First, they can only be meaningfully used for narrowly confined routine 

tasks. Second, they are most efficient when the adequate intervention is already known in advance. 

Alternatively, the ML model itself may turn into a cognitive intervention, providing decision-

support for policymakers.  

By discussing studies from health economics, we also contribute to the understanding of the 

specific methodological challenges of ML-driven science outside of traditional success areas – e.g., 

structural biology, climate science, or medical imaging. In particular, we have highlighted the 

relevance of empirical tests and comparator models for overcoming the opacity of ML models. 

Our account has also wider-ranging implications for the (philosophical) debate on evidence-based 

medicine/policymaking. Given their empiricist foundations, the epistemic value of predictive 

models is largely ignored by existing frameworks. Instead, they are preoccupied over the caveats of 

RCTs for establishing causal claims, or the complicated liaison between causal and mechanistic 

evidence (Deaton and Cartwright 2018; Russo and Williamson 2007; Marchionni and Reijula 2019; 

Shan and Williamson 2021). In light of the increasing attention that ML models receive in medicine 

and the social sciences, it is about time to diversify perspectives, reflecting on what constitutes 

good predictive models for policymaking, and how the relevant evidence can be meaningfully 

combined with other kinds of evidence (see also Broadbent 2013; Boumans 2019).  
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