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Abstract
This essay examines the philosophical significance of Ω-logic in Zermelo-

Fraenkel set theory with choice (ZFC). The categorical duality between
coalgebra and algebra permits Boolean-valued algebraic models of ZFC
to be interpreted as coalgebras. The hyperintensional profile of Ω-logical
validity can then be countenanced within a coalgebraic logic. I argue that
the philosophical significance of the foregoing is two-fold. First, because
the epistemic and modal and hyperintensional profiles of Ω-logical validity
correspond to those of second-order logical consequence, Ω-logical valid-
ity is genuinely logical. Second, the foregoing provides a hyperintensional
account of the interpretation of mathematical vocabulary.

1 Introduction
This essay examines the philosophical significance of the consequence relation
defined in the Ω-logic for set-theoretic languages. I argue that, as with second-
order logic, the hyperintensional profile of validity in Ω-Logic enables the prop-
erty to be epistemically tractable. Because of the duality between coalgebras
and algebras, Boolean-valued models of set theory can be interpreted as coalge-
bras. In Section 2, I demonstrate how the hyperintensional profile of Ω-logical
validity can be countenanced within a coalgebraic logic. Finally, in Section
3, the philosophical significance of the characterization of the hyperintensional
profile of Ω-logical validity for the philosophy of mathematics is examined. I
argue (i) that Ω-logical validity is genuinely logical, and (ii) that it provides
a hyperintensional account of formal grasp of the concept of ‘set’. Section 4
provides concluding remarks.

2 Definitions
In this section, I define the axioms of Zermelo-Fraenkel set theory with choice.
I define the mathematical properties of the large cardinal axioms which can
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published under the name, ‘Hasen Joseph Khudairi’. I changed my name to ‘Timothy Alison
Bowen’ in March, 2023. Please cite the paper under the name, ‘Bowen, Timothy Alison’. The
paper was last revised: March 28, 2024.
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be adjoined to ZFC, and I provide a detailed characterization of the properties
of Ω-logic for ZFC. Coalgebras are dual to Boolean-valued algebraic models of
Ω-logic. Modal and hyperintensional coalgebras are then argued to provide a
precise characterization of the modal and hyperintensional profiles of Ω-logical
validity.

2.1 Axioms1

• Extensionality
∀x,y.(∀z.z∈x ⇐⇒ z∈y) → x = y

• Empty Set
∃x.∀y.y/∈x

• Pairing
∀x,y.∃z.∀w.w∈z ⇐⇒ w = x ∨ w = y

• Union
∀x.∃y.∀z.z∈y ⇐⇒ ∃w.w∈x ∧ z∈w

• Powerset
∀x.∃y.∀z.z∈y ⇐⇒ z ⊆ x

• Separation (with −→x a parameter)
∀−→x ,y.∃z.∀w.w∈z ⇐⇒ w∈y ∧ A(w,−→x )

• Infinity
∃x.∅∈x ∧ ∀y.y∈x → y ∪ {y}∈x

• Foundation
∀x.(∃y.y∈x) → ∃y∈x.∀z∈x.z/∈y

• Replacement
∀x,−→y .[∀z∈x.∃!w.A(z,w,−→y )] → ∃u.∀w.w∈u ⇐⇒ ∃z∈x.A(z,w,−→y )

• Choice
∀x.∅/∈x → ∃f∈(x → ∪x).∀y∈x.f(y)∈y

1For a standard presentation, see Jech (2003). The presentation here follows Avigad (2021).
For detailed, historical discussion, see Maddy (1988,a).
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2.2 Large Cardinals
Borel sets of reals are subsets of ωω or R, closed under countable intersections
and unions.2 For all ordinals, a, such that 0 < a < ω1, and b < a, Σ0

a denotes
the open subsets of ωω formed under countable unions of sets in Π0

b , and Π0
a

denotes the closed subsets of ωω formed under countable intersections of Σ0
b .

Projective sets of reals are subsets of ωω, formed by complementations (ωω –
u, for u⊆ωω) and projections [p(u) = {⟨x1, . . . , xn⟩∈ωω | ∃y⟨x1, . . . , xn, y⟩∈u}].
For all ordinals a, such that 0 < a < ω, Π1

0 denotes closed subsets of ωω; Π1
a

is formed by taking complements of the open subsets of ωω, Σ1
a; and Σ1

a+1 is
formed by taking projections of sets in Π1

a.
The full power set operation defines the cumulative hierarchy of sets, V, such

that V0 = ∅; Va+1 = ℘(V0); and Vλ =
⋃

a<λVa.
In the inner model program (cf. Woodin, 2001, 2010, 2011; Kanamori,

2012,a,b), the definable power set operation defines the constructible universe,
L(R), in the universe of sets V, where the sets are transitive such that a∈C
⇐⇒ a⊆C; L(R) = Vω+1; La+1(R) = Def(La(R)); and Lλ(R) =

⋃
a<λ(La(R)).

