Explanation in Biology

Lauren N. Ross
University of California, Irvine

Abstract:

This book examines philosophical accounts of scientific explanation, particularly those that apply
to biology and the life sciences. Two main categories of scientific explanation are examined in
detail—causal explanations and non-causal explanations. The first section of this book provides a
brief history and some basics on philosophical accounts of scientific explanation. Section two covers
causal explanation, first by discussing foundational topics in the area, such as defining causation,
causal selection, and reductive explanation. This is followed by an examination of distinct types of
causal explanation, including those that appeal to mechanisms, pathways, and cascades. The third
section of this book covers non-causal, mathematical explanations, which have received significant
attention in recent philosophy of biology and the life sciences. Three main types of non-causal,
mathematical explanation are discussed: topological and constraint-based explanation, optimality
and efficiency explanations, and minimal model explanations. This work examines similarities and
differences across accounts of scientific explanation, while situating them in the context of common
goals, methods, and reasoning present in biology and the life sciences.
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1 Scientific Explanation: Introduction. This book examines scientific explanations in bi-
ology and the life sciences. Explanations are viewed as a central aspect of science—they offer deep
understanding and knowledge of the world, as opposed to mere descriptions, classifications, and
predictions. Classically, explanations are viewed as answers to “why-questions” that specify some
outcome of interest (Nagel/[1961; Hempel [1965a; [Bromberger|[1966)). These include questions such
as: Why is the sky blue? Why do cicadas have prime-number year life cycles? Why is this individ-
ual sick while others are not? These questions suggest that some outcome is surprising in a manner
that calls out for explanation. An explanation reduces this surprise, showing why the outcome
was inevitable and “to be expected” (Hempel |1965a), 336). In their studies of the natural world,
scientists engage in projects that describe phenomena, that make predictions of them, and that sys-
tematically classify and sort them. Taking the challenging step of explaining natural phenomena
allows scientists to provide deep understanding of the world and it remains a “primary” objective
of science (Hempel 1991, 299). Various accounts of scientific explanation have been proposed in
the philosophical literature. This book focuses on two main accounts that have received significant
attention—causal and non-causal forms of explanation.

1.1 A Brief History. The philosophical literature on scientific explanation has experienced
notable shifts since foundational work in the late 1940s, with the rise and fall of different accounts
of explanation (Woodward and Ross|[2021]). A helpful starting point is the influential deductive-
nomological (DN) model, articulated by Hempel and Oppenheim in a “first wave” of recent philo-
sophical work on explanation (Hempel and Oppenheim|/1948; [Baker 2012, 243)E] This model sug-
gests that scientific explanations are deductive arguments, in which (1) initial conditions and (2)
laws of nature are used to (3) deduce and “explain” a target of interest [Hempel and Oppenheim
(1948)E] In order to see the structure of the DN account, consider a mercury thermometer that is
placed in boiling water (Hempel [1965b)). When this thermometer is placed in boiling water, why
does the mercury column first dip down in the glass thermometer case and then quickly rise? The
explanation for this involves the initial expansion of the glass thermometer casing, which increases
its inner volume such that the mercury level drops. However, once the temperature reaches the
mercury inside, its level rises as mercury has a larger coefficient of expansion than glass. According
to Hempel, this explanation is provided by antecedent conditions and general laws (Hempel||[1965b)).
The antecedent conditions include the constituents of the thermometer (the glass casing surround-
ing the mercury) and the fact that the thermometer was placed in boiling water. The general laws
include laws about the thermic expansion of glass and mercury and the thermic conductivity of the
glass. In this manner, the antecedent conditions and general laws are said to explain and “entail
the consequence” that the mercury will drop and rise. On this account, the explanatory target is
a “logical consequence” of the relevant antecedent conditions and general laws, with a structure
shown in figure

While the DN model has its strengths, it also suffers from significant problems. First, this model
fails to accommodate explanations in sciences that often lack strict, universal laws of nature, such as
biology and the life sciences. Genes and environment are cited in explaining traits in organisms, but
these explanations rarely (if ever) appeal to general laws from which these traits deductively follow.

"'While the topic of explanation has received significant attention in philosophy, the DN model is often viewed
as a helpful starting point for more recent work on the topic.

2 Attempts to frame explanation in terms of deduction are present as far back as fourth century BC with
Aristotle’s explanatory syllogisms (Clatterbaughl|[1999)).
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Figure 1: The Deductive-nomological model of scientific explanation, rewritten from (Hempel
1965a, 336). In this model, the initial conditions are represented by Ci, Cs, ..., Ck, while the
general laws are Li, Lso...,L;. The initial conditions and general laws make up the explanans
(what does the explanatory work), which deductively lead to the explanandum (or outcome to be
explained).

A second problem is that the DN model fails to capture the directionality of explanation. This is
seen in the well-known “flagpole problem,” in which a flagpole’s height, the sun’s location, and laws
of optics explain the length of the flagpole’s shadow (Hempel (1962} [Bromberger 1992)E| The issue
for the DN model is that it incorrectly counts the reverse direction as also explanatory—it implies
that the shadow’s length (with the sun’s location and same general laws) explains the flagpole’s
height, as this also meets the DN criteria. These and other limitations began to receive attention
in the 1960s and increased interest in alternative models of scientific explanation (Woodward and
Ross| 2021)).

One celebrated solution to these problems was found in accounts of causal explanation. On
accounts of causal explanation, an outcome is explained by citing the causes that produce it, as
causes explain their effects. This solves directionality because causation is asymmetric and contains
a clear direction, from cause to effect. This allows one to count the first flagpole scenario as the
true explanation, because the explanatory direction is captured by causality—the sun’s rays cause,
and thus explain, the shadow and not vice versa (Salmon||1989). Another advantage is that the
causal framework accommodates explanations in sciences that lack strict laws of nature. These
explanations only require causal regularities, which should hold in some set of conditions, but the
regularities need not hold universally. If gene X causes brown coat color in guinea pigs in some
background conditions, this explains the trait even if such a regularity does not hold for other
animals or in other conditions.

For these and other reasons, causal accounts superseded the DN model as the new reigning view
of scientific explanation. This was change supported by increased attention to examples of explana-
tion outside of the physical sciences—such as biology, neuroscience, ecology, and sociology—which
were better captured with causal frameworks than the DN model. This encouraged a growing lit-
erature on causal explanation and work examining various definitions of causalityﬁ This literature

3This example, first appears in Hempel’s work as he recalls the challenge that Bromberger presented to him
(Hempel|[1962; Bromberger||1992)). Many discussions of the flagpole problem cite (Bromberger||1966), which
lacks discussion of this case (but contains a related Empire State Building example).

4Examples of different definitions of causation include definitions in terms of regularities (Mackie||1965),
connected processes (Salmon!(1984), probabilistic relationships (Cartwright|1979; [Skyrms|/1980)), and coun-



would explore a multitude of topics such as causal selection, absence causation, explanatory re-
duction, causal complexity and pluralism, and mechanistic explanation. Causal selection has to do
with how to “select” the most explanatory causes (Lewis|[1986; Waters 2007} |[Ross|[2018)), absence
causation concerns whether absences are genuinely causal or not (Beebee|2004), and explanatory
reduction pertains to whether lower-level causes are more explanatory than higher-level causes
(Sober|[1999; Bickle| 2006). Causal complexity can refer to situations in which causes are numer-
ous, where causes are related in intricate ways, and where causes are difficult to identify in the
world (Lewis|[1986; [Wimsatt| 1972; Mitchell| 2009 Ross [2023f). Causal pluralism refers to different
projects, including views that there are different legitimate definitions of causation, that there are
distinct methods of identifying causality, and that there are different types of causal explanation in
science ((Cartwright|2004; [Hitchcock|2007; |Godfrey-Smith/ 2013). Other work has examined causal
mechanisms and mechanistic explanation, which maintain that explaining outcomes always requires
citing the causal mechanisms that produce them. The mechanistic research program has become
a mainstream philosophical account of explanatory practice in the life sciences (Machamer et al.
2000; Bechtel and Richardson!2010; (Glennan|[2017)) and what some consider the “dominant view
of explanation in the philosophy of science” (Kaplan and Craver| 2011)). A significant amount of
work in this area implicitly assumes that all scientific explanations are causal, while other projects
directly acknowledge support of this view (Skow2014).

While the philosophical literature experienced an increase in fruitful work on causation, the
view that all scientific explanations are causal would be short-lived. An appreciation for other,
non-causal forms of explanation has been supported by examples from many scientific domains.
The life sciences have played a central role in these debates as many purported examples of non-
causal explanation come from biology, neuroscience, ecology, and so on. Examples of these non-
causal explanations include explanations of robust and fragile ecosystems (Huneman| 2010), of
neural coding and firing behaviors (Chirimuutal2018; [Ross||2015)), of the prime number life cycle
of cicadas (Baker|2005; Batterman 2010), the hexagonal-shaped honeycombs of bees (Lyon and
Colyvan 2008} |Lange|2013]), and why animal size is limited by the square-cube law (Ross2023c).
In these examples, it is suggested that an important part of the explanatory power comes from
mathematics, which is not the case in causal explanations. There are extensive, ongoing debates
about how exactly these non-causal, mathematical explanations work—what their features, details,
and nature are. As these debates continue, a growing consensus in the field views non-causal,
mathematical explanations as legitimate and accepts that scientific explanation is far more diverse
than earlier work assumed. While earlier theories of scientific explanation searched for the single,
universal account that captures all examples of scientific explanationE] more recent work views
explanation as a diverse enterprise (Woodward 2019; Woodward and Ross [2021). This brings us
to a relatively new position in the field—an appreciation for various types of scientific explanation,
without expecting that they all fit a single model, but still requiring that they meet rigorous
standards for what counts as explanatory.

This book focuses on two main categories of scientific explanation—causal and non-causal expla-
nation. These categories of explanation are examined in the context of biology and the life sciences.
The discussion of causal explanation (section 2) will consider foundational topics in this area and

terfactuals (Lewis||1986; (Woodward|2003).

5 As evidence of this, consider Nagel’s claim that the DN model is the “paradigm for any ‘genuine’ explanation,
and has often been adopted as the ideal form to which all efforts at explanation should strive” (Nagel||1961,
21).



three main types of causal explanation—these include explanations that appeal to mechanisms,
pathways, and cascades (Ross 2021a, 2023a)). In providing an analysis of non-causal explanation
(section 3), three main classes of non-causal, mathematical explanation will be considered, including
topological and constraint-based explanations, optimality and efficiency explanations, and minimal
model explanations (Lange|[2018; Baker|2005; Batterman|2001). This book will examine similar-
ities and differences across these explanatory patterns—their shared structural features, different
guiding principles, and paradigmatic examples of each type. This work balances an appreciation
for distinct explanatory patterns, with the view that explanations should meet rigorous standards.

While this book focuses on causal and non-causal explanation, other categories of scientific ex-
planation have been studied. Examples of these other accounts include unificationist explanations
(Kitcher||1989; Friedman|1974), narrative and historical explanations (Roth/|[1988]), functional expla-
nations (Wright| |1976), and structural explanations (Garfinkel/1981), among others. While causal
and non-causal explanation have received significant attention in recent work, questions remain
about how they both relate to the other explanation classes mentioned above.

This book is organized in the following manner. The next subsection (1.2) introduces the ba-
sics of scientific explanation that will help in understanding the distinct accounts of explanation
to come. The second section (2) examines topics in causal explanation including various foun-
dational questions and forms of causal explanation, including mechanism, pathway, and cascade
explanations. The third section will discuss types of non-causal, mathematical explanation, in-
cluding topological and constraint-based explanation, optimality and efficiency explanations, and
minimal model explanations. The fourth section will provide concluding remarks on the diversity
of scientific explanation in biology and the life sciences.

1.2 The Basics of Explanation. Scientific explanations often involve three main components—
the explanandum, explanans, and dependency relation, shown in figure [2l The explanandum is the
explanatory target or phenomenon to be explained. The explanans is what does the explanatory
“work” or provides the explanation. A final component is the dependency relation between the
explanandum and explanans, which captures how they are related to each other. These elements
are found in most explanations, but their features vary across different types of explanation (as
will be discussed more soon). Many accounts of scientific explanation elaborate on versions of
this three-part model in order to capture the standards that scientific explanations need to meet
(Woodward| 2019; Reutlinger [2016; |Jansson and Saatsi [2017)). Identifying these standards is im-
portant because it would allow us to distinguish genuine explanations from non-explanations and
to determine when explanations are better or worse. The notion of explanation that is examined
in this work does not include all broader uses of “explanation” in everyday life, such as explaining
the meaning of an expression, how to bake a cake, or why a decision was made (which can involve
a detailed description or justification) (Woodward|[2003) 4). Instead, it focuses on explanations of
natural phenomena, often why they have occurred or why they have particular features.

Discussions of scientific explanation frequently start with the explanatory target. A scientific
explanation cannot be provided until the explanatory target is sufficiently clearﬁ In the philo-

60f course, there may be other ways that scientists start the explanatory process besides first specifying the
explanandum of interest. For example, they may be interested in a particular gene and what it explains,
controls, and predicts, as in the case of reverse genetics. This involves discovery of the explanatory target
after specifying a potential explanans of interest. In this case, we still cannot provide an explanation until
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Figure 2: The three-part model of scientific explanation contains: the explanandum (phenomenon
to be explained), the explanans (what does the explanatory work), and the dependency relation
that connects both. Most philosophical accounts of scientific explanation fit this three-part model,
but they differ with respect to what counts as the explanans and how to understand the dependency
relation.

sophical literature, the explanatory target is presented as an outcome that scientists are interested
in, that they “stumble across by accident” and find surprising, and that calls out for explanation
(Hempel| [1965a; Baker|[2005)). The target of interest is couched in terms of a why-question, which
frames the inquiry and ensuing explanatory quest.

Providing an explanation requires precisely specifying the explanatory target. This precision
involves identifying the contrastive focus of interest and meaning of terms in the why-question.
Consider the explanatory why-question: “Why does guinea pig A have spotted-coloring on its
trunk?” Without further clarification, this question is ambiguous and does not sufficiently specify
the explanatory target. For example, this question might be asking why guinea pig A has spotted-
coloring on its trunk versus solid coloring; or why guinea pig A has spotted-coloring on its trunk
as opposed to its legs; or why guinea pig A has this spotted-coloring as opposed to guinea pig
B. Each of these contrasts refers to a different explanatory why-question that may have different
answers. Specifying the explanatory target with precision is essential for ensuring that scientists
are discussing the same explanatory question and not talking past each other. Clarity here helps
avoid situations in which scientists mistakenly compare explanations, without realizing that the
explanations have different targets of interest and, thus, aim to explain different things. This is
especially important because natural phenomena can be represented in different ways and have
distinct features, which emphasize different contrasts that we might want to explain.

Designating a clear explanatory target also requires defining relevant terms in the explana-
tory why-question and explanandum. If scientists aim to explain a phenomenon that lacks clear
characterization, is ill-defined, or invokes multiple definitions, there are likely to be challenges in
providing an explanation. Consider the question “Why do human beings have lungs?”, which we
might seek an answer to. As Nagel states, this “question as it stands is ambiguous” because it

the explanandum is specified, but we “discover” the explanandum through an initial interest in a potential
explanans. This is related to Rheinberger’s idea of “epistemic things”, which involve how new “objects
come into existence and are shaped in the empirical sciences” (Rheinberger|(1997)). This also relates to
Woodward and Bogen’s discussion of the “phenomena” that scientists seek to explain and predict (and how
these differ from data, measurements, and so on.) (Bogen and Woodward|[1988]).



can be interpreted in distinct ways (Nagel 1961}, 19). The principle outlined here is that, if it is
not clear what we want to explain, then we are not equipped to provide or assess an explanation.
The explanatory target can change through scientific work, but if explanatory potential is to be
assessed then some target must be fixed and specified. As a further example, if “consciousness” is
defined in myriad or ambiguous ways, then determining how to explain consciousness and whether
it has been explained are likely to be contentious and unsettled. If there is little agreement on
how to characterize Y, there will likely be little agreement on whether some account explains Y or
notm In short, providing an explanation requires that one is very clear about the phenomenon to
be explained.