Via inner models, Gödel (1940) proves the consistency of the generalized
continuum hypothesis, ℵa

ℵa = ℵa+1, as well as the axiom of choice, relative to
the axioms of ZFC. However, for a countable transitive set of ordinals, M, in
a model of ZF without choice, one can define a generic set, G, such that, for
all formulas, ϕ, either ϕ or ¬ϕ is forced by a condition, f , in G. Let M[G] =⋃

a<κMa[G], such that M0[G] = {G}; with λ < κ, Mλ[G] =
⋃

a<λMa[G]; and
Ma+1[G] = Va ∩ Ma[G].3 G is a Cohen real over M, and comprises a set-forcing
extension of M. The relation of set-forcing, ⊩, can then be defined in the ground
model, M, such that the forcing condition, f , is a function from a finite subset of
ω into {0,1}, and f ⊩ u∈G if f(u) = 1 and f ⊩ u/∈G if f(u) = 0. The cardinalities
of an open dense ground model, M, and a generic extension, G, are identical,
only if the countable chain condition (c.c.c.) is satisfied, such that, given a chain
– i.e., a linearly ordered subset of a partially ordered (reflexive, antisymmetric,
transitive) set – there is a countable, maximal antichain consisting of pairwise
incompatible forcing conditions. Via set-forcing extensions, Cohen (1963, 1964)
constructs a model of ZF which negates the generalized continuum hypothesis,
and thus proves the independence thereof relative to the axioms of ZF.4

Gödel (1946/1990: 1-2) proposes that the value of Orey sentences such as
the GCH might yet be decidable, if one avails of stronger theories to which new
axioms of infinity – i.e., large cardinal axioms – are adjoined.5 He writes that:
‘In set theory, e.g., the successive extensions can be represented by stronger and
stronger axioms of infinity. It is certainly impossible to give a combinatorial
and decidable characterization of what an axiom of infinity is; but there might

2See Koellner (2013), for the presentation, and for further discussion, of the definitions in
this and the subsequent paragraph.

3See Kanamori (2012,a: 2.1; 2012,b: 4.1), for further discussion.
4See Kanamori (2008), for further discussion.
5See Kanamori (2007), for further discussion. Kanamori (op. cit.: 154) notes that Gödel

(1931/1986: fn48a) makes a similar appeal to higher-order languages, in his proofs of the
incompleteness theorems.
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exist, e.g., a characterization of the following sort: An axiom of infinity is
a proposition which has a certain (decidable) formal structure and which in
addition is true. Such a concept of demonstrability might have the required
closure property, i.e. the following could be true: Any proof for a set-theoretic
theorem in the next higher system above set theory . . . is replaceable by a proof
from such an axiom of infinity. It is not impossible that for such a concept of
demonstrability some completeness theorem would hold which would say that
every proposition expressible in set theory is decidable from present axioms plus
some true assertion about the largeness of the universe of sets’.

For cardinals, x,a,C, C⊆a is closed unbounded in a, if it is closed [if x < C
and

⋃
(C∩a) = a, then a∈C] and unbounded (

⋃
C = a) (Kanamori, op. cit.:

360). A cardinal, S, is stationary in a, if, for any closed unbounded C⊆a, C∩S ̸=
∅ (op. cit.). An ideal is a subset of a set closed under countable unions, whereas
filters are subsets closed under countable intersections (361). A cardinal κ is
regular if the cofinality of κ is identical to κ. Uncountable regular limit cardinals
are weakly inaccessible (op. cit.). A strongly inaccessible cardinal is regular and
has a strong limit, such that if λ < κ, then 2λ < κ (op. cit.).

Large large cardinal axioms are defined by elementary embeddings.6 Ele-
mentary embeddings can be defined thus. For models A,B, and conditions ϕ,
j: A → B, ϕ⟨a1, . . . , an⟩ in A if and only if ϕ⟨j(a1), . . . , j(an)⟩ in B (363). A
measurable cardinal is defined as the ordinal denoted by the critical point of j,
crit(j) (Koellner and Woodin, 2010: 7). Measurable cardinals are inaccessible
(Kanamori, op. cit.).

Let κ be a cardinal, and η > κ an ordinal. κ is then η-strong, if there is a
transitive class M and an elementary embedding, j: V → M, such that crit(j) =
κ, j(κ) >η, and Vη⊆M (Koellner and Woodin, op. cit.).

κ is strong if and only if, for all η, it is η-strong (op. cit.).
If A is a class, κ is η-A-strong, if there is a j: V → M, such that κ is η-strong

and j(A∩Vκ)∩Vη = A∩Vη (op. cit.).
κ is a Woodin cardinal, if κ is strongly inaccessible, and for all A⊆Vκ, there

is a cardinal κA < κ, such that κA is η-A-strong, for all η such that κη, η < κ
(Koellner and Woodin, op. cit.: 8).

κ is superstrong, if j: V → M, such that crit(j) = κ and Vj(κ)⊆M, which
entails that there are arbitrarily large Woodin cardinals below κ (op. cit.).

Large large cardinal axioms can then be defined as follows.
∃xΦ is a large large cardinal axiom, because:
(i) Φx is a Σ2-formula, where ‘a sentence ϕ is a Σ2-sentence if it is of the

form: There exists an ordinal α such that Vα ⊩ ψ, for some sentence ψ’ (Woodin,
2019); and

(ii) if κ is a cardinal, such that V |= Φ(κ), then κ is strongly inaccessible.
For all generic partial orders P∈Vκ, VP |= Φ(κ); INS is a non-stationary

ideal; AG is the canonical representation of reals in L(R), i.e. the interpretation
of A in M[G]; H(κ) is comprised of all of the sets whose transitive closure is <

6The definitions in the remainder of this subsection follow the presentations in Koellner
and Woodin (2010) and Woodin (2010, 2011).
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κ (cf. Woodin, 2001: 569); and L(R)Pmax |= ⟨H(ω2), ∈, INS , AG⟩ |= ‘ϕ’. P is
a homogeneous partial order in L(R), such that the generic extension of L(R)P
inherits the generic invariance, i.e., the absoluteness, of L(R). Thus, L(R)Pmax

is (i) effectively complete, i.e. invariant under set-forcing extensions; and (ii)
maximal, i.e. satisfies all Π2-sentences and is thus consistent by set-forcing over
ground models (Woodin, ms: 28).