A second main component of scientific explanations is the explanans or what does the explana-
tory work. This is associated with the “answer” that is provided to the explanatory-why question.
If we want to explain why guinea pig A’s trunk is spotted as opposed to solid-colored, we might ap-
peal to a gene that is responsible for this phenotype. Perhaps other phenotypes (such as behaviors,
disease states, etc.) are caused by environmental factors, such as stress, temperature, contagions,
and so on. Factors that are cited in explaining the outcome are said to have “explanatory power”
with respect to the target of interest. It is common to view these explanatory factors as “difference-
makers” for the target of interest, such that changes in the explanans “make a difference” to the
states of the explanandum. Relatedly, the explanandum is said to “depend” on the explanatory
factors specified in the explanans.

Most philosophical work on scientific explanation is focused on the explanans and criteria that
it needs to meet to ensure that a legitimate explanation is provided. Explanations provide deep
understanding in a way that is distinct from other scientific projects such as mere description, pre-
diction, and classification. While it is important to describe, predict, and classify distinct guinea
pig coat coloring patterns, these are different tasks than explaining why one of these colorings is
produced. Accounts of scientific explanation should exclude cases in which a purported explanans
simply redescribes or predicts the explanandum. A classic example of the latter is a common cause
scenario, shown in figure [3| in which (A) air pressure causes two distinct outcomes, namely, (1)
changes to a barometer reading and (2) changes in storm occurrence (Woodward| 2003, 14-15).
Notice that the (1) barometer accurately predicts (2) storm occurrence, but we would not say that
it explains this outcome. The correlation between (1) and (2) allows this relationship to be useful
and reliable, but we are more likely to view both (1) and (2) as caused and explained by the (A)
air pressure. This type of example has led to claims that explanatory factors need to do more than
simply predict outcomes or make them more probable. Accounts of scientific explanation aim to
specify exactly what standards the explanans and explanatory factors need to meet, to ensure that
a genuine scientific explanation has been provided.

The third feature of scientific explanations is the dependency relation that connects the ex-
planans and explanandum. It has been suggested that many diverse forms of scientific explanation
share this dependency relation feature—that they involve some specification of how the explanan-
dum is dependent on factors in the explanans (Woodward|2003;|Jansson and Saatsi|2017; Reutlinger
2016)). In some cases, this dependency relation helps distinguish types of explanations, including
causal explanations from non-causal, mathematical explanations (Woodward|2019). For causal
explanations, this dependency relation is causal as the factors in the explanans and explanandum

"In fact, even if there appears to be agreement, we should be skeptical, as the differing meanings of Y can
easily produce cross-talk.
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Figure 3: Air pressure is a common cause of both the barometer reading and storm occurrence—
air pressure causes and explains both of these outcomes. While the barometer reading accurately
predicts (and is correlated with) the storm, it does not cause or explain it.

are connected causally. Alternatively, for some accounts of non-causal explanation, the depen-
dency relation is said to be mathematical and non-empirical in character (Woodward|2019). While
causal dependencies are revealed through an empirical, a posteriori study of the natural world,
mathematical dependencies are identified through mathematical and a priori considerations. This
difference between causal and mathematical dependencies bears similarity to Hume’s distinction
between “matters of fact” and “relations of ideas,” referred to as “Hume’s fork” (Hume |1738)).
While “matters of fact” are a type of knowledge revealed by experiences of the world, “relations of
ideas” are “discoverable independently of experience” as they are logical and mathematical proposi-
tions, that are true by definition and known through reason alone (Morris and Brown/[2019)). Other
unique features of these mathematical dependencies is that they can exhibit a stronger form of ne-
cessity than standard causal relations (Lange|/2018) and they can contain other types of non-causal
information (Chirimuuta/|2018)). This is discussed in more detail in section 3, which covers different
types of non-causal, mathematical explanation.

The focus of this book will be to identify the standards and “formal pattern” of explanation
in biology and the life sciences (Nagel 1961). This work aims to strike a balance between captur-
ing standards that scientific explanations should meet, while appreciating that there are different
patterns of explanatory practice. Accounts of scientific explanation should capture actual scientific
work, but they should also rule out non-explanations. Scientific explanation is not an “anything
goes” type of project—correct explanations guide medical treatments, public policy interventions,
regulations on our environmental impact, and accounts of how to control and change outcomes in
the world. An important role of philosophy involves clarifying the features, characteristics, and
structure of scientific explanations and how they give us a principled understanding of the natural
world.

2 Causal Explanation. Accounts of causation and causal explanation have received attention
in the philosophical literature for over two millennia (Aristotle||1970; Mill|1874; Hume|[1738). In the
late-twentieth century, interest in causal explanation began to increase when it was appreciated that



accounts of causal explanation could handle problems faced by the popular deductive-nomological
(DN) model of explanation. Since then, there has been significant interest in the features, standards,
and types of causal explanation in science. Literature in this area has examined foundational topics,
such as defining causation, causal selection, the implications of reduction for scientific explanation,
and distinct types of causal explanation, including mechanistic forms and other alternatives. This
section provides an overview of these topics.

2.1 Foundational Questions. In the context of causal explanation in biology and the life
sciences, three foundational topics include defining causation, causal selection, and reductive ex-
planation. With respect to the first, accounts of causal explanation require defining causation,
which involves specifying the characteristic or hallmark features of causality. Once these features
are specified, they can be used to distinguish true, genuine causal relationships from everything
else, including non-causal relationships, mere correlations, and so on. The ability to define causal-
ity and reliably make these distinctions is very useful and it has occupied significant attention in
philosophy and in science. As causal explanations cite causal factors, a definition of causality is
required to identify which factors, relationships, and systems are legitimately causal and capable
of providing these explanations. While many different definitions of causation have received at-
tention, four of the most commonly discussed include: regularity accounts (Hume, [1738; Mackie
1965), connected process accounts (Salmon|[1984; Dowe|[2018), probabilistic accounts (Suppes||1970;
Cartwright|[1979), and interventionist accounts (Woodward 2003)@

While all of these accounts of causation have proponents, one of the most influential and widely
used accounts of causation is Woodward’s interventionist framework (Woodward 2003)ﬂ This ac-
count is motivated by causal reasoning in scientific contexts, empirical studies of human cognition,
and formal methods of causal analysis (Woodward|2021). On the interventionist account of cau-
sation, the relata of causal relationships are variables (X, Y, Z, etc.), which represent properties
of interest, such as phenotypes, genes, environmental factors, and so on. These variables take on
different values (0, 1, 2...etc) that represent the states of these properties, such as coat color that is
brown, grey, and black, or a gene variant that is present or absent. On the interventionist account
of causation, to say that X is a cause of Y means that if X were intervened upon and changed, in
background conditions B, this would lead to changes in Y. For example, to say that gene G causes
a guinea pig’s coat to be brown, as opposed to grey or black, means that changes to this gene
G (in early development) would have produced a different coat color. In this manner, causes are
factors with “control” over their effects, as manipulating them would produce changes to the effect
of interest.

8Regularity accounts understand causation in terms of regularities or the “constant conjunction” of cause
and effect (Hume|[1738). Connected process accounts view causal relationships as ones that are capable of
transmitting some mark or conserved quantity from cause to effect (Dowe||2018). Probabilistic accounts
view causal relationships as captured statistically, often such that causes are factors that increase the
probability of their effects (Hitchcock|2018]). Finally, interventionist accounts understand causation in terms
of interventionist counterfactuals—causes are factors that when intervened upon and changed, produce
changes in their effects (Woodward|2003).
9For example, Gopnik states that Woodward’s interventionist account of causation has “revolutionized the
philosophical discussion of causation” (Gopnik||2021). Additionally, Ismael claims that Woodward’s book
Making Things Happen (2003)—in which he details his interventionist account of causation and causal
explanation—is arguably “the most important philosophical book about causation to appear in decades”
(Ismael 2021)).



This helps reveal the connection between causation and causal explanation. Explaining why, for
example, a guinea pig has coat color that is brown, as opposed to other colors, requires citing the
cause or causes that “make-a-difference-to” this outcome (Woodward|2003; Waters|2007). In this
case, it involves citing a genetic cause because if the genetic cause had been different, in the same
set of background conditions, an alternative coat color would have been produced. This reveals the
importance of contrastive focus in specifying an explanatory target and how explanatorily relevant
causes should relate to this target. If an environmental factor (such as changes in temperature)
met these criteria, then the environmental factor would be viewed as the cause or main cause of
coat color. However, true background conditions—such as the presence of oxygen, diet, and so
on—should be excluded as main causes and explanations of this phenotype. While background
conditions are present and supportive, they are not causally responsible for this phenotype because
manipulating them does not control whether the phenotype is in one state or another. If oxygen
were manipulated (from present to absent) this would control whether the guinea pig is alive or
dead, but this is not the contrastive focus of interest. We are interested in what explains one coat
color versus other colors in a living guinea pig. When background conditions are required for life,
they are necessary conditions for phenotypes to manifest, which prevents them from explaining,
causing and controlling the presence of one phenotype versus another. This is why many background
conditions do not explain the outcome of interest (even if they seem relevant to it)—they are not
explanatory if they do not “make a difference” to the contrastive focus in question.

The interventionist account does not require that causes are actually manipulable with current
technology or according to ethical standards. Interventionism just requires that we can consider
hypothetical manipulations, which involve what would happen if the intervention were to occur
(Woodward|2016|). This is consistent with causal reasoning in scientific and everyday life contexts,
in which we accept causal claims even when we cannot perform interventions on the relevant
causal factor(s). Examples of legitimate causes that we cannot intervene on include: historical
or past causes (“yesterday the medicine cured my headache”), causes that are not manipulable
with current technology (“the location of the moon causes the tides to ebb and flow”), and causes
that we cannot manipulate for ethical reasons (“the patient’s genes have caused their disease”).
The interventionist account includes these as genuine causes because they meet the hypothetical
manipulation requirement—in all of these cases, we can consider hypothetical manipulations of
the cause, and our evidence and theory supports the claim that this hypothetical manipulation
would change the effect of interestm If a purported causal claim cannot be associated with a
hypothetical manipulation—perhaps because the suggested changes to the candidate cause are
inconsistent with scientific theory or because the purported causes and effects are not sufficiently
defined (as mentioned in subsection 1.2)—then this gives good reason to be skeptical that a causal
claim has been provided (Woodward| 2003, [2016]).

Significant amounts of philosophical work has focused on the question of how to define causality.
While interventionism provides one answer to this question, there remains the further topic of
how many definitions of causation we need to capture causal relationships in the world. This
relates to “causal pluralism,” which is associated with different views in the literature (Cartwright
2004; Hitcheock| 2007} |Godfrey-Smith 2013)). Three forms of causal pluralism to keep distinct are

0There are various ways to get information about causation even when intervention experiments cannot
be performed. Evidence about interventionist difference-making relationships can be supported by quasi-
experiments, instrumental variables, observational methods, natural experiments, and other methods and
aspects of biological theory (Angrist and Pischke||2009; |Shadish et al.[[2002).
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definitional pluralism, methodological pluralism, and (what I call) structural pluralism. Definitional
pluralism about causation claims that we need two or more definitions of causation to capture
causality in the world. Definitional monism about causation claims that we only need one definition
of causation to capture causality in the world. Alternatively, methodological pluralism refers to the
number of methods that can identify (or provide evidence of) causality in the world (Shadish et al.
2002; Reiss|2009). A methodological pluralist claims that many methods can be used to identify
causal relationships, while a methodological monist claims that only one method can provide this
(with a main contender being randomized control triaIS)E A third type of causal pluralism—
structural pluralism about causation—captures distinct causes and causal systems that can meet
the same definition of causation, but differ with respect to other features. Examples discussed
later in this section are mechanisms, pathways, and cascades, which are distinct causal systems
(Ross [2021a, [2023a). Further examples are differences between causes that are proximal, distal,
predisposing, exciting, and organized in different manners (such as linear chains, feedback loops,
and so on). While these causal systems can all meet the same definition of causation, they differ
with respect to other features. While most scholars accept some type of structural pluralism,
versions of structural monism are seen in claims that all causal systems are best understood as
“mechanisms” no matter what their differences are (Levy and Bechtel 2013; |Craver and Tabery
2015; [Craver|[2007) [7]

A second foundational topic in the area of causality has to do with causal selection, which
refers to selecting or identifying causes that are the most explanatory for an outcome. Consider
that the number of causally relevant factors for any target of interest can be seemingly “infinite”
(Lewis|[1986, 214). For any explanatory target, there appear to be an enormous set of factors far
“back” in its causal history (extending back to the Big bang) and far “down” at lower scales (such
as fundamental physics). While this list of factors is nearly endless, we do not view all of these
causes as equally explanatory for the outcome—only a few are selected as the main, explanatory
causal factors. A main question for any account of explanation is how to determine which factors
are most explanatory and why. What guidelines or criteria distinguish causal factors that are more
explanatory from those that are less explanatory? In philosophy of science, there are longstanding
debates about whether a cogent rationale for causal selection exists or if it is hopelessly unprincipled.
For example, Mill and Lewis have claimed that causal selection is guided by “capricious” and
“invidious” sentiments, respectively (Mill 1874} Lewis||1986)). Lewis suggests that when we select
the main causes of an outcome, that this is guided merely by our interest in these causes, the fact
that we find these causes to be good or bad, or simply because they are causes under our control.
These claims suggest that causal selection is guided by arbitrary, subjective, and non-scientific
reasonsH Such a position is problematic for the view that scientific explanation has a principled

The Journal of the American Medical Association (JAMA) prohibits authors from using “causal language”
(including “effect” and “efficacy”) in their submitted papers unless a “randomized clinical trial” has been
conducted that supports the work. As they state, “all other study designs (including meta-analyses of ran-
domized clinical trials), methods and results should be described in terms of association or correlation and
should avoid cause-and-effect wording” (JAMA|2023). This strict view is consistent with a methodological
monist position about causality.

12\While these accounts often appreciate different types of mechanisms, they still maintain that all causal
systems are of one “type” in a way suggestive of a monist view. The claim is not just that these systems are
all causal (which is trivially true as they are causal systems), but that they share some further “mechanism”
feature that unifies all causal systems, as opposed to capturing pluralism.

13 As Lewis states, “We sometimes single out one among all the causes of some event and call it ‘the’ cause,
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nature—if causal explanation and causal selection are guided by principled considerations, these
principles and the role they play need to be specified.