Assume ZFC and that there is a proper class of Woodin cardinals; A∈P(R)
∩ L(R); ϕ is a Π2-sentence; and V(G), s.t. ⟨H(ω2), ∈, INS , AG⟩ |= ‘ϕ’: Then,
it can be proven that L(R)Pmax |= ⟨H(ω2), ∈, INS , AG⟩ |= ‘ϕ’, where ‘ϕ’ :=
∃A∈Γ∞⟨H(ω1), ∈, A⟩ |= ψ.

The axiom of determinacy (AD) states that every set of reals, a⊆ωω is
determined.

Woodin’s (1999) Axiom (*) can be thus countenanced:
ADL(R) and L[(Pω1)] is a Pmax-generic extension of L(R),
from which it can be derived that 2ℵ0 = ℵ2. Thus, ¬CH; and so CH is

absolutely decidable.
In more recent work, Woodin (2019) provides evidence that CH might, by

contrast, be true. The truth of CH would follow from the truth of Woodin’s
Ultimate-L conjecture. The following definitions are from Woodin (op. cit.):
‘A transitive class is an inner model if[, for the class of ordinals Ord, - HK]
Ord ⊂ M, and M ⊩ ZFC’. L, the constructible reals, and HOD, the hereditarily
ordinal definable sets, are inner models. ‘Suppose N is an inner model and that
[a] is an uncountable (regular) cardinal of V. N has the [a]-cover property if for
all σ ⊂ N, if |σ| < [a] then there exists τ∈N such that: σ ⊂ τ and |τ | < [a].
N has the [a]-approximation property if for all sets X ⊂ N, the following are
equivalent: (i) X∈N and (ii) For all σ∈N, if |σ| < [a], then σ ∩ X∈N. Suppose N
is an inner model and that σ ⊂ N. Then N[σ] denotes the smallest inner model
M such that N ⊆ M and σ∈M. Suppose that N is an inner model and [a] is
strongly inaccessible. Then N has the [a]-genericity property if for all σ ⊆ [a],
if |σ| < [a]then N[σ] ∩ Va is a Cohen extension of N ∩ Va. The axiom for V
= Ultimate-L states then that ‘(i) There is a proper class of Woodin cardinals,
and (ii) For each Σ2-sentence ϕ, if ϕ holds in V then there is a universally Baire
set A ⊆ R such that HODL(A,R) ⊩ ϕ, where a set is universally Baire if for all
topological spaces Ω and for all continuous functions π : Ω → Rn, the preimage
of A by π has the property of Baire in the space Ω’. The property of Baire holds
if, for a subset of a topological space A ⊆ X, there is an open set U ⊂ X such
that A Ξ U is a meagre subset, where Ξ is the symmetric difference, i.e. the
union of relative complements, and a subset of a topological space is meagre if
it is a countable union of nowhere dense sets, where nowhere dense subsets of
the topology hold if their union with an open set is not dense.7 The Ultimate-L
Conjecture is then as follows: ‘Suppose that [a] is an extendible cardinal. [a] is
an extendible cardinal if for each λ > [a] there exists an elementary embedding
j : Vλ+1 → Vj(λ)+1 such that CRT(j) = [a] and j([a]) > λ. Then provably there

7https://en.wikipedia.org/wiki/PropertyofBaire, https://en.wikipedia.org/wiki/Symmetricdifference,
https://en.wikipedia.org/wiki/Meagreset.
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is an inner model N such that: 1. N has the [a]-cover and [a]-approximation
properties. 2. N has the [a]-genericity property. 3. N ⊩ ‘V = Ultimate-L”
(Woodin, op. cit.).

2.3 Ω-Logic
For partial orders, P, let VP = VB, where B is the regular open completion of
(P).8 Ma = (Va)M and MB

a = (VB
a)M = (VMB

a ). Sent denotes a set of sentences
in a first-order language of set theory. T∪{ϕ} is a set of sentences extending
ZFC. c.t.m abbreviates the notion of a countable transitive ∈-model. c.B.a.
abbreviates the notion of a complete Boolean algebra.

Define a c.B.a. in V, such that VB. Let VB
0 = ∅; VB

λ =
⋃

b<λVB
b , with λ a

limit ordinal; VB
a+1 = {f: X → B | X ⊆ VB

a}; and VB =
⋃

a∈OnVB
a.

ϕ is true in VB, if its Boolean-value is 1B, if and only if
VB |= ϕ iff JϕKB = 1B.
Thus, for all ordinals, a, and every c.B.a. B, VB

a ≡ (Va)V B iff for all x∈VB,
∃y∈VBJx = yKB = 1B iff Jx∈VBKB = 1B.

Then, VB
a |= ϕ iff VB |= ‘Va |= ϕ’.

Ω-logical validity can then be defined as follows:
For T∪{ϕ}⊆Sent,
T |=Ω ϕ, if for all ordinals, a, and c.B.a. B, if VB

a |= T, then VB
a |= ϕ.

Supposing that there exists a proper class of Woodin cardinals and if T∪{ϕ}⊆Sent,
then for all set-forcing conditions, P:

T |=Ω ϕ iff VT |= ‘T |=Ω ϕ’,
where T |=Ω ϕ ≡ ∅ |= ‘T |=Ω ϕ’.
The Ω-Conjecture states that V |=Ω ϕ iff VB |=Ω ϕ (Woodin, ms). Thus,

Ω-logical validity is invariant in all set-forcing extensions of ground models in
the set-theoretic universe.

The soundness of Ω-Logic is defined by universally Baire sets of reals. For
a cardinal, e, let a set A be e-universally Baire, if for all partial orders P of
cardinality e, there exist trees, S and T on ω X λ, such that A = p[T] and if
G⊆P is generic, then p[T]G = RG – p[S]G (Koellner, 2013). A is universally
Baire, if it is e-universally Baire for all e (op. cit.).

Ω-Logic is sound, such that V ⊢Ω ϕ → V |=Ω ϕ. However, the completeness
of Ω-Logic has yet to be resolved.

A E-coalgebra is a pair A = (A, µ), with A an object of C referred to as the
carrier of A, and µ: A → E(A) is an arrow in C, referred to as the transition
map of A (390).

A = ⟨A, µ: A → E(A)⟩ is dual to the category of algebras over the functor
µ (417-418). If µ is a functor on categories of sets, then coalgebraic models are
dual to Boolean-algebraic models of Ω-logical validity.

Leach-Krouse (ms) defines the modal logic of Ω-consequence as satisfying
the following axioms:

For a theory T and with □ϕ := TB
α ⊩ ZFC ⇒ TB

α ⊩ ϕ,
8The definitions in this section follow the presentation in Bagaria et al. (2006).
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ZFC ⊢ ϕ ⇒ ZFC ⊢ □ϕ
ZFC ⊢ □(ϕ → ψ) → (□ϕ → □ψ)
ZFC ⊢ □ϕ → ϕ ⇒ ZFC ⊢ ϕ
ZFC ⊢ □ϕ → □□ϕ
ZFC ⊢ □(□ϕ → ϕ) → □ϕ
□(□ϕ → ψ) ∨ □(□ψ ∧ ψ → ϕ), where this clause added to GL is the logic

of ‘true in all Vκ for all κ strongly inaccessible’ in ZFC.

2.4 Topic-Sensitive Two-Dimensional Truthmaker Seman-
tics

We will define a topic-sensitive truthmaker semantics over the foregoing epis-
temic modal algebra. According to truthmaker semantics for epistemic logic,
a modalized state space model is a tuple ⟨S, P, ≤, v⟩, where S is a non-empty
set of states, i.e. parts of the elements in A in the foregoing epistemic modal
algebra U , P is the subspace of possible states where states s and t comprise a
fusion when s ⊔ t∈P, ≤ is a partial order, and v: Prop → (2S x 2S) assigns a
bilateral proposition ⟨p+, p−⟩ to each atom p∈Prop with p+ and p− incompat-
ible (Hawke and Özgün, forthcoming: 10-11). Exact verification (⊢) and exact
falsification (⊣) are recursively defined as follows (Fine, 2017a: 19; Hawke and
Özgün, forthcoming: 11):

s ⊢ p if s∈JpK+

(s verifies p, if s is a truthmaker for p i.e. if s is in p’s extension);
s ⊣ p if s∈JpK−

(s falsifies p, if s is a falsifier for p i.e. if s is in p’s anti-extension);
s ⊢ ¬p if s ⊣ p
(s verifies not p, if s falsifies p);
s ⊣ ¬p if s ⊢ p
(s falsifies not p, if s verifies p);
s ⊢ p ∧ q if ∃v,u, v ⊢ p, u ⊢ q, and s = v ⊔ u
(s verifies p and q, if s is the fusion of states, v and u, v verifies p, and u

verifies q);
s ⊣ p ∧ q if s ⊣ p or s ⊣ q
(s falsifies p and q, if s falsifies p or s falsifies q);
s ⊢ p ∨ q if s ⊢ p or s ⊢ q
(s verifies p or q, if s verifies p or s verifies q);
s ⊣ p ∨ q if ∃v,u, v ⊣ p, u ⊣ q, and s = v ⊔ u
(s falsifies p or q, if s is the fusion of the states v and u, v falsifies p, and u

falsifies q);
s ⊢ ∀xϕ(x) if ∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and s = s1 ⊔ . . .

⊔ sn

[s verifies ∀xϕ(x) "if it is the fusion of verifiers of its instances ϕ(a1), . . . ,
ϕ(an)" (Fine, 2017c)];

s ⊣ ∀xϕ(x) if s ⊣ ϕ(a) for some individual a in a domain of individuals (op.
cit.)
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[s falsifies ∀xϕ(x) "if it falsifies one of its instances" (op. cit.)];
s ⊢ ∃xϕ(x) if s ⊢ ϕ(a) for some individual a in a domain of individuals (op.

cit.)
[s verifies ∃xϕ(x) "if it verifies one of its instances ϕ(a1), . . . , ϕ(an)" (op.

cit.)];
s ⊣ ∃xϕ(x) if ∃s1, . . . , sn, with s1 ⊣ ϕ(a1), . . . , sn ⊣ ϕ(an), and s = s1 ⊔ . . .