In the biological sciences, a central example of causal selection is genetic causation, in which
genes are viewed as the main cause for various traits (e.g. sickle cell disease, Huntington’s disease,
etc.). Significant literature has focused on what rationale justifies privileging genes as the main
causes for these outcomes. An important tool that can be used to address these questions involves
clarifying various “distinctions among causation,” which capture objective differences across types
of causal factors Woodward (2010, 2021). For example, some causes are more specific, stable,
strong, or fast than others—these differences can figure in why some are more or less explanatory
for an outcome. It has been suggested that genes are prioritized in scientific explanations, because
they are more specific and stable than other causal factors (Waters 2007; [Woodward|2010; Weber
2017, 2022)). A specific cause (in the sense used in these discussions), is a cause that produces
fine-grained control over an outcome—this is seen when specific changes in DNA result in fine-
grained changes in the protein product created@ This type of specificity can be understood as a
cause variable with many values, in which each values corresponds to a unique value in the effect
variable. (This is similar to a dimmer switch that has fine-grained control over the brightness of
a light.) This is contrasted with a non-specific cause, in which binary values of the cause variable
control a binary outcome of the effect (as seen in an on/off switch for the on/off of a light bulb).
Additionally, a stable cause is a factor that exerts its causal influence across a wide range of changes
in background conditions. Consider that various gene mutations are stable in the sense that they
cause disease in patients even when there are differences in diet, childhood upbringing, and other
environmental factors Woodward| (2010); [Kendler| (2005). Research in empirical psychology shows
that humans view stable causes as more paradigmatically causal than less stable causes, and stable
causes clearly have advantages when it comes to understanding and control (Cheng 1997} |Lombrozo
2010; Vasilyeva et al.[2018]).

Another important causal distinction, especially in the context of causal selection and explana-
tory causes, is causal strength. The strength of a causal relationship refers to the degree to which a
cause increases the probability of its effect or produces a large magnitude of change in its effectF_sE
A classic example are Mendelian genes, which are frequently described as having causal action
that is “deterministic” in the sense that the presence of the gene ensures occurrence of the trait
(Kendler|2005)). Other causes are said to be “probabilistic” as they increase the probability of their

as if there were no others. Or we single out a few as the ‘causes,” calling the rest mere ‘causal factors’ or
‘causal conditions’...I have nothing to say about these principles of invidious discrimination” (Lewis||[1986),
558-559).

1A second type of causal specificity refers to the number of cause variables for an effect (specificity of cause)
and the number of effect variables for a cause (specificity of effect) (Woodward|2010; Ross|2023a). In this
case specificity refers to “one” cause or effect (not fine-grained control) and non-specific refers to many
causes or many effects. An example of non-specificity of effect is pleiotrophy, which refers to a single gene
that produces many different effects.

15This notion of causal strength is similar to what |(Cheng| (1997) refers to as causal power. For more on this
see: (Cheng|1997} |Griffiths and Tenenbaum|2005; [Woodward|2021)).

16This framework differs from definitions of causation in terms of causes increasing the probability of their
effects (Suppes|[1970; [Salmon| (1977, |Cartwright|[1979). On this view, an interventionist account can be
used to define causation |Woodward| (2003)), and the strength of a causal relationship is secondary—a sort
of extra causal feature.
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effects, without guaranteeing or determining them (Kendler|2005; Parascandola and Weed 2001)@
Similar to specificity and stability, causal strength is a feature that comes in degrees, as causes
can differ continuously with respect to how probability boosting their causal influence is. Many
paradigmatic causes in biology and the life sciences are not only highly stable (according to the
above description), but are also rank high in terms of strength. This is seen for Mendelian traits and
diseases that fit the monocausal model-—most of these cases cite single causes that produce their
effects with a high probability and in a wide range of contextE While stability is more similar the
the “generalizability” of a causal relationship, strength is more similar to scientific discussions of
“deterministic” and “probabilistic” causes, which concerns whether a cause guarantees its effect or
not (or how probability boosting it is for its effect). Factors that are often referred to as “sufficient
causes” often rank high in terms of both stability and strength (and notions of sufficient causation
can problematically conflate these distinct causal varieties).

Many other distinctions among causation have been studied in recent work. These include
whether causes produce their effects in ways that are fast or slow, irreversible or reversible, in ways
that transfer material to the effect or not, and in ways that are proportional (Ross [2018; Ross and
Woodward|[2023; [Ross|2023e; [Woodward 2010)@ Research into these and other causal distinctions
is a helpful approach, in efforts to capture how main, explanatory causes can (and should be) distin-
guished from less explanatory causes. The fact that scientific communities often reach consensus on
the main causes of outcomes—and that these causes serve specific goals, such as control—supports
the view that causal selection in science is often guided by principled considerations, as opposed to
ever-changing subjective preferences.

A third foundational topic in the causation literature is explanatory reduction, which refers
to how far “down” an explanation should go when citing causal factors (Mayr 1989)@ These
debates commonly reference a “layer cake” picture of the world, in which phenomena differ with
respect to the “scale” or “level” they reside on (Waters 2009; Potochnik [2021; Batterman||{2001)).
This view suggests a hierarchical picture in which distinct sciences focus on different scales or
levels—the lower levels are studied by physics, the next higher levels by chemistry, and further
increasing levels are the focus of biology, psychology, and various social sciences (Wimsatt (1976
Sober 1999)@ Suppose an explanatory target is specified in the context of biology, such as an
organism’s phenotype. With respect to this phenotype, are explanations that cite factors from
lower biological scales—such as molecular biology—better than explanations that cite factors from
higher-scales such as cellular networks, neural circuits and pathways, system-level topologies, and

ITThis feature of strength also relate to debates over genetic determinism, which concerns whether genes
ever or often enough alone to determine some outcome of interest.

8For example, the pathogenic gene for Huntington’s disease (HD) and the HD phenotype and in the lack
of dietary vitamin C causing scurvy.

9Proportionality refers to causes and effects being on the same “level” or scale of description. For example,
suppose a gene variant is known to cause individuals to (i) seek out “sensation-seeking” activities, in
general. If one were to claim, instead, that the gene causes individuals to (ii) seek out extreme sports,
bungee-jumping, speeding, and sky diving, we could say that (i) is more proportional than (ii), in the sense
that (i) contains descriptions of cause and effect that are on the same level of description Kendler| (2005);
Woodward| (2010).

20For helpful work on the features and limits of reduction in biology see: (Bickle|[2006; Kaiser| 2015;
Huttemann and Love|2011}; |(O’Malley et al.|2014; |Brigandt|[2010; [Barwich|/2021)).

21Scientific fields outside of fundamental physics are sometimes called “the special sciences” or simply,
“higher-level” sciences, in this literature (Fodor||1974).
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so on? Will the best explanations of these outcomes cite causes from the biological scale or should it
ultimately include causes from chemistry and physics? Many who argue for explanatory reduction
claim that the best explanations—even of biological outcomes—will ultimately cite causal factors
from lower-levels (Sober||1999; Strevens 2008} Butterfield|2011)).

These questions about explanatory reduction can be illustrated with Sober’s discussion of ex-
planations of lung cancer (Sober|[1999). In this case, the higher-level causal regularity is “smoking
cigarettes causes lung cancer,” which is represented by “P — Q” in figure[dl In this example, causal
variable P “smoking cigarettes” is realized by different lower-level carcinogens, namely carcinogens
Aq, Ao, ...A,,. Similarly, effect variable QQ “lung cancer” is realized by distinct cellular cancer types,
namely, By, Bo, ... B,. A main question with respect to this example is which causal factors best
explain the higher-level lung cancer phenotype Q7 In particular, are causes at lower or higher levels
more explanatory?

higher-level science P —_— Q

n

lower-level science Al A2 or ... A
I |
[

Figure 4: Based on (Fodor|[1974) and (Sober|[1999).

Sober claims that lower-level causal details provide objectively superior explanations when
compared to higher-level causes. He claims that, while higher-level causal detail might be preferred
by some scientists and might give explanatory breadth, this higher-level causal detail never provides
an objectively superior explanation compared to lower-level causal details (Sober|1999; Ross|2020b)).
Sober argues for this position with three main points. First, he claims that lower-level causes can
always be included in an explanation, without reducing explanatory power, while the same cannot
be said for higher-level causes. He suggests that lower-level causal detail is never unexplanatory—it
might be more than a scientist wants to hear, but at worst it (simply) “explains too much” (Sober
1999). In other words, just because we “may not want to hear the gory details...does not mean that
the details are not explanatory” (Sober|[1999 549). Second, Sober claims that lower-level causes
are what do the real “work” in producing the explanatory target of interest and that this justifies
their explanatory priority over higher-level causes (Sober||1999, 548). A final point he makes is that
lower-level causal detail—such as detail from fundamental physics—has the advantage of providing
“causal completeness,” which cannot be supplied by higher-level causal detail. As he states, “if
singular occurrences can be explained by citing their causes, then the causal completeness of physics
ensures that physics has a variety of explanatory completeness that other sciences do not possess”
(Sober|[1999)). In other arguments in the literature, explanatory reduction is supported by views
that higher-level detail provides “shallow explanations” compared to “deeper accounts” provided
by lower-level causal information (Waters|1990).

In contrast to explanatory reduction, I suggest that a level-agnostic view of causal explanation
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is more compelling. On a level-agnostic view of causal explanation, the most explanatorily relevant
causes for an outcome can be at any scale or level (not just at lower-levels). Indeed, in some cases,
higher-level causes are more explanatory than lower-level causal details. The guiding principles of
this framework are that (i) the level of causal detail that is explanatory depends on the explanatory
target of interest and (ii) the explanatorily relevant causes should “make a difference to” and provide
control over this explanatory target. In some cases, higher-level causes better meet these standards
than lower-level ones—this captures the principled reasons for why the higher-level causes are more
explanatory. The pithy way to capture this level-agnostic view of causal explanation, is that causal
explanation is not a game of “how low can you go” but “what gives you control”. In some cases,
the causes with control (over the effect) are at higher-scales.

The strength of this level-agnostic view of causal explanation can be illustrated with Sober’s
lung cancer example and discussions of multiple realizability (Putnam 1967; [Fodor||1974; Ross
2020b)). Multiple realizability refers to situations in which some higher-level phenomenon x (such
as smoking cigarettes) is multiply realized by distinct lower-level details, zj, z2, ...z, (such as
distinct carcinogens that vary across cigarette types). In the context of Sober’s smoking example,
the multiple realization of x relates to a type of causal complexity—called causal heterogeneity—in
which distinct causes or combinations of causes (z1, z9, ...z,) are all individually sufficient to produce
the same effect (y). This is seen in figure [5| which captures how distinct lower-level carcinogens (z1,
Z9, ...7y) are all able to cause the same higher-level lung cancer outcome (y).

higher-level science X —_— y

lower-level science

Figure 5: This diagram is based on (Fodor|[1974) and (Sober|1999). The property x is multiply
realized by z1, zo, ...z, and each of these realizers is a cause of y, making y causally heterogeneous.

Suppose that our explanatory-why question is: “What is the cause of lung cancer in this
population?”. If we want to explain this type or population level target y—all cases of lung
cancer—there is a problem with appealing to a lower-level carcinogen, such as z;. The problem
is that this lower-level cause z; only “makes a difference” to and explains a small fraction of lung
cancer cases and we want to explain all of them. Intervening on z; does not control or account
for all lung cancer outcomes, as the other lung cancer outcomes are produced by other causes
(z2, z3...). Alternatively, a clear advantage of the higher-level causal factor “smoking cigarettes”
(x) is that it does “make a difference to” and provide control over all (or most) instances of this
disease. Preventing most or all lung cancer outcomes is possible with smoking cessation, unlike
interventions on specific carcinogens, which differ across cigarette types. This is why public health
campaigns purposefully target smoking habits (and not individual carcinogens) in their efforts to
reduce lung cancer. However, if the explanatory target is a token or single instance of lung cancer,
the lower-level carcinogen can easily surpass the higher-level cause in explanatory power. In this
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case, the lower-level cause “makes-a-difference” to the outcome and provides control over it. An
issue with Sober’s analysis is that it focuses on the token-outcome explanation, while multiple
realizability arguments are concerned with type-level explanatory targets (Ross/2020b). As life
scientists often want to understand and explain reoccurring, type-level outcomes, the challenge of
multiple realizability (and citing lower level-causes) is significant. A central message in this analysis,
is that the causal factors that are explanatory and the “level” that they reside at can change with
the explanatory target of interest@

A main suggestion of this analysis is that different explanatory targets can require different
levels of causal detail—there is not a particular level of causal detail that is always privileged or
objectively better in providing scientific explanations. Once an explanatory target is specified,
explanatory causes need to be factors that provide control over the target. In some cases, causal
factors at higher-levels provide better control and explanation of the explanatory target of interest,
when compared to causal factors at lower-levels.

Finally, it is worth addressing claims about whether biology can be—in principle or in some fu-
ture science—completely reduced to or explained away with fundamental physics. Some challenges
for such claims are that they are often guesses or desires about future science, without reflecting
actual scientific work. These guesses differ from person to person, and they are difficult to support
with evidence or argument. In other cases, such claims are motivated by metaphysical or philo-
sophical assumptions about the nature of the world (perhaps about how all biological phenomena
supervene on fundamental physics). The work provided in this book takes more of a methodologi-
cal orientation in using science and scientific methods to settle such questions. Attention to actual
work in the life sciences encourages skepticism of strongly reductive claims about explanation.
Researchers in biology and the life sciences have a strong track record of successfully identifying
causes and providing causal explanations. Medical researchers have successfully identified causes
of diseases, neuroscientists identify axonal, circuit, and network causes of behavior, and ecologists
discover the causes of ecosystem perturbations. That scientists are successful is supported by their
use of these causal relationships to change the world—they have eliminated diseases from the planet
(such as smallpox), developed effective treatments for neurological conditions (such as epilepsy),
and restored ecosystem stability (as in the reintroduction of the grey wolf population to Yellowstone
National Park). These successes are not attributable to fundamental physics—they are the fruits of
the biological and life sciences. Capturing scientific explanation and scientific successes in biology,
neuroscience, and ecology, requires appreciating the actual scientific methods, assumptions, and
reasoning that are present in these scientific domains.

2.2 Mechanistic Explanation. So far, this discussion has focused on definitions of causation
and the rationale behind viewing particular causes as explanatory. Much of this work focuses on

22Can the reductive explanation be saved by citing a disjunctive set of lower-level carcinogens? One problem
with this is that it is not clear how to intervene on (or perform a scientific experiment on) a disjunction—
as explanatory causes need to meet this feature, this is problematic for viewing a disjunction as causally
responsible and explanatory. Second, we also expect explanations to be contained, unified answers to
explanatory why-questions—if the response to the why question involves citing a set of 300 disjunctive
properties and it is not clear how they relate to each other, or what they have in common, we are left
unsatisfied with the explanation. This large set of disjuncts is also unhelpful in designing targets for
control, as they suggest targeting 300 different factors to control the outcome, in contrast to targeting a
shared causal process, such as “smoking cigarettes”.
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single (or a few) main causal factors, but most outcomes in biology and the life sciences are mul-
ticausal, as they are the result of many interacting causes (Ross |2023f). Mechanistic explanations
accommodate this multicausal perspective as they cite causal mechanisms—which contain multiple
causes—that produce the explanatory target of interest. Accounts of mechanistic explanation have
been extremely influential, leading to views that mechanistic explanation is the “dominant view of
explanation in the philosophy of science at present” (Kaplan and Craver|2011)).

Modern accounts of mechanistic explanation have three main influences. A first influence is the
seventeenth-century mechanical philosophy views of Descartes, Newton, Boyle, and others (Henry
2001)). This mechanist work opposed vitalist conceptions of living systems, as vitalist conceptions
explained natural phenomena by appealing to occult powers, vital forces, and magical properties.
Alternatively, the mechanist framework explained living systems with the “mathematical discipline
of mechanics,” in which systems were divisible into lower-level entities that interact through “con-
tact action” to produce behaviors of the system (Henry|2001; (Clatterbaugh![1999). This framework
was reductive in appealing to causes at lower-scales and it defined causation in terms of action,
physical forces, and matter in motion. This mechanistic perspective relied heavily on the analogy of
living systems to machines—both were said to contain lower-level parts that mechanically interact,
similar to the levers, pulleys, and pipes in simple machines (Henry 2001). Modern accounts of
mechanistic explanation are referred to as “new” mechanist accounts in order to acknowledge their
origin in this earlier work, but also to distinguish them from it. These modern accounts retain
a focus on mechanisms as constitutive (in containing lower-level parts) and as providing reduc-
tive explanations, but they sometimes distance themselves from direct analogy of mechanisms to
machines (Craver and Tabery|2015).