⊔ sn (op. cit.)
[s falsifies ∃xϕ(x) "if it is the fusion of falsifiers of its instances" (op. cit.)];
s exactly verifies p if and only if s ⊢ p if s∈JpK;
s inexactly verifies p if and only if s ▷ p if ∃s’≤S, s’ ⊢ p; and
s loosely verifies p if and only if, ∀v, s ⊔ v ⊢ p (35-36);
s ⊢ Aϕ if and only if for all u∈P there is a u’∈P such that u’ ⊔ u∈P and u’

⊢ ϕ, where Aϕ denotes the apriority of ϕ; and
s ⊣ Aϕ if and only if there is a v∈P such that for all u∈P either v ⊔ u/∈P or

u ⊣ ϕ;
s ⊢ A(Aϕ) if and only if for all u∈P there is a u’∈P such that u’ ⊔ u ∈P and

u’ ⊢ ϕ and there is a u”∈P such that u’ ⊔ u”∈P and u” ⊢ ϕ;
s ⊢ A(∀xϕ(x)) if and only if for all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

∃s1, . . . , sn, with s1 ⊢ ϕ(a1), . . . , sn ⊢ ϕ(an), and u’ = s1 ⊔ . . . ⊔ sn];
s ⊢ A(∃xϕ(x)) if and only if or all u∈P there is a u’∈P such that u ⊢ [u’ ⊢

ϕ(a)] for some individual a in a domain of individuals (op. cit.).
In order to account for two-dimensional indexing, we augment the model,

M, with a second state space, S*, on which we define both a new parthood
relation, ≤*, and partial function, V*, which serves to map propositions in a
domain, D, to pairs of subsets of S*, {1,0}, i.e. the verifier and falsifier of p,
such that JpK+ = 1 and JpK− = 0. Thus, M = ⟨S, S*, D, ≤, ≤*, V, V*⟩. The
two-dimensional hyperintensional profile of propositions may then be recorded
by defining the value of p relative to two parameters, c,i: c ranges over subsets
of S, and i ranges over subsets of S*.

(*) M,s∈S,s*∈S* ⊢ p iff:
(i) ∃csJpKc,c = 1 if s∈JpK+; and
(ii) ∃is∗JpKc,i = 1 if s*∈JpK+

(Distinct states, s,s*, from distinct state spaces, S,S*, provide a multi-
dimensional verification for a proposition, p, if the value of p is provided a
truthmaker by s. The value of p as verified by s determines the value of p as
verified by s*).

We say that p is hyper-rigid iff:

(**) M,s∈S,s*∈S* ⊢ p iff:
(i) ∀c’sJpKc,c′ = 1 if s∈JpK+; and
(ii) ∀is∗JpKc,i = 1 if s*∈JpK+

Epistemic (primary), subjunctive (secondary), and 2D hyperintensions can
be defined as follows, where hyperintensions are functions from states to ex-
tensions, and intensions are functions from worlds to extensions. Epistemic
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two-dimensional truthmaker semantics receives substantial motivation by its
capacity (i) to model conceivability arguments involving hyperintensional meta-
physics, and (ii) to avoid the problem of mathematical omniscience entrained
by intensionalism about propositions:

• Epistemic Hyperintension:
pri(x) = λs.JxKs,s, with s a state in the state space defined over the
foregoing epistemic modal algebra, U

• Subjunctive Hyperintension:
secv@(x) = λw.JxKv@,w, with w a state in metaphysical state space W

In epistemic two-dimensional semantics, the value of a formula or term rel-
ative to a first parameter ranging over epistemic scenarios determines the value
of the formula or term relative to a second parameter ranging over metaphysi-
cally possible worlds. The dependence is recorded by 2D-intensions. Chalmers
(2006: 102) provides a conditional analysis of 2D-intensions to characterize the
dependence: "Here, in effect, a term’s subjunctive intension depends on which
epistemic possibility turns out to be actual. / This can be seen as a mapping
from scenarios to subjunctive intensions, or equivalently as a mapping from (sce-
nario, world) pairs to extensions. We can say: the two-dimensional intension
of a statement S is true at (V, W) if V verifies the claim that W satisfies S.
If [A]1 and [A]2 are canonical descriptions of V and W, we say that the two-
dimensional intension is true at (V, W) if [A]1 epistemically necessitates that
[A]2 subjunctively necessitates S. A good heuristic here is to ask "If [A]1 is the
case, then if [A]2 had been the case, would S have been the case?". Formally,
we can say that the two-dimensional intension is true at (V, W) iff ’□1([A]1 →
□2([A]2 → S))’ is true, where ’□1’ and ’□2’ express epistemic and subjunctive
necessity respectively".

• 2D-Hyperintension:
2D(x) = λsλwJxKs,w = 1.

If a formula is two-dimensional and the two parameters for the formula
range over distinct spaces, then there won’t be only one subject matter for
the formula, because total subject matters are construed as sets of verifiers
and falsifiers and there will be distinct verifiers and falsifiers relative to each
space over which each parameter ranges. This is especially clear if one space is
interpreted epistemically and another is interpreted metaphysically. Availing of
topics, i.e. subject matters, however, and assigning the same topics to each of
the states from the distinct spaces relative to which the formula gets its value
is one way of ensuring that the two-dimensional formula has a single subject
matter.