A second main influence on new mechanist accounts of explanation is Salmon’s “causal mechan-
ical” model of explanation, which relies on a connected process view of causation (Salmon|1984).
Connected process accounts of causation maintain that genuine causal processes are capable of
transmitting marks through their steps, while non-causal (or “pseudo processes”) are incapable of
reliably transmitting marks. Examples of causal processes and the marks they transmit are: scuffs
on a fly baseball, snow on the roof of a railcar, carved initials on a flying arrow, and chalk marks
on a sequence of colliding billiard balls (Reichenbach |1971; Salmon||{1984; |Woodward |2016). In all
of these cases, some physical mark moves through the causal process in question. A shadow that
moves alongside an object in motion is a pseudoprocess—the shadow is non-causal because it cannot
reliably transmit a mark (while the traveling object can). Although there are different conceptions
of what counts as a “mark,” in much of this work various types of properties have counted, such as
“constituent material, bonding forces...geometrical shape” (Dowe 2018) and “momentum, energy,
or electric charge” (Salmon|[1997)). A significant feature of Salmon’s causal mechanical model is his
suggestion that the causal structure of the world is mechanistic. He views explanation as a project
of fitting an explanandum into the “causal nexus” of the world and this causal nexus is exclusively
mechanistic. This supports an expansive notion of mechanism as mechanism captures the entire
causal structure of the world. While modern accounts of mechanistic explanation seldom rely on
Salmon’s connected process account of causation, they share many other features. For example,
contemporary accounts of mechanistic explanation adopt Salmon’s view that the causal structure
of the world is mechanistic, they often view all causal explanations as mechanistic, and they often
agree that mechanisms come in constitutive and etiological varieties (Salmon|/1984). With respect
to defining causation, many mechanistic analyses either rely on an interventionist account or they
are silent on what definition of causation should be used to understand their notion of mechanism
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(Craver|2007; Bechtel and Richardson|2010; (Craver and Tabery 2015)@

Finally, a third main influence on—and motivation for—mechanistic accounts is the fact that
scientists commonly use the mechanism concept in biology and the life sciences. Biologists and life
science researchers frequently use the term “mechanism” when they describe causal systems and
provide explanations. This is seen in appeals to the mechanisms of gene expression, mechanisms of
neuron signal propagation, a drug’s mechanism of action, reference to various circuit and network
mechanisms of the brain, and so on (Pickrell et al.[|2010; (Cole et al.|[2016; Masse et al.|2019). While
scientists commonly appeal to mechanisms in explaining outcomes, philosophers are interested in
specifying what type of causal structure mechanism refers to, such that the standards, features,
and nature of these explanations can be clarified and understood.

The philosophical literature on mechanisms and mechanistic explanation is vast. There are
many different accounts of mechanism and mechanistic explanation and they are applied to various
questions in philosophy (Andersen| 2014a.b). While there is no consensus on how to understand
mechanisms, some common claims emerge in the literature. These include claims about the features
of mechanisms, their association with the machine analogy, and claims that they are studied with
the investigative strategies of decomposition and localization.

In terms of what causal structures count as mechanisms, a first common claim is that mecha-
nisms are hierarchical, in the sense that they contain lower-level causal parts that interact together
to produce a higher-level outcome of the system@ This feature of mechanisms is also referred
to as “part-whole,” “constitutive,” “componential,” or as having a “nested character,” as these
terms capture the difference in level or scale of causal parts to their effect (Craver||2007, 108). This
feature is often represented with an illustration similar to the one shown in figure[6] in which lower-
level causal parts all interact to produce a higher-level outcome of the system. Emphasis on this
hierarchical feature reveals how these new mechanist accounts are similar to seventeenth-century
notions of mechanism and to Salmon’s constitutive notion of mechanism. It also shows how the
new mechanist framework supports a reductive picture of scientific explanation, in which outcomes
are explained by lower-level causes.

Second, it is commonly claimed that mechanisms contain significant amounts of fine-grained
detail. In this manner, simple monocausal models (that specify one cause for an effect) do not count
as mechanisms and highly sparse network models do not count as mechanisms either. This point is
argued by Craver who captures the completeness of mechanism representations on a “continuum”
of more or less detail (Craver||2007). On this picture, less-detailed causal representations are mere
“sketches” or “schema’” that are not yet complete mechanisms. These “incomplete” mechanism
representations leave gaps and use filler terms that “veil failures of understanding” or provide an
“illusion of understanding” (Craver and Darden 2013, 113-114). On this view, making “progress”
in providing causal explanations involves moving along this continuum to gain more detail about

230ne exception to this is found in the work of Glennan, in which mechanism is used to provide an account
of causation (Glennan|2017)).

24This common notion of mechanism is similar to Salmon’s “constitutive” mechanisms, which he distinguishes
from “etiological” mechanisms (Salmon||1984)). While constitutive mechanisms have lower-level causes in
a part-whole system, etiological mechanisms have upstream causes along a linear chain (Salmonl|1984).
Although Salmon considers both of these causal structures mechanisms, the current mechanism literature
focuses almost entirely on the hierarchical, constitutive, and part-whole form of mechanism. In fact,
etiological causal systems are more similar to other causal concepts, such as pathways, which many new
mechanists distinguish from genuine mechanisms (Craver and Darden|2013). These non-mechanistic causal
systems are discussed in the next two subsections.

18



Explanandum

Mechanism

Figure 6: Mechanism. This figure captures the hierarchical feature of mechanisms, in which they
are systems with lower-level causes that produce higher-level outcomes of the system. Similar
representations are are found in (Craver|2007) and (Craver and Tabery|2015).

the mechanism (Craver and Darden| 2013, 113-114). These points are also seen in claims that
sparse causal structures are “incomplete” and reflect a “shallowness” of understanding and that
monocausal models are “[t]he sketchiest of mechanism sketches” (Craver and Darden 2013;|Glennan
2017)@ On these accounts, in order for a causal structure to count as a mechanism and to be
sufficiently explanatory, it must contain some significant amount of causal detail.

A third common claim about mechanisms is that the causal relationships they contain are
described in terms of mechanical interactions, such as force, action, and motion. In a mechanism, it
is not enough to say that X causes Y—one needs to say how X causes Y, often in terms of mechanical
interactions and detail. For example, these mechanistic interactions can involve specifying that X
splices, activates, triggers, opens or binds to Y@ This third feature of mechanisms is related to the
second feature in the sense that when you give additional information about how a cause produces
its effect you also serve the second feature by providing more detail about the system.

In addition to these three features, mechanisms in the life sciences are often analogized to
machines and they are studied with causal investigative strategies that include decomposition and
localization (Bechtel and Richardson [2010). With respect to the former, causal structures that
scientists refer to as mechanisms are often claimed to be machine-like. Examples from molecular
biology include referring to enzymes as “motors,” “biological ratchets,” and “molecular machines”
(Endow|2003; Mahadevan and Matsudaira 2000). The fact that mechanisms in the life sciences are
analogized to machines is unsurprising, because many everyday life machines share the three main
mechanism features listed aboveE] Finally, it is often suggested that mechanisms are studied with
the investigative strategies of decomposition and localization (Bechtel and Richardson/2010). These
strategies involve fixing an explanatory outcome and then drilling down to identify the lower-level
causal parts that produce this outcome. These strategies are related to the hierarchical organization

25 An example of mechanism that differ from this, is found in the work of Bechtel and Levy (2013), in which
they argue for abstract causal mechanisms (Levy and Bechtel [2013)).

26This mechanical interaction feature is related to the new mechanist’s focus on verbs in capturing mechanism
activities (Machamer et al.|2000)) and prior work that focuses on the added causal content of verbs and
“thick” causal concepts (Anscombe|[1971} |Cartwright|/2004))

2"We see this in everyday life machines, such as car engines and watch mechanisms—both contain lower-level
parts that produce a higher-level behavior of the system, causal representations of these systems are highly
detailed, and descriptions of their causal relationships emphasize force, action, and motion.
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of mechanisms and the fact that they are defined by and relative to single explanatory targets (Ross
2021a). The explanatory target of interest is what fixes the particular “parts” and circumscribes
the bounds of the causal mechanical system.

Mechanistic accounts of explanation have received enormous attention in recent philosophical
literature on scientific explanation. Central questions in this literature concern the exact character
of mechanistic explanation and its prevalence in biology and the life sciences. With respect to the
prevalence of mechanistic explanation, consider two questions that capture different views on this
topic:

1. Are all explanations in the life sciences mechanistic or is mechanistic explanation one type
of explanation in this domain?

2. Are all causal explanations in the life sciences mechanistic or is mechanistic explanation one
type of causal explanation in this domain?

In early work, many new mechanists supported an explanatory monist position with respect to
(1) and argued that all explanations in biology and the life sciences are mechanistic (Machamer
et al. [2000; Bechtel and Richardson|2010; (Craver|2007; Kaplan and Craver [2011). On this view
“explanations are said to be adequate to the extent, and only to the extent, that they describe the
causal mechanisms that maintain, produce, or underlie the phenomenon to be explained” (Kaplan
and Craver|2011)). These claims were viewed by many as overly bold and “imperialist” in claiming
that mechanistic explanation is the exclusive form of explanation in the life sciences (Kaplan/|[2017).
These explanatory monist claims were strongly countered by various discussions of the limits of
mechanistic explanation (Weber|2008; Dupré 2013} |Woodward| 2013} [Skillings||2015; [Halina, 2018;
Ross|2021a) and myriad examples of non-causal, mathematical explanations, which explain without
appealing exclusively to causal information (Batterman and Rice |2014; |Silberstein and Chemero
2013; Chirimuutal[2018; |Ross|[2015)). These non-causal explanation types have been overwhelmingly
accepted in the philosophical literature on scientific explanation (and they are discussed more in
the next subsection). Many new mechanists have been convinced by positions on non-causal (and
thus, non-mechanistic) explanation and they have revised their views to acknowledge the legitimacy
of these explanation types.

However, in revising their views, many new mechanists have adopted a second monist position,
captured by the second (2) question above. These new mechanists have adopted monism about
causal explanation, which claims that all causal explanations in the life sciences are mechanisticF_g]
The tenability of this position depends on how “mechanism” is defined and understood. Notice
that if mechanism is defined narrowly by the three features above (constitutive organization, fine-
grained detail, and mechanical interactions), or by any particular features, this conflicts with the
monist position—this is because there are a great variety of distinct causal structures that are cited

Z8For example, Kaplan and Craver (2011) state that “models in “lower-level” neuroscience, carry explana-
tory force to the extent, and only to the extent, that they reveal (however dimly) aspects of the causal
structure of a mechanism” (Kaplan and Craver| 2011, 602). Similarly, Glennan states “The phenomena
that constitute our world are the products of mechanisms: car engines are mechanisms for rotating drive
shafts; eyes are mechanisms for transducing light into neural impulses; oxidation is a mechanism that
produces rust” (Glennan|[2017). This monist claim is also found implicitly in the literature, in the sense
that discussions of non-mechanistic explanation focus on identifying explanations that are non-causal as it
is often assumed that all causal explanations (and those causal concepts figuring in them) are mechanistic
Kaplan and Craver| (2011); [Chirimuutal (2018); [Silberstein and Chemero, (2013).
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in biological and life science explanations, and their is no specific set of features that are shared
across all of these causal structures. For example, some explanations cite higher-level causes that
produce lower-level outcomes, other explanations appeal to causal systems that are sparse and
abstract away from detail (such as topological and network models), and yet other explanations
refer to causal systems with linear, causal chain organizations. As these do not share the previously
outlined mechanism features, they qualify as non-mechanistic causal systems. These are just three
alternative causal structures—many other diverse causal systems exist and are cited in life science
explanations. Thus, an important question to ask is, given the variety of causal systems that figure
in life science explanations, which of these causal systems count as mechanisms?

While many new mechanist accounts began with specific, narrower conceptions of mechanism
(such as the three-feature account above), recent accounts have broadened the notion of mechanism
to the point of equating it with nearly any type of causal system. This broad notion of mechanism is
seen in accounts that refrain from specifying any defining or characteristic features of mechanisms.
For example, some of these accounts claim that mechanisms can be highly detailed or not, machine-
like or not, reductive or not, driven by push-pull dynamics or not, and so on (Craver and Tabery
2015)). Whichever feature it is suggested that some mechanisms have, it is quickly stated that
other mechanisms need not have this feature. Similarly, when these new mechanists state what
does not count as a mechanism, they tend to only provide examples of non-causal systems (these
are obviously not mechanistic because they are not causal). Insofar as helpfully articulating the
mechanism concept requires specifying what does and does not count as a mechanism, many of
these broad views have been found to be overly expansive and wanting by many. As Dupré states,
“if the concept of a mechanism is to do any work, we must surely have some sense of what isn’t
a mechanism” (Dupré [2013). I will add that we must also have a sense of what causal systems
are not mechanisms, otherwise the term is only as meaningful as “causal system,” despite being
advertised as much more.

It is clear that many distinct types of causal systems figure in explanations in biology and the
life sciences. The question is whether to view some of these causal systems as mechanisms (narrow
mechanism view) or to view all of these causal systems as mechanisms (broad mechanism View)ﬁ
Challenges for the broad mechanism view are that it threatens to over-expand and trivialize the
notion of mechanism by equating it with generic notions of “causal system” or “causation”. In
many scientific and everyday life contexts, mechanism implies much more than “causal system” or
“causality” —“mechanism” is often a high-status causal term that communicates knowledge of sig-
nificant detail and information (Hutchinson|2007; Ankley et al.[2010]). Furthermore, if “mechanism”
just means “causal system,” then accounts of mechanistic explanation are limited in what they add
to our understanding of causal explanation in science. Since the fall of the DN model, accounts of
causal explanation have received significant attention. These accounts claim that causes explain
their effects and they define causation in order to capture how these explanations work. Accounts
of mechanistic explanation have entered this scene and their main contribution is that “causal ex-
planations cite mechanisms”. However, if “mechanism” is synonymous with “causal system,” then
these accounts are merely stating that “causal explanations cite causal systems”. This is obvious,
tautological, and something we already knew—it is implied by the causal explanation framework

29Gcientists also appear to use the term mechanism in varying ways. This can lead to challenges when
publications and grants are assessed in terms of whether they reveal “mechanistic insights” which is a
standard often found in journal publication guidelines and grant calls (Seals/|2023; |Andersen|2008)). For
more on this in the context of neuroscience see: (Ross and Bassett|2024)).
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and it fails to add to our understanding of how these explanations work. Thus, it is worth ques-
tioning whether the broad notion of mechanism advances our understanding of explanation in the
life sciences and whether it captures the use of mechanism in these domains.

Whether one adopts a narrow or broad notion of mechanism, most agree that accounts of
causal explanation should capture the diversity of causal systems that are explanatory. This book
adopts a narrow conception of mechanism—captured by the three features above—and examines
other types of causal systems and causal explanation in the life sciences. Two other types of
causal systems are examined—these include the pathway and cascade concepts. The next section
explores these two causal concepts and how they have unique features, are associated with distinct
analogies, and are studied with particular causal investigative strategies. However, the analysis in
the next section does not require that one commit to the narrow mechanism notion. If the broad
notion of mechanism is preferred, then these three causal systems (which are called “mechanisms,”
“pathways,” and “cascades” in this book) can all be considered distinct types of causal mechanisms.
The important point is not what we call these causal systems, per se, but that we have an account
that captures the distinct features of these causal systems and different types of causal explanations
they provide.

2.3 Pathways. When biologists and other life scientists provide causal explanations, what types
of causal systems do they refer to? What causal language is important for capturing the causal
systems they find explanatory? While “mechanism” is a common causal term and concept, many
other causal concepts are found in these scientific fields. Examples of causal concepts in the life
sciences include pathways, cascades, circuits, triggers, causal cycles, and structuring causes, among
many others. This subsection examines the pathway and cascade concepts. I argue that pathways
and cascades differ from mechanisms in terms of their characteristic or hallmark features, the
analogies they are associated with, and the causal investigative strategies used to study them. This
analysis is used to suggest that explanations that appeal to pathways, cascades, and mechanisms
are distinct types of explanation because they cite different types of causal systems.

A first causal concept to consider is the notion of a pathway, which is commonly found in bi-
ology, neuroscience, physiology, ecology, and numerous other life sciences (Ross|2018; Boniolo and
Campaner||2018|). Examples of the pathway concept, include gene expression pathways, metabolic
pathways, neural pathways, vascular pathways, developmental pathways, and ecological pathways,
as seen in figure In these contexts, pathways are causal systems that have four main features.
These features include: a sequence of causal steps, the flow of information or material, abstrac-
tion from causal detail, and causal relationships that emphasize causal connection (as opposed to
mechanical interactions) (Ross 2021a). Additionally, while mechanisms are often analogized to
machines, pathways have their own unique analogy—pathways are often analogized to roadways,
highways, and city streets. The reasons for this analogy will become clear as the main features of
the pathway concept are discussed in detail.

A first feature of pathways is that they involve a sequence of causal steps—these steps outline
a causal route from upstream, to intermediate, to downstream factorsm In their simplest form,
pathways are linear but they can be organized in more complex branching configurations. This
sequential feature of pathways is seen in the butterfly developmental pathway in figure[7] in which
a sequence of causal steps—from egg to larvae, to pupa, to adult—is represented.

30The relevant notion of order in pathways—used to clarify when a factor is upstream or downstream—is
determined causally. Thus, pathways specify causal order (as opposed to mere temporal order).
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Figure 7: Pathway examples in the life sciences, including (a) metabolic pathways, (b) develop-
mental pathways, (c) vascular pathways (or blood vessels), and (d) ecological pathways (which
capture-prey-predator relationships).

Second, pathways involve the flow of some entity along their sequence of causal steps. In many
cases, pathways involve the flow of some material or information that is relevant to the system of
interest. For example, metabolic pathways involve the flow of metabolites, neural pathways guide
the flow of information, vascular pathways dictate the flow of blood, ecological pathways channel
the flow of energy through ecosystems, and developmental pathways trace the flow of cells, tissues,
or organisms, as they mature. In this manner, pathways involve both an entity that changes and
a sequence of steps that limits, guides, and channels how the entity changes over timelﬂ These
scientific pathways are analogized to roadways, because roadways outline a route that guides,
channels, and constrains the flow of traffic.

A third feature of pathways, and one that clearly distinguishes them from mechanisms, is that
they abstract from large amounts of causal detail. One way that pathways abstract from detail, is
by representing complex processes in an economy of causal steps. We see this in the developmental
pathway of a butterfly, which represents this entire developmental process (the entire life cycle) in
just three main steps. While any one of these steps could be divided into further causal links, this
is not represented with the pathway concept, which abstracts from this information. A second way
that pathways abstract from detail is that they omit lower-level, mechanistic information about

31In some cases, pathways involve constraints that limit the possibility space of outcomes that a system can

produce b)
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how an entity moves from one causal step to the next. When vascular, developmental, and neural
pathways capture a sequence of causal steps, they outline and emphasize the different steps that
the entity moves through, but not the lower-level causal details that are involved in this process.
Again, similar to the roadway analogy, roadways capture macro-level information about where an
object can flow in a system, but not how it flows (or moves) through this space. A roadway reveals
where cars can travel, but not the mechanistic details of how the car moves from one location to
another. Similarly, metabolic pathways capture causal routes along which metabolites travel, but
not the lower-level enzymatic details that drive this travel. For example, the glycolytic pathway
captures a ten-step metabolic process that is shared and “conserved” across nearly all species on
the planet. However, it is only the higher-level, causal steps outlined in the glycolytic pathway that
are shared—this pathway is instantiated by different causal-mechanical details in different systems
(such as different enzymes at a given step of the pathway). By abstracting from detail, the pathway
can capture what all these systems share and it can explain the glycolytic process (conversion of
glucose into pyruvate) generally, across all systems. Including lower-level mechanistic detail would
prevent this, because such details are not shared across all systems.

A fourth feature of pathways is that their causal relationships emphasize causal connection, but
not lower-level detail or mechanical detail. In other words, pathways capture that X is a cause of Y,
but they do not reveal mechanistic details about how X causes Y. Their role is to highlight the set of
causal connections in some domain—namely, who is causally connected to who, but not fine-grained
information about these causal connections. For example, neural tracts can outline the flow of neural
signals from one location to another, but they do not convey how these signals flow, travel, or move.
This emphasis on causal connection with the pathway concept is seen when scientists organize many
causal pathways together into network diagrams or what they sometimes call “roadmaps” of causal
connections. This is seen in reference to “roadmaps” of metabolic pathways, “roadmaps” of stem
cell developmental pathways, and “roadmaps” of ecological pathways (Zheng et al.[2021; Ly et al.
2020; Marina et al.|2018).

If pathways are unique causal systems, with the four features mentioned above, how do they
provide explanations? How do pathways provide causal explanations that differ from mechanistic
explanation? Consistent with the three-part model of explanation (shown in figure , pathway
explanations are cases in which pathways serve as the explanans and explain the outcome of interest.
As pathways refer to a causal structure that differs from mechanisms, citing them provides a distinct
type of causal explanation. On this view, one way to capture different types of causal explanations
is by appreciating the distinct causal systems they cite that perform the explanatory “work”.
As mentioned above, consider explanations of glycolysis, which is a process by which organisms
breakdown glucose into energy. When scientists explain glycolysis across a large number of species
(or in living systems in general) they cite the “conserved” glycolytic pathway, with ten chemical
conversion steps (from glucose to pyruvate). This pathway abstracts from lower-level mechanistic
details, such as the enzymes that catalyze each step of the process. The reason for this abstraction
is that the ten-step glycolytic pathway is shared across all systems in the explanatory target, while
the lower-level enzymes are not. As the lower-level mechanisms in these systems are not shared,
they cannot be cited to explain their shared behavior of glucose production. Similar reasoning is
found in many explanations in biology (Sober||1999; Ross 2020b|) and in explanations of shared or
universal behaviors across systems that differ in terms of their lower-level details (Batterman|[2001}
Ross [2015; 'Woodward|2017)).

Another way to see the uniqueness of pathway explanations is with the network and “roadmap”
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diagrams of pathways. Consider the map of ecological pathways, shown in figure[7] These pathway
maps allow scientists to answer unique explanatory-why questions that mechanisms do not address.
These explanatory-why questions include: (1) Given a starting point on the map, which downstream
locations can (and cannot) be reached? (2) Given a downstream location, which upstream positions
can (and cannot) arrive at this location? (3) What is the most (and least) direct way to get from
any two points in the map? While there are other questions that this pathway map can answer,
the important point is showing how pathway information helps scientists answer distinct types of
explanatory-why questions. The questions here concern a possibility-space of outcomes and how an
entity moves through this space. This matters for determining the flow of toxins as they damage
species in an ecosystem, how blood clots move through blood vessels to damage some organs in
the body (and not others), and how to manufacture particular chemical species from available
chemical reactions (Ross/[2021a, 2023b). Examining these pathway maps makes it clear that they
do not represent mechanistic information—these maps do not represent a mechanism, in the sense of
lower-level causal parts (or gears) that interact together to produce a single outcome of the system.
Instead, these pathway maps capture a possibility space of routes in the system that capture where
some entity can and cannot flow through this space. While pathways provide dynamic information
about possible outcomes within a complex space, mechanisms explain why a particular, specific
outcome presents.

Finally, in addition to their four main features, pathways are studied with unique causal in-
vestigative strategies. Scientists often study these systems by exploiting their “flow” feature. In
particular, they often use tags and tracers to mark some entity, and then watch it as it flows along
the steps of the pathway. This is seen in radioactive tracer and dye experiments, in which these
materials are used to illuminate the steps of many different types of pathways, including metabolic,
vascular, neural, ecological, and so on (Ross|2021b). For example, radioactive tracers are attached
to carbon atoms that flow through metabolic pathways, radioactive tracers are introduced into prey
and followed through prey-predator relationships in ecosystems, and dyes are attached to material
that flows through neural pathways and tracts (Ross 2021b). These are not techniques that can
always or easily be used with mechanisms, because many of them lack the reliable flow of some
entity through their causal steps. This is similar to the gears of a watch mechanism—while these
gears are involved in the causal process, there is no material that reliably moves along them (from
the first gear, through all intervening gears, to the final time keeping behavior of interest). However,
for metabolic, vascular, and ecological pathways, there are materials that reliably flow through the
causal steps and that are targeted by tracers in the study of these systems. This reveals how these
systems have distinct features that matter for how they are studied. Thus, while mechanisms are
often studied by “drilling down,” pathways are studied by dropping tags or tracers into a system
and “expanding out” along causal routes. These tracers reveal the causal sequences of interest in
some domain, but not the fine-grained, mechanical details of the causal routes of interest.

Before moving on, it might help to consider some objections that mechanists have voiced toward
viewing pathways as an explanatory causal structure. Does the sparse detail of pathways make them
less explanatory than mechanisms? Are pathways mere mechanism sketches that should be suffused
with more detail in order to explain? These points are supported by Darden and Craver (2013)
who consider pathways to be explanatorily deficient due to their lack of detail. They associate
pathways with the “vice of chainology,” in which “one becomes fascinated by nodes in a causal
chain but loses sight of how the nodes work to produce, underlie, or maintain the phenomenon”
(Craver and Darden|[2013, 91). Along these lines, they claim that pathways are causal structures
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that are “incomplete” and that they reflect a “shallowness” of understanding (Craver and Darden
2013} 91-2).

These statements misunderstand scientists’ use of the pathway concept and its explanatory
role. The sparse nature of pathways is central to their explanatory power because it captures
shared higher-level causal connections across systems with different lower-level details (Ross|2020Db)).
This is seen in explanations of glycolysis and other cases in which shared behaviors present across
systems that differ in terms of their mechanistic details. In addition to capturing shared, macro-level
details, pathways also capture distinct types of causal details, as seen in the “roadmaps” of causal
connections. Mechanisms are equipped to capture lower-level causes that produce a particular
behavior of interest, but they are not suited to capture a map of possible causal routes through a
system. For this type of causal information, the pathway concept is much better-suited, as is the
analogy of these pathways to roadways, highways, and city streets. Here we see that mechanisms
are limited, not just because they involve lower-level details that we do not need, but because
mechanisms do not capture information about flow and possible routes, which is required for some
explanatory-why questions. Further varieties of causal (and non-causal) explanation are considered
in the next subsection and section.

2.4 Cascades. Another causal concept that commonly figures in explanations in biology and
many other scientific domains is the notion of a cascade (Ross 2023a). Examples of cascades are
plentiful in science—they include cell signaling cascades in physiology, trophic cascades in ecology,
ischemic cascades in neuroscience, cascading reactions in physics and chemistry, and cascading dis-
asters (or failures) in the social sciences, as seen in figure [§ (Macfarlane [1966; Ripple et al. 2016}
Smolyak et al.2020). Similar to mechanisms and pathways, cascades are causal structures with
unique features, analogies, and causal investigative methods. Cascades have three main features:
they involve an initial trigger, sequential amplification, and stable progression. In examining cas-
cades in science it will help to introduce them with the analogies they are associated with. Cascades
are often analogized to systems such as the snowball effect, ripple effect, and waterfalls (synony-
mous with “cascades,” their namesake). We see why this is the case, by exploring their features
more below.

First, cascades are initiated by a trigger, which is often conceptualized as a binary switch
(on/off) that sets the process off. In order to see this, consider one of the first causal systems to
receive the “cascade” label in modern biology, namely, the blood coagulation cascade (Macfarlane
1966; Davie and Ratnoff 1964). Blood coagulation is a process that functions to stop massive
bleeding after blood vessel injury—this injury triggers an enzyme cascade, which culminates in a
large clot to stop the bleeding. The trigger for blood coagulation is this vessel injury, which initiates
the cascade process. Other examples of triggers in cascades are seen in the causal systems they
are analogized to. The snowball effect is triggered by a small amount of snow, the ripple effect is
triggered by a single drop of water, and waterfalls (or natural cascades) begin with a small amount
of upstream water, which progressively disperses.

Second, the central feature of cascades is sequential amplification, which involves a small cause
that produces an increasingly large amount of some effect@ At the scale of a single causal step,
there are at least two types of causal amplification: a small amount of cause can produce a large

32As seen in the examples here, a cause or effect is “small” or “large” relative to the units of interest (or
choice of variable and values selected by scientists). This depends on the units specified, such as molecules
of an enzyme in the blood coagulation cascade, or snow amount as steps along an avalance.
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Figure 8: Cascade examples, including (a) cascading reactions in physics and chemistry, (b) cas-
cading disease spread in epidemiology, (c) ecological cascades, and (d) cell-signaling cascades.

amount of a single effect, called single-product amplification, or a small cause can produce many
different effect types, called multi-product amplification . An example of single product
amplification is seen in enzyme cascades, such as the blood coagulation cascade, as these involve a
small amount of some enzyme ‘a’ that produces a large amount of downstream enzyme ‘b’. In this
enzyme case, there is amplification of a single product, as there is a large amount of enzyme ’b’.
An example of multiproduct amplification is a disaster cascade, such as when an earthquake causes
many different downstream outcomes, such as fires, collapsing bridges, and water damage from
broken water pipes. In this disaster cascade, there is amplification in the sense of the production
of many different types of effects.

While these two types of amplification help capture the notion of causal amplification at a
single step, cascades involve sequential amplification, in which there are a sequence of amplifying
steps. This is important because when amplifiers are arranged in series, this drastically increases
the overall amplification of the system—the overall amplification of the system is the product of the
gain at each step. For example, if one unit of enzyme ‘a’ produces ten units of enzyme ‘b’ and one
unit of enzyme ‘b’ produces ten units of enzyme ‘c’, the overall process has a gain of one hundred
(producing one hundred units of ‘¢’ for every single unit of ‘a’). This allows blood coagulation
and other physiological cascades to produce “explosive” outcomes in which colossal amounts of a
product are produced. In some cases, this amplification serves a physiological function, such as
clot formation in the blood coagulation cascade and signal amplification in hormonal cascades.
These cascades are also exploited in various technologies, such as polymerase-chain reaction (which

27



amplifies trace amounts of some substance). In other cases, the amplification is non-functional and
produces significant damage, as seen in ischemic cascades, disaster cascades, and cascading failures
(Smolyak et al.[2020).

The sequential amplification feature of cascades is seen in the analogies they are associated with
and the diagrams used to represent them. Notice that the cascade analogies all involve a small cause
that amplifies a downstream effect. For example, the snowball effect refers to a small amount of snow
that causes a huge avalanche, the ripple effect involves a small drop that produces outward ripples
that increase in size, and waterfalls involve a narrow stream of water that progressively amplifies
in speed and distribution of spread. In analogizing scientific cascades to these systems, a main
goal is to highlight and communicate the amplification in these causal systems. This amplification
feature is also emphasized in the diagrams used to represent scientific cascades. These diagrams
often depict one-to-many causal systems, in which one cause gives rise to many effects in succession
(this is seen in the illustrations in figure . Interestingly, as the degree of amplification (or gain)
at any given step of the cascade is larger than can be easily drawn, scientists find other ways to
represent this significant amplification (sometimes by representing the amplification numerically,
with a 10® at a given step).