Following the presentation of topic models in Berto (2018; 2019), Canavotto
et al (2020), and Berto and Hawke (2021), atomic topics comprising a set of
topics, T, record the hyperintensional intentional content of atomic formulas,
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i.e. what the atomic formulas are about at a hyperintensional level. Topic
fusion is a binary operation, such that for all x, y, z∈T, the following properties
are satisfied: idempotence (x � x = x), commutativity (x � y = y � x), and
associativity [(x � y) � z = x � (y � z)] (Berto, 2018: 5). Topic parthood is
a partial order, ≤, defined as ∀x,y∈T(x ≤ y ⇐⇒ x � y = y) (op. cit.: 5-6).
Atomic topics are defined as follows: Atom(x) ⇐⇒ ¬∃y < x, with < a strict
order. Topic parthood is thus a partial ordering such that, for all x, y, z∈T, the
following properties are satisfied: reflexivity (x ≤ x), antisymmetry (x ≤ y ∧ y
≤ x → x = y), and transitivity (x ≤ y ∧ y ≤ z → x ≤ z) (6). A topic frame can
then be defined as {W, R, T, �, t}, with t a function assigning atomic topics to
atomic formulas. For formulas, ϕ, atomic formulas, p, q, r (p1, p2, . . . ), and a
set of atomic topics, Utϕ = {p1, . . . pn}, the topic of ϕ, t(ϕ) = �Utϕ = t(p1) �
. . . � t(pn) (op. cit.). Topics are hyperintensional, though not as fine-grained
as syntax. Thus t(ϕ) = t(¬¬ϕ), tϕ = t(¬ϕ), t(ϕ ∧ ψ) = t(ϕ) � t(ψ) = t(ϕ ∨
ψ) (op. cit.).

The diamond and box operators can then be defined relative to topics:
⟨M,w⟩ ⊩ ♢tϕ iff ⟨Rw,t⟩(ϕ)
⟨M,w⟩ ⊩ □tϕ iff [Rw,t](ϕ), with
⟨Rw,t⟩(ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ∩ ϕ ̸= ∅ and t’(ϕ) ≤ t(ϕ)
[Rw,t](ϕ) := {w’∈Wt’∈T | Rw,t[w’, t’] ⊆ ϕ and t’(ϕ) ≤ t(ϕ).
We can then combine topics with truthmakers rather than worlds, thus coun-

tenancing doubly hyperintensional semantics, i.e. topic-sensitive epistemic two-
dimensional truthmaker semantics:

• Topic-Sensitive Epistemic Hyperintension:
prit(x) = λsλt.JxKs∩t,s∩t, with s a truthmaker from an epistemic state
space.

• Topic-Sensitive Subjunctive Hyperintension:
secv@∩t(x) = λwλt.JxKv@∩t,w∩t, with w a truthmaker from a metaphysical
state space.

• Topic-Sensitive 2D-Hyperintension:
2D(x) = λsλwλtJxKs∩t,w∩t = 1.

Topic-sensitive two-dimensional truthmaker semantics can be availed of to
account for the interaction between the epistemic and metaphysical profiles
of abstraction principles, set-theoretic axioms including large cardinal axioms,
rational intuition, and indefinite extensibility.

2.5 Two-dimensional Hyperintensionality and Ω-logic
Finally, the axioms of the modal logic of Ω-consequence can be rendered hyper-
intensional as follows:

For a theory T and with A(□ϕ) := for all t∈P there is a t’∈P such that t’
⊔ t ∈P and t’ ⊢ ‘TB

α ⊩ ZFC ⇒ TB
α ⊩ ϕ’, where □ is interpreted as TB

α ⊩ ZFC
⇒ TB

α ⊩ ϕ,
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ZFC ⊢ ϕ ⇒ ZFC ⊢ A(□ϕ)
ZFC ⊢ A[□(ϕ → ψ) → (□ϕ → □ψ)]
ZFC ⊢ A(□ϕ) → ϕ ⇒ ZFC ⊢ ϕ
ZFC ⊢ A(□ϕ) → A(□□ϕ)
ZFC ⊢ A[□(□ϕ → ϕ)] → A(□ϕ)
A[□(□ϕ → ψ) ∨ □(□ψ ∧ ψ → ϕ)].
The Epistemic Church-Turing Thesis and the axioms of epistemic set theory

are further rendered hyperintensional in Bowen (2023).

2.6 An Abstraction Principle for Epistemic (Hyper)intensions
In this section, I specify a homotopic abstraction principle for epistemic (hy-
per)intensions. Intensional isomorphism, as a jointly necessary and sufficient
condition for the identity of intensions, is first proposed in Carnap (1947: §14).
The isomorphism of two intensional structures is argued to consist in their logi-
cal, or L-, equivalence, where logical equivalence is co-extensive with the notions
of both analyticity (§2) and synonymy (§15). Carnap writes that: ’[A]n expres-
sion in S is L-equivalent to an expression in S’ if and only if the semantical
rules of S and S’ together, without the use of any knowledge about (extra-
linguistic) facts, suffice to show that the two have the same extension’ (p. 56),
where semantical rules specify the intended interpretation of the constants and
predicates of the languages (4).9 The current approach differs from Carnap’s
by basing the equivalence relation necessary for an abstraction principle for
epistemic intensions on Voevodsky’s (2006) Univalence Axiom, which collapses
identity with isomorphism in the setting of intensional type theory.10

Topological Semantics
In the topological semantics for modal logic, a frame is comprised of a set of
points in topological space, X, and an accessibility relation, R:
F = ⟨X,R⟩;
X = (Xx)x∈X ; and
R = (Rxy)x,y∈X iff Rx ⊆ Xx x Xx, s.t. if Rxy, then ∃o⊆X, with x∈o s.t.
∀y∈o(Rxy),
where the set of points accessible from a privileged node in the space is said to
be open.11 A model defined over the frame is a tuple, M = ⟨F,V⟩, with V a

9For criticism of Carnap’s account of intensional isomorphism, based on Carnap’s (1937:
17) ’Principle of Tolerance’ to the effect that pragmatic desiderata are a permissible constraint
on one’s choice of logic, see Church (1954: 66-67).