A third feature of cascades is that once initiated they involve stable progression to their fi-
nal effect. In other words, cascades gain in momentum and are propelled forward as they move
through their sequence of causal steps (Dodge et al.|2009). One implication of this is that, once
initiated, cascades can be very difficult to stop. They have the potential to “run-away” or “become
uncontrolled” (Bloomfield and Stephens|1996, 168, 171). This is similar to descriptions of the snow-
ball effect, in which a small snow fall triggers a growing, unavoidable avalanche. As Stein states,
“cascade refers to a process that once started, proceeds stepwise to its full, seemingly inexorable,
conclusion [...] the danger of a cascade is that it can be inappropriately triggered [...] once triggered,
it is virtually impossible to stop” (Stein [1990). This stable progression feature is seen in examples
such as the initiation of a chemical chain reaction, the spread of covid through the population, and
cascading failures triggered by natural disasters. Due to this feature, scientists often recommend
intervening early on in a causal cascade as a way to modify or stop it, as it becomes harder to
control as its steps unfold.

If the narrow notion of mechanism is adopted (see subsection 2.2), the cascade concept is an
additional alternative to mechanism. In order to see this, consider that cascades do not always
have the hierarchical organization of mechanisms (in which lower-level causes produce a higher-
level effect). Cascades are level-agnostic with respect to their causes and effects. Cascades can
have causes and effects at the same level, they can have higher-level causes that produce lower-
level effects, and they can have lower-level causes that produce higher-level effects. Enzymatic
cascades are an example of the first type (causes and effects at the same level) as the cause and
effect are both enzymes. An example of higher-level causes producing lower-level effects are energy
cascades involved in turbulence, which involve the transfer of energy from “large scales of motion
to the small scales” ((Richardson 1922, 66); see also Wilson| (2021)). Yet another example are
traumatic experiences that alter gene expression, referred to as “downward cascades” (Masten
and Cicchetti 2010, 492). Finally, a cascade example with a lower-level cause that produces a
higher-level effect is a hormone cascade, in which a hormone trigger produces some system-level
behavior. Another example is a pharmacological intervention that alters behavior, sometimes called
an “upward cascade” (Masten and Cicchetti 2010, 492).

Yet another difference between cascades and mechanisms is that unlike mechanisms, cascades
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do not always have a single, main effect of interest. Recall that the decomposition and localization
methods used to study mechanisms require first fixing a single explanatory target before “drilling
down” to identify the causal parts of the system. Cascades cannot be reliably studied in this
way because they often have many distinct effects, as seen in multiproduct amplification cases.
Furthermore, even when cascades do have a single main explanatory target, their causes cannot
always be identified by “drilling down” because, as just mentioned, their causes are not always at
lower-levels. Instead, cascades are often studied with tools that intervene on their initial trigger,
using this as a way to study what their downstream effects are.

Finally, even if a broad notion of mechanism is adopted—such that the cascade and pathway
examples above are said to count as mechanisms—it will still be important to distinguish across
kinds of mechanisms. As suggested in this analysis, these varieties of causal systems (whatever
they are called) have different features that set them apart from each other, require different causal
investigative strategies, provide different types of control over effects, and figure in distinct types
of explanations. Capturing the nuanced picture of causal varieties in the world and types of causal
explanations in science, requires a framework that appreciates these distinct causal systems.

2.5 Causal explanation conclusions. Providing an account of causal explanation in biology
and the life sciences requires specifying the types of causal structures that scientists cite in their
explanations. These causal structures serve as the explanans in the three-part model of expla-
nation, and they capture what does the explanatory “work” in these cases. The analysis in this
section is compatible with the claim that “causes explain their effects”. What is highlighted, is
that there are many distinct types of causes and causal systems that play this explanatory role.
Referring to all of these explanatory causal systems as “mechanisms” involves adopting a broad,
expansive notion of mechanism, on which mechanism is synonymous with “causal system”. As
others have voiced, while it may be possible to “shoehorn descriptions of biological systems into
talk of mechanisms,” the “attempt to do so risks reducing the idea of a mechanism to vacuity”
(Dupré 2013)@ Alternatively, referring to particular causal systems as mechanisms adopts a nar-
row notion of mechanism—a notion in which “mechanism” refers to causal systems with specific
features. Whichever view of “mechanism” one adopts, the important point is that different types
of causes, causal relationships, and causal systems are explanatory. Identifying and distinguish-
ing these causal types is an important part of providing an account of scientific explanation that
captures work in biology and the life sciences.

33 Another worry is that, on these broad accounts, “it seems that mechanisms just are whatever explains
whatever happens” (Dupré|[2013).
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3 Non-causal, Mathematical Explanation. When the deductive-nomological (DN) model
of scientific explanation was revealed as having various limitations, causal accounts of scientific ex-
planation began to receive increasing amounts of attention (Woodward and Ross|[2021). One reason
for this increased attention to causal explanation, is that many problems with DN explanation were
resolved by including causal details and information@ This perceived importance of causality in
explanation led many to suggest that causal explanation is the main or only type of explanation in
science (Skow|[2014; Lewis|[1986; |Strevens|2008]). As work on causal explanation began to develop
further—in terms of specifying the features, types, and limits of causal explanation—many began
to question claims that all scientific explanations are causal in character. Various philosophers
began to claim that some genuine scientific explanations are non-causal or mathematical (Sober
1983; Batterman| [2001; Baker| 2005} [Lange 2018). A large number of projects have focused on
clarifying the structure of non-causal, mathematical explanations, including: the particular types
of non-causal, mathematical factors these explanations involve, what exactly makes these factors
explanatory, and whether there are different types of non-causal, mathematical explanations in
science.

In the context of debates concerning scientific explanation, accounts of non-causal, mathe-
matical explanation often adhere to various standardsP?| First, these accounts are focused on
explanations of natural phenomena—they are focused on the use of mathematics (or non-causal
information) in natural science explanations or explanations of the physical world. Expressed in
a different way, these accounts are not interested in mathematical explanations in the field of
mathematics or in non-scientific domains (Baker|2005). Additionally, many of these philosophical
accounts of non-causal, mathematical explanation aim to capture explanatory reasoning found in
scientific work. As Lange notes, this is a view of scientific explanation that aims to “do justice
to scientific practice” (Lange|[2018| 24). This requires identifying explanatory targets of scientific
interest, such that these targets can be couched in explanatory-why questions and then answered,
as opposed to providing obscure mathematical answers to previously unknown and scientifically
uninteresting questions (Baker|2005]).

A second important standard that these accounts of non-causal, mathematical explanation are
held to, is that they need to justify the explanatory role of mathematics. It is well-appreciated
that mathematics is used to represent phenomena in the world. However, while this representa-
tional capacity can support the scientific aims of description, prediction, and classification, these
are all distinct from explanation. This is why these cases are often referred to as “distinctively
mathematical”—they are not just explanations that “employ” mathematics, but cases in which the
mathematics has the special feature of being explanatory (Lange2018| 4). A convincing argument
for the explanatory nature of mathematics must address this question of explanatory power and
demonstrate how the math is doing more than merely representing phenomena in the world. Fi-
nally, most accounts of non-causal, mathematical explanation do not claim to be entirely free of
causal information. While these explanations often have some causal information, it is argued that
they require non-causal, mathematical information to be explanatory. In these accounts, there is
some mathematical (or non-causal) kernel required for the complete explanation that marks it as
distinct from standard causal explanations.

34For example, including causal information helped address issues concerning asymmetries and irrelevancies.

35In referring to explanations in this section as “non-causal, mathematical” I do not mean to suggest that
all non-causal explanations are mathematical. I use this expression to highlight two main features of these
explanations, namely, their non-causal nature and that they involve explanatory mathematics.
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The topic of non-causal, mathematical explanation has received growing attention for different
reasons. One reason stems from concerns that philosophical accounts of scientific explanation have
overlooked non-causal, mathematical explanation and focused mainly (or exclusively) on causal
explanation (Lange2018]). Work in this area aims to correct this deficiency by clarifying how non-
causal, mathematical explanations should be understood and how they work. A second reason for
attention to this topic concerns debates about the existence of mathematical objects and so-called
“indispensability arguments” that argue in favor of this existence (Baker|2005; Lyon and Colyvan
2008; Lyon|[2012). In these debates, Platonists argue that mathematical objects exist by showing
that mathematics is indispensable to scientific explanation of the physical world. As Maddy states,
according to a simple indispensability argument “we have good reason to believe our best scientific
theories, and mathematical entities are indispensable to those theories, so we have good reason
to believe in mathematical entities” (Maddy| (1992, 278). On the other hand, nominalists deny
the existence of mathematical objects and find ways to refute these Platonist arguments. These
discussions center on whether “pure mathematics can be genuinely explanatory with respect to
physical phenomena” as this is viewed as having consequences for whether we accept the existence
of mathematical entities or not (Baker| 2005, 225).

In this book, analysis of non-causal, mathematical explanation will focus on the first moti-
vation, namely, on an interest in mathematical explanation for the sake of clarifying how legiti-
mate scientific explanations work. As all explanations discussed in this section are non-causal in
character and have mathematical components, the terms “non-causal explanation” and “mathe-
matical explanation” will be used interchangeably. This section will focus on three categories of
mathematical explanation: (i) topological and constraint-based explanations, (ii) optimality and
efficiency explanations, and (iii) minimal model explanations. While these are three common types
of mathematical explanation, I will not suggest that these categories are exhaustive of all forms
of mathematical explanation. Additionally, while these categories of mathematical explanation are
marked by distinct features (with paradigmatic cases in each category), this analysis is open to
“boarder-line” cases, in which a mathematical explanation may share features from more than one
of these categories. This analysis will also reveal some similarities between previously discussed
causal explanations and the non-causal, mathematical explanations examined here.

This section will examine the structure of these explanation types, how they capture the ex-
planatory role of mathematics, and how they fit with the standard three-part model of explanation,
which includes the explanandum, explanans, and dependency relation.

3.1 Topological and Constraint-based Explanations. A first type of non-causal, mathe-
matical explanation are topological explanations. These explanations are commonly found in net-
work and systems science areas, in which life science cases are studied with network models, graph
theory, and pathway analysis. In these examples, systems are represented with network models
containing edges and nodes—edges capture properties in the system (metabolic compounds, areas
of the brain, species in an ecosystem, etc.), while nodes capture relations between these properties
(chemical conversions, anatomical connections, prey-predator relations, etc.). In the context of net-
work neuroscience, some of these models capture the brain’s structural and anatomical connections,
which are referred to as the brains “network architecture,” “structural topology” and “hard-wired
connection topology” (Zoller et al.|2021). Similar methods are used to represent networks in other
domains, such as enzyme interactions in molecular biology, cellular interactions in immunology,
prey-predator relationships in ecology, and many others (Taylor et al.[2013; Kitano and Oda|2006;
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Montoya and Solé¢2002). These network diagrams reveal the “global shape” of connections in some
domain and, because of this, are also referred to as “circuit diagrams” and “wiring diagrams” of
connections in the system (Karuza et al. 2016).

Representing systems with network and graphical formats can reveal important topological
properties of the system. These topological properties capture how relations between entities in the
system are arranged and organized—in this manner, the “topology of a graph defines how the links
between system elements are organized” (Fornito et al. 2016). Examples of topological properties
include: connection or linkage density, link distance number, small-worldness, nested relations,
power-law scale-free distributions and scaling properties (Bassett and Bullmore 2017). In many
cases, these topological properties are cited in explaining unique behaviors of the system. While
these topological properties are sometimes characterized as “mathematical” themselves, they are
also claimed to bear a mathematical relationship to the system-level behaviors that they produce.
In this manner, it is suggested that there is a mathematical dependency relation between the
topology of a system and the behavior produced.

As an introductory example, consider a topological explanation that is commonly discussed
in the philosophical and mathematics literatures (Pincock|2012; Lange 2018; [Euler|[1956). While
this example is not drawn from the life sciences, it motivates and captures an explanatory pattern
that is identified in many life science contexts. This is the well-known case of the Konigsberg
bridges. In this example, a set of rivers runs through the eighteenth-century city of Konigsberg,
shown in figure @] (Adams and Franzosa; 2008). In this layout, there are seven bridges that span
the river, such that the two central islands are connected to surrounding land. According to this
story, there was interest in determining whether it was possible to walk a path across each bridge
exactly and only once. After much deliberation an answer was provided by Euler in the form of a
mathematical proof. Euler represented the bridge system graphically, as shown in figure[9] in which
landmasses are represented as nodes and the bridges as edgesﬁ] He used this graphical depiction
to demonstrate that in order for there to be a walking path of this nature—what we now call an
Eulerian path—two conditions needed to be met: (3.1a) all nodes should be connected and (3.1b)
the amount of nodes with an odd number of connections (or edges) should be zero or two (Euler
1956; Ross|2020a)). In this example, the explanatory-why question is “In the Konigsberg bridge
case, is it possible to walk across each bridge exactly and only once?”E] Importantly, the answer
to this question is “no” and the explanation of this is provided by mathematics, in particular, the
mathematical proof and failure to meet both conditions above (3.1a, 3.1b).

This example is viewed as a non-causal explanation for a number of reasons. First, the causal
properties and constituents of the bridges are irrelevant to the explanation—all the matters is the
macroscale topology of the system. If the same arrangement of bridges is present, but you change
the lower-level materials they are made of (steel, iron, wood, etc.) the explanation still holds
(Pincock|2012)). The topological structure lacks lower-level physical-causal details, but it also lacks
causal details at macro-scales. As Huneman states, this type of “topological explanation” is one that
“abstracts away from causal relations and interactions in a system, in order to pick up some sort of
‘topological’ properties of that system and draw from those properties mathematical consequences
that explain the features of the system they target” (Huneman 2010, 214). In this example, math
is used to capture abstract features of the system that are explanatory and independent of causal

36This is now considered some of the earliest work in graph theory and topology.
37This explanatory why-question can be rephrased as “Does this system have an Eulerian path or not?”
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Figure 9: The Konigsberg bridges. The figure on the left represents the seven Konigsberg bridges,
which cross different sections of river. This structure of bridges is represented graphically in the
figure on the right, in which the landmasses are represented as nodes and the bridges as edges
(Adams and Franzosa [2008]).

details. Second, not only does the explanans (the topological structure) have a mathematical
character in this case, but the dependency relation in this explanation is mathematical as well.
This explanation contains a dependency relation between topological properties (meeting the two
criteria above) and presence of an Eulerian path. Whether an Eulerian path is present or not
depends on the topology of the system. However, in the Koénigsberg case, this dependency relation
is mathematical and not causal (Woodward|[2019). Causal dependencies have an empirical character
that mathematical dependencies lack. Causal dependencies require empirical study to be identified
and studied in the world. Identifying that a gene, drug, or vitamin deficiency causes some outcome
requires empirical study in the world and cannot be revealed by mathematics alone (such as proofs,
derivations, and so on). However, for the Kénigsberg case and others, once the topological features
of the system are identified, mathematical understanding alone can reveal consequences of the
system and answer explanatory-why questions. In these examples, topological properties have
“mathematical consequences” that power the explanation, as opposed to causal consequences that
require empirical discovery (Huneman 2010).