10Note further that, by contrast to Carnap’s approach, epistemic intensions are here dis-
tinguished from linguistic intensions. For topological Boolean-valued models of epistemic set
theory – i.e., a variant of ZF with the axioms augmented by epistemic modal operators in-
terpreted as informal provability and having a background logic satisfying S4 – see Scedrov
(1985), Flagg (1985), and Goodman (1990).

11In order to ensure that the Kripke semantics matches the topological semantics, X must
further be Alexandrov; i.e., closed under arbitrary unions and intersections. Thanks here to
xx.
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valuation function from subsets of points in F to propositonal variables taking
the values 0 or 1. Necessity is interpreted as an interiority operator on the
space:
M,x ⊩ □ϕ iff ∃o⊆X, with x∈o, such that ∀y∈o M,y ⊩ ϕ.

Homotopy Theory
Homotopy Theory countenances the following identity, inversion, and
concatenation morphisms, which are identified as continuous paths in the
topology. The formal clauses, in the remainder of this section, evince how
homotopic morphisms satisfy the properties of an equivalence relation.12

Reflexivity
∀x,y:A∀p(p : x =A y) : τ(x,y,p), with A and τ designating types, ’x:A’
interpreted as ’x is a token of type A’, p • q is the concatenation of p and q,
reflx: x =A x for any x:A is a reflexivity element, and e:

∏
x:Aτ(a,a,reflα) is

a dependent function13:
∀α:A∃e(α) : τ(α,α,reflα);
p,q : (x =A y)
∃r∈e : p =(x=Ay) q
∃µ : r = (p=(x=Ay)q) s.

Symmetry
∀A∀x,y:A∃HΣ(x=y → y=x)
HΣ := p 7→ p−1, such that
∀x:A(reflx ≡ reflx

−1).

Transitivity
∀A∀x,y:A∃HT (x=y → y=z → x=z)
HT := p 7→ q 7→ p • q, such that
∀x:A[reflx • reflx ≡ reflx].

Homotopic Abstraction∏
x:AB(x) is a dependent function type. For all type families A,B, there is a

homotopy:
12The definitions and proofs at issue can be found in the Univalent Foundations Program

(op. cit.: ch. 2.0-2.1). A homotopy is a continuous mapping or path between a pair of
functions.

13A dependent function is a function type ‘whose codomain type can vary depending on
the element of the domain to which the function is applied’ (Univalent Foundations Program
(op. cit.: §1.4).
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H := [(f ∼ g) :≡
∏

x:A(f(x) = g(x)], where∏
f :A→B [(f ∼ f) ∧ (f ∼ g → g ∼ f) ∧ (f ∼ g → g ∼ h → f ∼ h)],

such that, via Voevodsky’s (op. cit.) Univalence Axiom, for all type families
A,B:U, there is a function:
idtoeqv : (A =U B) → (A ≃ B),
which is itself an equivalence relation:
(A =U B) ≃ (A ≃ B).

Epistemic intensions take the form,
pri(x) = λc.JxKc,c,
with c an epistemically possible world.
Abstraction principles for epistemic intensions take, then, the form of func-

tion type equivalence:

• ∃f,g[f(x) = g(x)] ≃ [f(x) ≃ g(x)].14

3 Discussion
This section examines the philosophical significance of coalgebras and the Boolean-
valued models of set-theoretic languages to which they are dual. I argue that,
similarly to second-order logical consequence, (i) the ‘mathematical entangle-
ment’ of Ω-logical validity does not undermine its status as a relation of pure
logic; and (ii) both the modal profile and model-theoretic characterization of
Ω-logical consequence provide a guide to its epistemic tractability.15 I argue,
then, that there are several considerations adducing in favor of the claim that
the interpretation of the concept of set constitutively involves hyperintensional
notions. The role of coalgebras in (i) characterizing the modal profile of Ω-logical
consequence, and (ii) being constitutive of the hyperintensional understanding-
conditions for the concept of set, provides, then, support for a realist conception
of the cumulative hierarchy.

3.1 Ω-Logical Validity is Genuinely Logical
Frege’s (1884/1980; 1893/2013) proposal – that cardinal numbers can be ex-
plained by specifying a biconditional between the identity of, and an equivalence

14Observational type theory countenances ‘structure identity principles’ which are
type equivalences between identification types, and the theory is said to be observa-
tional because the type formation rules satisfy structure preserving definitional equal-
ity. Higher observational type theory holds for propositional equality. ‘The idea of
higher observational type theory is to make these and analogous structural characteri-
zations of identification types be part of their definitional inference rules, thus building
the structure identity principle right into the rewrite rules of the type theory’ (2023:
https://ncatlab.org/nlab/show/higher+observational+type+theory). Shulman (2022) argues
that higher observational type theory is one way to make the Univalence Axiom computable.
Wright (2012a: 120) defines Hume’s Principle as a pair of inference rules, and higher ob-
servational type theory might be one way to make Hume’s Principle and other abstraction
principles computable.