Consider similar explanations in the context of ecology and neuroscience. A first example
involves explanations of ecosystem robustness in the face of species extinctions. An ecosystem’s
prey-predator relationships can be represented with graphical models, in which nodes represent
different species and edges capture the relations between species. With this graphical model, the
extinction of species from the ecosystem can be represented with the deletion of nodes. One way
to explain the robustness of an ecosystem to species extinction, is to determine how the system
responds to random deletions to nodes in the network. In this case, topological properties of the
network can explain whether the ecosystem will be stable (or robust) in the face of a random node
deletion in the network. In particular, if the graph has a scale-free or small world structure, in
which there are few highly-connected nodes, the system is more stable as a less-connected node
is more likely to be deleted (Huneman|2010; |[Ross [2020a)). Removing a less-connected node is less
disturbing to the network than removing a highly-connected node. Alternatively, if a system lacks
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this scale-free structure (and has many highly-connected nodes) a random deletion is more likely
to hit a highly connected node, which would lead to more disruption and instability. Similar to the
Konigsberg case, explaining why a system is more or less robust has to do with abstract, topological
features of the system and not with the system’s physical constituents, realizers, or higher-scale
causal connections. This allows the same explanation to be provided for other systems that share
the same topological structure, even when they differ in terms of lower-level and causal details.

Other examples of topological explanation are found in neuroscience, such as those involving
human brain networks and neural networks of model organisms, such as C. elegans. Studies of the
C. elegans neural network reveals a “small-world” network topology characterized by high clustering
and a short path length (Watts and Strogatz|1998). This small-world “connection topology” —found
in C. elegans, other living organisms, and various non-living systems—has been cited in explaining
particular behaviors, such as signal-propagation speed, computational power, and synchronizability
(Watts and Strogatz 1998} |[Bassett and Bullmore||2017). In other cases, the small-world structure
of neural networks is cited in explaining the economical character of the system, in the sense
of minimizing biological costs, while maximizing topological integration (Bassett and Bullmore
2017)@ These explanations fit the non-causal category because the explanatory target of interest—
unique behaviors of the system—are a mathematical consequence of the system’s topology, as
opposed to an empirically identified cause-effect relationship. In these explanations, the “abstract,
dimensionless” topological features are unique in that they “tell us nothing about the physical
layout” of the nervous system or how it is “embedded in anatomical space” (Bassett and Bullmore
2017)).

All three of these examples—the Konigsberg, ecological, and neural network cases—share ex-
planatory features. Each of these cases specifies how the topology of the system (the explanans)
“makes a difference’ to the system’s behavior (the explanandum), in which this difference-making
relation (dependency relation) is specified mathematically. In these cases, the explanatory work
is supplied by topological properties, which abstract from lower-level and causal details. The fact
that these explanations abstract from lower-level details, gives them the ability to generalize across
microstructurally distinct systems. A system’s scale-free structure explains its robustness across
contexts—this explanation holds in the contexts of enzyme networks, cellular networks, brain net-
works, ecological networks, social networks, and so on. This captures the global and domain-general
nature of these explanations, as the same topological properties can be instantiated by different
lower-level details.

While these topological cases are examples of non-causal explanation, this does not mean that
topology only explains in a non-causal manner. In some situations, topology can capture higher-
level causal connections in a system, which provide causal explanations (Ross 2020a)). Examples
of these causal topologies include the bowtie (fan-in, fan-out) network structure of human immune
cell interactions, the chokepoint topology in enzyme networks, and unique connection topologies
in ecosystem networks (Ross 2020a). The abstraction involved in both the non-causal and causal
topological explanations captures their autonomy from lower-level detail and their domain general
character. After significant emphasis on reductive explanation in the philosophical literature, these
cases have proved helpful in demonstrating the rationale behind non-reductive explanations and
cases in which macro-scale structures have explanatory power.

These non-causal topological explanations are related to another account of non-causal expla-

38In this case, biological costs include the costs of maintaining physical connections and communication
between nodes.
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nation that Lange refers to as “explanations by constraint” (Lange 2018, 3). Lange provides an
account of non-causal explanation, in which factors are explanatory in virtue of the fact that they
constrain the system in some way. Notice that in the Konigsberg bridge case, the topology is
explanatory in virtue of its constraining influence on potential walking paths. Lange elaborates
on this to identify two important features of these explanations. First, these constraint-based ex-
planations are non-causal because (i) the constraining influence of mathematics is stronger than
causal influence. The strength of the constraining influence in these mathematical explanations,
sets them apart from the weaker causal influence found in causal explanations. In this manner,
mathematical explanations have a stronger form of necessity than causal relationships—this allows
mathematical explanations to show why an outcome “was inevitable to a stronger degree than could
result from the action of causal powers” (Lange|[2018, 6). Second, (ii) the strength of the constrain-
ing influence of the explanatory mathematics in these cases allows them to provide a unique type
of “impossibility” explanation. These explanations do not just show why some outcomes are not
realized, but why it is strictly impossible for them to occur. This is intended to capture how the
Konigsberg topology has explanatory impact that is stronger than causality and how it explains
why it is impossible to take an Eulerian path in the system.

Lange uses these two features (i, ii) to identify other non-causal explanations, which need not
involve topology. Consider a non-scientific explanation that illustrates this: suppose a mother has
23 strawberries and she wants to divide them evenly among her three children. What explains why
this is impossible? According to Lange, this impossibility is explained by mathematical facts and it
does not have to do with causal relationships in the world. While causal relationships have influence
over which outcome of a set of possible outcomes manifests, they lack the strong form of necessity
implied by the explanatorily relevant mathematics in these cases. The strong type of necessity
in these mathematical explanations is what allows them to explain impossibilities—not just why
something did not happen, but why it could not possibly happen at all. As Lange states, “[t|he
Konigsberg bridges as so arranged were never crossed because they couldn’t be crossed. Mother’s
strawberries were not distributed evenly among her children because they couldn’t be” (Lange|2018|,
9).

Consider a similar non-causal explanation from the contexts of human genetics. In humans,
genes contain four different types of nucleotides (A,C,T,G), which are arranged linearly in DNA.
When genes are expressed to produce proteins, these nucleotides are “read” sequentially, three at
a time. Each three nucleotides in a gene—referred to as a “codon”—codes for a particular amino
acid, which are small units that make-up proteins. Scientific research has revealed which three-
nucleotide sequences (codons) code for particular amino acids and it has become clear that there are
only 64 possible codons in humans. What explains this limit on codon types? If our explanatory-
why question is “Why are there 64 possible codons in humans as opposed to more or less?” the
answer to this is provided by mathematics. The fact there are only four nucleotide options, which
are organized in sequences of three, mathematically entails that there are 64 possibilities (as 43
or 4 x4x4 = 64)@ In this case, the explanatory power is not derived from causality, but
from mathematics. The mathematics explains why there are exactly 64 possibilities and why it

39Consider the three positions in the nucleotide code—for the first position there are four options (A,C,T,G),
for the second there are four options again, and same for the third position. This means that there are
(4x4x4= 64) 64 different (three nucleotide) codon possibilities. These 64 different codons do not all code
for unique amino acids—some of them have overlap and code for the same ones. There are about 20 different
amino acids (that are coded for in humans).
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is impossible for there to be more. In other words, the math constrains possible codon number
and it explains why it is impossible to have more than 64 codon types in humans. Similar to the
Konigsberg, ecological, and neuroscience examples, there are some empirical facts that are accepted
when formulating the explanatory-why question. However, the answer to this question is provided
from mathematical derivation alone and not empirical-causal assessment. There are surely other
types of these mathematical, impossibility explanations in the life sciences. In exploring these
types, it will be fruitful to focus on cases that matter to scientists, that they view as furthering
their understanding of the natural world, and that capture their explanatory practices, aims, and
goals.

This analysis reveals overlap and dissimilarities between two accounts of non-causal explana-
tions, namely, topological and constraint-based explanations. Both explanation types involve a
mathematical explanans and a mathematical dependency relation. Differences include the fact
that sometimes the explanatory math is topological, while other times it is not (such as in the
strawberry and genetics examples). Furthermore, both types contain some impossibility explana-
tions (as seen in the Konigsberg and genetics examples), but in topological cases there is sometimes
more interest in explaining unique behaviors of the system (such as fragility, robustness, energy
costs, etc.) as opposed to whether an outcome is impossible or possible for the system.

3.2 Optimality and Efficiency Explanations. A second main category of non-causal, math-
ematical explanation are optimality or efficiency explanations, which often arise in the context of
evolutionary biology. Modern interest in these cases is motivated by indispensability arguments
and attempts to capture the diversity of explanatory practice in science (Baker [2005; [Lyon and
Colyvan!2008; Lyon 2012; Lange|2013; |[Pincock|2012)). Many of these cases involve surprising traits
in organisms, which are explained by appealing to mathematical considerations. Examples of these
surprising traits include explaining why cicadas emerge on prime-number-year life cycles, why hon-
eybees have hexagonal-shaped honeycombs, and why sunflower seeds are arranged according to a
Fibonacci-sequence (or Golden ratio) on the heads of sunflowers (Baker|2005; |[Lyon and Colyvan
2008; [Ross|[2023c). For many of these cases, the explanation involves two main components: (i) a
background assumption that evolutionary processes select traits that are more efficient, optimal, or
advantageous for the individual or species, and (ii) an argument—often mathematical—for how the
trait in question meets this standard of being more efficient, optimal, or advantageous. The point
is not that these explanations lack causal information—they clearly include this by appealing to
evolutionary processes. The claim is that the explanatory work is not provided by causality alone,
as it also requires mathematics.

Optimality and efficiency explanations build on the structure of the previous topological and
constraint-based explanations in an important way. While cases in the previous subsection ex-
plained the system’s behavior by appealing to its mathematical features, the explanations in this
subsection explain the presence of mathematical features in the system by appealing to the evolu-
tionary advantage that these mathematical features conveyFE] The similarity is that explanations
in this and the last subsection capture how mathematical features have particular consequences

400ne implication of this, is that some of the topological explanations in the last subsection can be converted
into optimality /efficiency explanations if the focus is on explaining why the system evolved to have the
topological properties in question. Examples of this can be seen in neuroscience research that considers
how “selection pressures might be operative on the evolution and development of nervous systems” and
how “brain networks have been selected” to have various features (Bassett and Bullmore|[2017)).
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for the system—the difference is that explanations in this subsection use these consequences to
explain why the mathematical features are present in the system. As will be discussed more soon,
optimality and efficiency explanations share a similar structure to “existence” or functional expla-
nations, which explain the existence of some property in a system on the basis of the consequence
it produces or entails (Wright|1976]).

A first example of optimality and efficiency explanations is the case of cicada life cycles. Cicadas
are insects that spend part of their life cycle underground as nymphs, after which they emerge on
predictable intervals. One species of cicada (the Magicicada genus) reliably emerges on intervals of
prime number years—in particular 13 and 17 years—and there is interest in explaining why this is
the case (Baker|2005| 230). To be clear, there is interest in explaining why these cicadas emerge on
prime number years as opposed to more common non-prime number year intervals. Explanations
of this prime number year emergence are provided by the fact that prime number life cycles reduce
the cicadas overlap with predator species. It is suggested that the evolutionary advantage of this
reduced overlap has led to the selection and permanence of this prime number year life cycle.

The mathematical component of this explanation requires explaining why prime numbers reduce
predator overlap. This explanation is provided by the notion of the lowest common multiple (lcm)
within number theory in mathematics, as this shows how the frequency of intersection is minimized
with prime numbers (Baker| 2005, 230-2). Given that cicadas can have life cycles between 13 and
18 years (due to ecological constraints), this is the age range that is considered. In considering
this range, the advantage of primes is evident by the mathematical fact that “12 (a non-prime)
intersects with 1, 2, 3, 4, and 6; while 13 (a prime) only intersects with 1”7 (Lyon 2012, 561).
For these reasons, mathematics, and number theory in particular, are said to play “a genuinely
explanatory role in accounting for the cycle lengths of periodical cicadas” (Baker| 2005, 237). The
mathematics in this case, helps explain why “primes are optimal,” which is necessary to explain
why they have been selected through evolutionary processes.(Baker| 2005, 232).

In considering the structure of this explanation, it helps to examine the role of the mathematics
involved. The explanatory target in this case is presented as the prime number year life cycle of
cicadas. In traditional accounts of scientific explanation, one selects the explanatory target and
then identifies factors “upstream” of this target that account for, produce, or cause the target, and
that the target “depends” on. This captures the directionality of the explanation from explanans
to explanandum. For this prime number year life cycle there are “upstream” evolutionary con-
siderations that “selected” for this trait. However, these explanations also cite the prime number
year as an “upstream” factor that has mathematical consequences for the “downstream” outcome
of species intersection frequency. This is natural because changing whether life cycles are prime
or not “makes-a-difference” to and explains the degree of intersection in the species. And, relat-
edly, species intersection “depends” on presence of prime number year life cycle. However, this is
somewhat nonstandard because it places the original explanatory target (prime number), in the
upstream “explanans” position and the consequences of this math (the species intersection) in the
downstream explanandum position. Interestingly, explaining primeness does not involve merely cit-
ing the upstream factors that selected it, but also appealing to its forward influence on the cicada
species. The need to appeal to what produces and is produced by the prime-year life cycle, makes
this explanation unique.

This cicada example bears similarity to types of “functional explanation,” in which one explains
the existence of a biological trait on the basis of the trait’s function in an organism or species |Wright
(1973). In standard functional explanations, the link between the trait and the goal it serves is

9
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causal—for example, the heart exists in mammals because it causes the blood to circulate (and
serves the function of blood circulation). As circulation is a subgoal that serves main goals of the
organism (survival and reproduction), this explains the existence of the heart. The cicada example
differs from this, in that the dependency relation between the prime-year life cycle and predator
overlap is mathematical, as opposed to causal@ This mathematical dependency relation captures
what is importantly non-causal and mathematical about this example, which distinguishes it from
causal explanation.

A main question raised by this cicada example is how to integrate the mathematical and evolu-
tionary components in the explanation. This explanation requires both components and they play
different roles. One natural interpretation is to separate the explanation into two explanatory-why
questions, which both need to be addressed. A first explanatory-why question is: Why do cicadas
have the feature of prime-number year life cycles? Answer: Because this feature is evolutionarily
efficient, optimal, or advantageous. A second explanatory-why question is: Why are prime-number
year life cycles evolutionarily efficient, optimal, or advantageous? Answer: Because they reduce
predator overlap, as explained by mathematical features of the least common multiple principle.
The full explanation is not provided until both questions are answered and they require causal
and mathematical responses, respectively. While many philosophical accounts of evolutionary ex-
planations assume that existing traits have been selected because they are optimal, efficient, or
advantageous, this piece often requires careful justification (Wakil and Justus [2017)).

Consider two further optimality explanations that fit a similar pattern. A second optimality
explanation involves the explanatory-why question “Why do bees have hexagonal-shaped honey-
combs as opposed to honeycombs of other shapes?” The explanation of this geometrical trait
involves a mathematical component revealing that hexagonal honeycombs are more efficient than
other shapes because they use less honey and wax. The explanation of this optimality is provided
by the honeycomb theorem, which “explains why a hexagonal grid is the optimal way to divide
a surface up into regions of equal area” (Lyon/ 2012} |Lyon and Colyvan/ 2008). The second piece,
is the evolutionary explanation, which specifies that this optimality makes these bees “fitter” and
explains why the trait is selected for in the population. A third example, is the Golden ratio spiral
configuration of seeds on sunflower heads. Why do sunflowers pack their seeds in this configuration
and not another? The answer here involves the fact that with this Golden ratio structure “the
optimal packing of sunflower seeds is achieved” and that such optimality, due to the benefit it
provides the species, is selected for through evolutionary processes. In both cases the mathematical
trait makes a difference to some optimal outcome (less use of materials and higher packing density,
respectively) and this difference is explained in virtue of mathematical relationships, dependencies,
and information.

Other candidates for optimality and efficiency explanations are Sober’s “equilibrium expla-
nations” (Sober||1983), Chirimuuta’s efficient coding explanations (Chirimuutal2014)), and Rice’s
discussion of various optimality explanations in biology (Rice 2015). Each of these cases explains
an outcome by appealing to some evolutionary advantage—whether it is the “reproductive advan-
tage” of a 1:1 sex ratio in a population, “evolutionary principles” that explain current behaviors

41What makes this dependency relation mathematical? This is supported by the fact that the relationship
between prime years and predator overlap is revealed a priori through mathematics, and does not require
empirical study of the world (which is the case for causal relationships) (Woodward|2019)). This is related to
discussion in subsection 1.2 regarding Hume’s fork and different types of dependency relations in scientific
explanations (Hume|/1738; \Woodward||2019).
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such as the ability of neurons to “transmit more information,” and other cases in which optimality

models are used to “explain why a system has evolved the optimal strategy” (Sober |1983; |Chir-
imuuta|[2014; [Rice|[2015). While the optimality and efficiency explanations discussed in this section
provide one class of non-causal, mathematical explanation, this does not imply that all evolution-
ary explanations or optimality explanations are non-causal. Some evolutionary explanations are
causal in character and this framework is open to optimality and efficiency explanations outside of
evolutionary biology@

3.3 Minimal Model Explanations. A third class of noncausal, mathematical explanations are
“minimal model” explanations (Batterman 2002} 2021). These involve “minimal models,” which
abstract from various types of information, including causal detail, in order to have explanatory
power. Batterman introduces this form of explanation by distinguishing two types of explanatory-
why questions. The first is a type (i) why-question, which “asks for an explanation of why a given
instance of some pattern obtained” (Batterman 2001, 23). The second is a type (ii) why-question,
which “asks why, in general, patterns of a given type can be expected to obtain” (Batterman[2001,
23). In this manner, type (ii) why questions ask why the same pattern is exhibited generally or
universally across a large group of different systems.

Minimal model explanations provide answers to type (ii) why-questions—they aim to explain
why behaviors generally obtain and why they are shared across distinct systems. In scientific
contexts, these shared behaviors are captured with the notion of “universality” as they are universal
behaviors that are shared across physically distinct systems (Kadanoff [1990; Batterman|[2021)).
Examples of universal behaviors in the physical sciences include how the Navier-Stokes equations
capture the behavior of many microstructurally distinct fluids, that physically distinct pendulums
exhibit periods that are proportional to the square root of their length, and that systems as diverse
as fluids and magnets exhibit identical behavior at their critical points (Batterman|2001; Batterman
and Rice|2014). While Batterman’s account of minimal model explanations was first examined in
the context of physical science examples, later work applied his account to biological and life
science explanations. Examples of universal behaviors in the life sciences include firing behaviors
that are shared across physically distinct neurons (such as class I excitability), cases in which the
same phenotype has different genetic and environmental causes (such as Parkinson’s disease), and
processes that are “conserved” across nearly all living systems (such as glycolysis). The central
explanatory-why question in these contexts is why systems with different physical details all exhibit
the same universal behavior.

Batterman suggests that universal behaviors are often explained with principled techniques
that isolate a “minimal model,” which is a model that “most economically caricatures the essen-
tial” features of the system (Goldenfeld 1992} Batterman [2001). In many of these explanations,
mathematical techniques are used to remove irrelevant detail from models of distinct systems until
the reduced models collapse into the same “minimal model” or the same “universality” class of
models. Given that these techniques allow for the principled removal of detail—which preserves
the qualitative behavior of systems—the fact that distinct systems are all reduced to the same
model or class explains why they exhibit shared behavior. A main feature of these cases is the use
of mathematical techniques in providing the explanation. While other mathematical explanations
involve “mathematical entities” (such as a number, a graph, a geometrical feature, etc.), minimal

42For an analysis of the role of optimality models in causal explanation, see (Potochnik|[2007).
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model explanations involve an “essential operation” that is mathematical and does the explanatory
work (Batterman 2010)?}]

Consider an example of the minimal model approach in neuroscience. In the mid-twentieth
century, Hodgkin used voltage clamp studies of single crab neurons to identify three different types
of neural excitability, referred to as class I, class II, and class III excitability (Hodgkin|[1948). For
class I neurons the frequency-current relationship increases continuously from zero, for class II
neurons it is discontinuous, and for class III neurons it is undefined (Ross| 2015, 40). Hodgkin
identified that class I neurons are found in many different animals and it was later discovered that
these neurons differ greatly in terms of their microstructural details. In order to appreciate this,
consider mammalian pyramidal neurons, many of which exhibit class 1 behavior. These neurons
have three main types of voltage-gated ion channels (selective for Nat, KT, and Ca2+), and each
of these can have hundreds of molecularly distinct subtypes. From this variety, each neuron can
express over a dozen different types of voltage-gated ions channels and these vary in density along
the membrane producing unique voltage-dependent conductances. This helps capture the vast
molecular diversity of mammalian pyramidal neurons with this behavior—the diversity across all
neurons with this behavior (beyond mammalian pyramidal neurons) is, of course, much greater.

Neuroscientists have been interested in explaining why neurons that differ in terms of their
lower-level details all exhibit the same excitability behavior. A central component of this explana-
tion was provided by Ermentrout and Kopell, who derived a canonical model for class I excitability
(Hoppensteadt and Izhikevich|[1997)). This work involved using mathematical abstraction proce-
dures to condense models of molecularly diverse neural systems to a simple model, referred to as
a canonical model. In this case, “when mathematical abstraction techniques are used to abstract
away from details of mathematical representations of neural systems, all representations converge
onto the same canonical model” (Ross/2015| 41). Tt is this convergence of the distinct models onto
a shared single model that explains why they exhibit the same behavior despite their lower-level
differences. In other words, because these mathematical reduction techniques eliminate detail while
preserving qualitative behavior, the fact that all reduced models converge on the same model or
class of models confirms and explains their qualitative similarity. This mathematical operation
captures features of these systems that are “stable under perturbation of their microscopic details”
(Batterman 2001)11_1]

The minimal model account captures a non-reductive form of explanation that is supported
by actual methods that scientists use in their work. Among the advantages of this explanatory
framework is that it clarifies exactly why reductive forms of explanation are limited for particular
explanatory targets. This limitation is that the shared, universal behavior of interest—that scien-
tists want to explain—does not have a particular lower-level story, account, or explanation. In a line
of reasoning that extends back to the work of Putnam, (1967) and Fodor| (1974)) these shared behav-
iors are multiply-realized by different lower-level details, in a way that makes citing such lower-level
details insufficient (Batterman|2001; Ross|2020b). This is seen in cases in which the same metabolic
pathway is instantiated by different lower-level enzymes, where the same bridge topology can have
different lower-level material constituents, and where the same neural firing behavior is made-up of
different ion channel details. This clarifies a strong problem with assuming that these explanatory

43For example, some of the physical science examples that Batterman discusses involve renormalization group
methods, as the mathematical technique in question.

44 A similar attention to forms of explanation and understanding that involve abstracting from lower-level
details is present in |Green and Batterman| (2017) and [Batterman| (2021).
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targets should fit a reductive model of explanation. The next step in these cases, involves providing
the principled rationale that guide which factors do (and do not) explain and what justifies this.
Distinct strategies for finding and representing abstract features propose different frameworks to
address this second question, from those that emphasize causal relevance and control, topologi-
cal properties with pertinent consequences, and mathematical abstraction techniques that expose
qualitative similarity.

3.4 Non-causal explanation conclusions. The three types of non-causal explanation pre-
sented in this section have unique features, they share similarities, and sometimes the border
between them is less distinct. Similar to minimal model explanations, topological explanations ab-
stract from large amounts of lower-level detail. In fact, it is a main feature of topological represen-
tations of systems that these representations are indifferent to lower-level, physical instantiations.
This is what allows the same topology and explanation to capture neural networks in C. elegans,
immune cell networks in humans, and social networks in societies. This is comparable to how the
physical material of the Konigsberg bridges are irrelevant to whether they have an Eulerian path or
not. And a similar autonomy from lower-level details are found in some optimality and efficiency
explanations. This is seen in Sober’s equilibrium explanations for the 1:1 sex ratio in many species
at reproductive age (Sober||1983). In this case, the 1:1 sex ratio is explained by showing “how the
event would have occurred regardless of which of a variety of causal scenarios actually transpired”
(Sober||1983|, 202). It is not factors in the actual causal history of any outcome that matter for
these explanations—instead a variety of disjuncts captures possible outcomes, without the need
to specify which actually occurs. Similarly, the mathematics underpinning the optimalities and
efficiencies in the cicada, honeybee, and sunflower cases do not depend on or require particular
lower-level details. The lowest common multiple principle, honeycomb proof, and Golden rule hold
regardless of the details of the system. All accounts provide strong, principled reasons for why
particular lower-level details are irrelevant to the explanation.

However, these types of non-causal explanation also differ in notable ways. Topological and
constraint-based explanations tend to lean on coarse mathematical relationships, with little (to no)
information about a system’s goals or purposes. Unlike other forms of non-causal explanation, these
include the unique impossibility explanations, which explain why some outcomes are impossible or
off-limits for a system (Ross|2023c|). Optimality and efficiency explanations, on the other hand, have
the unique feature of including assumptions about a system’s goals and how these are supported
by the system’s features. These are often found in evolutionary or design cases, in which there is
interest in explaining why a system has a particular feature. Despite their differences, in many
of these cases, insights into novel forms of explanation in biology and the life sciences has been
provided by revealing unique types of explanatory targets and explanatory-why questions.

4 Final Remarks. The topic of scientific explanation continues to receive significant attention
in the philosophical literature. Many continue to view explanation as a “distinctive aim” (Nagel
1961}, 15) of science and one of its “primary objectives” (Hempel [1991, 299). Similar to work
on scientific explanation in the mid-to-late-twentieth century, current projects aim to identify the
standards that genuine explanations should meet, they search for formal patterns that underlie
explanatory practice, and they examine how well such projects include examples we take to be
genuinely explanatory (while excluding cases we view as non-explanatory).

However, since this mid-to-late-twentieth century work, while many questions about scientific
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explanation and basic orientations to them have stayed the same, philosophical accounts of scientific
explanation have also changed in notable ways. First, while earlier accounts of scientific explanation
had monist aspirations—attempting to capture the single structure of explanation and the “ideal
form to which all efforts at explanation should strive” (Nagel [1961)—current accounts are much
more pluralist in what they count as explanatory. Current accounts are generally open to scientific
explanation having different forms, structures, and patterns. In fact, many novel accounts of
scientific explanation use monist frameworks (such as the DN model or mechanistic explanation) as
a foil for showing that other forms of explanation exist (Batterman 2001; Dupré|2013; Woodward
and Ross |2021}; Ross|[2021al 2023a)). Much current work appreciates that there are causal and
non-causal forms of explanation, with subtypes in each category. This pluralistic orientation is
often viewed as compatible with the fact that different scientific domains have unique explanatory
situations, targets, and goals.

Second, while earlier explanatory frameworks were often reductive in character, current ac-
counts accommodate non-reductive explanations. In earlier work, it was common to find claims
that explanatory power tracks appeal to fundamental physics or increasingly lower-levels of detail
(Salmon||1984; Sober|[1999). However, these reductive claims have largely been replaced by views
that this is not always so—that sometimes higher-level causes, factors, and concepts provide the
best explanation (Weber| 2008; Woodward [2017; [Ross [2020b)). Such non-reductive accounts jus-
tify the explanatory power of higher-level factors and they clarify why abstraction is required for
understanding (Batterman|2010; Pincock![2012)). Gaining clarity on these issues is consistent with
accepting that principled forms of reductive explanation exist and are sometimes needed (Bickle
2006; Barwich|[2021)). This acknowledgement of reductive and non-reductive explanation in biology
and the life sciences further illustrates the pluralistic point above. This pluralistic view suggests
that the level or scale of explanatory detail is not always fixed and can differ from case to case, as
dictated by principled considerations.

Third, it has grown increasingly common to expect philosophical accounts of scientific expla-
nation to capture the actual work of scientists. This is an orientation to scientific explanation that
requires close contact with the methods, reasoning, concepts, and strategies that scientist’s use in
their efforts to understand and explain the world (Batterman/2001; |Weber||2022; (Chirimuutal[2018).
Accounts with this orientation are guided by scientific methods such as randomized-control trials,
gene knock-out experiments, tracer experiments, mathematical reduction techniques, and neural
imaging. In addition, these practice-oriented accounts are sensitive to distinct scientific concepts—
such as mechanism, pathway, and cascade—and the role these concepts play in untangling unique
types of structure and information (Ross|[2023al). This work is also sensitive to different goals found
in explanatory practice and the various types of targets that scientists aim to explain.

Finally, it is important to consider the significance of this topic for discussions in scientific
practice, for decisions about what types of research should be supported, and in efforts to improve
science communication to various audiences (including the public and experts). Explanation and
causality are frequently viewed as foundational topics by researchers working in the life sciences, but
there is often significant debate, crosstalk, and differing views on how these should be understood
and what it takes for a model or theory to be genuinely explanatory. Even when there is a lack
of consensus on this topic in scientific fields, philosophical frameworks can help clarify the distinct
positions, assumptions they make, and how they relate to each other, in a way that supports
discussion and progress. One way that philosophical frameworks can help, is by keeping assessments
of the quality of explanations relative to their chosen explanatory target. While distinct scientific
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explanations can quickly be pitched as rivals, this can be a false comparison if they aim to explain
different targets. This can happen when there is interest in explaining different aspects of the same
physical system and when the same term is used to refer to the explanatory target, but it is used in
different ways throughout the field (such as an interest in explaining “consciousness” or “memory”).
Another benefit of philosophical accounts, is that they reveal how scientific explanation is often
much more of a piecemeal process (in which a system is broken into distinct explanatory targets)
as opposed to a complete, full theory or explanation of everything (Woodward|[2017). Appreciating
these features of explanation as explanandum-relative and piecemeal can help in identifying and
assessing candidate explanations in science. Additionally, providing a framework for understanding
the logic and structure of scientific explanation matters because it clarifies the standards that should
guide which scientific projects are supported and pursued. The specific wording of grant calls and
journal guidelines significantly shape which types of scientific work are funded, supported, and
valued. When such calls and guidelines emphasize the importance of identifying “mechanisms”,
or biological causes (over socio-environmental causes), or reductive approaches to explanation,
they can reinforce problematic assumptions about scientific explanation and disincentivize work in
important areas of research (such as areas that study environmental, social, and macro-scale causes)
(NIM| 2023; Insel 2022; Ross and Bassett|[2024). Clarifying the standards, logic, and hallmarks of
scientific explanation are essential for communicating scientific findings to the public. This arises in
efforts to communicate how scientific methods justify their conclusions, what it means to say that
a causal mechanism (or pathway, or cascade) has been identified, and what it means to say that we
now have a fuller explanation of some phenomenon of interest, whether in biology, neuroscience,
medicine, ecology, or some other field.

The analysis provided in this book provides a picture of scientific explanation in biology and
the life sciences that is heterogeneous, complex, and principled. Just as there is no single “scientific
method” this work is consistent with their being no single type of “scientific explanation.” Of
course, there is a balance to strike in capturing the diversity of explanatory patterns in science,
while specifying the standards of explanation. Much of the work outlined in this book aims to
capture this nuance, that is, both the variety and limits of scientific explanation.
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