15The phrase, ‘mathematical entanglement’, is owing to Koellner (2010: 2) who attributes
the phrase to Parsons.
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relation on, concepts, expressible in the signature of second-order logic – is the
first attempt to provide a foundation for mathematics on the basis of logical
axioms rather than rational or empirical intuition. In Frege (1884/1980. cit.:
68) and Wright (1983: 104-105), the number of the concept, A, is argued to be
identical to the number of the concept, B, if and only if there is a one-to-one
correspondence between A and B, i.e., there is a bijective mapping, R, from A
to B. With Nx: a numerical term-forming operator,

• ∀A∀B[Nx: A = Nx: B ≡ ∃R[∀x[Ax → ∃y(By ∧ Rxy ∧ ∀z(Bz ∧ Rxz →
y = z))] ∧ ∀y[By → ∃x(Ax ∧ Rxy ∧ ∀z(Az ∧ Rzy → x = z))]]].

Frege’s Theorem states that the Dedekind-Peano axioms for the language of
arithmetic can be derived from the foregoing abstraction principle, as augmented
to the signature of second-order logic and identity.16 Thus, if second-order logic
may be counted as pure logic, despite that domains of second-order models
are definable via power set operations, then one aspect of the philosophical
significance of the abstractionist program consists in its provision of a foundation
for classical mathematics on the basis of pure logic as augmented with non-
logical implicit definitions expressed by abstraction principles.

There are at least three reasons for which a logic defined in ZFC might
not undermine the status of its consequence relation as being logical. The first
reason for which the mathematical entanglement of Ω-logical validity might be
innocuous is that, as Shapiro (1991: 5.1.4) notes, many mathematical properties
cannot be defined within first-order logic, and instead require the expressive
resources of second-order logic. For example, the notion of well-foundedness
cannot be expressed in a first-order framework, as evinced by considerations of
compactness. Let E be a binary relation. Let m be a well-founded model, if
there is no infinite sequence, a0, . . . , ai, such that Ea0, . . . , Eai+1 are all true.
If m is well-founded, then there are no infinite-descending E-chains. Suppose
that T is a first-order theory containing m, and that, for all natural numbers, n,
there is a T with n + 1 elements, a0, . . . , an, such that ⟨a0, a1⟩, . . . , ⟨an, an−1⟩
are in the extension of E. By compactness, there is an infinite sequence such
that that a0 . . . ai, s.t. Ea0, . . . , Eai+1 are all true. So, m is not well-founded.

By contrast, however, well-foundedness can be expressed in a second-order
framework:

∀X[∃xXx → ∃x[Xx ∧ ∀y(Xy → ¬Eyx)]], such that m is well-founded iff
every non-empty subset X has an element x, s.t. nothing in X bears E to x.

One aspect of the philosophical significance of well-foundedness is that it
provides a distinctively second-order constraint on when the membership rela-
tion in a given model is intended. This contrasts with Putnam’s (1980) claim,
that first-order models mod can be intended, if every set s of reals in mod is such
that an ω-model in mod contains s and is constructible, such that – given the

16Cf. Dedekind (1888/1963) and Peano (1889/1967). See Wright (1983: 154-169) for a proof
sketch of Frege’s theorem; Boolos (1987) for the formal proof thereof; and Parsons (1964) for
an incipient conjecture of the theorem’s validity.
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Downward Lowenheim-Skolem theorem17 – if mod is non-constructible but has
a submodel satisfying ‘s is constructible’, then the model is non-well-founded
and yet must be intended. The claim depends on the assumption that general
understanding-conditions and conditions on intendedness must be co-extensive,
to which I will return in Section 3.2

A second reason for which Ω-logic’s mathematical entanglement might not be
pernicious, such that the consequence relation specified in the Ω-logic might be
genuinely logical, may again be appreciated by its comparison with second-order
logic. Shapiro (1998) defines the model-theoretic characterization of logical
consequence as follows:

‘(10) Φ is a logical consequence of [a model] Γ if Φ holds in all possibilities
under every interpretation of the nonlogical terminology which holds in Γ’ (148).

A condition on the foregoing is referred to as the ‘isomorphism property’,
according to which ‘if two models M, M’ are isomorphic vis-a-vis the nonlogical
items in a formula Φ, then M satisfies Φ if and only if M’ satisfies Φ’ (151).

Shapiro argues, then, that the consequence relation specified using second-
order resources is logical, because of its modal and epistemic profiles. The
epistemic tractability of second-order validity consists in ‘typical soundness the-
orems, where one shows that a given deductive system is truth-preserving’ (154).
He writes that: ‘[I]f we know that a model is a good mathematical model of
logical consequence (10), then we know that we won’t go wrong using a sound
deductive system. Also, we can know that an argument is a logical consequence
. . . via a set-theoretic proof in the metatheory’ (154-155).

The modal profile of second-order validity provides a second means of ac-
counting for the property’s epistemic tractability. Shapiro argues, e.g., that: ‘If
the isomorphism property holds, then in evaluating sentences and arguments,
the only ‘possibility’ we need to ‘vary’ is the size of the universe. If enough sizes
are represented in the universe of models, then the modal nature of logical con-
sequence will be registered . . . [T]he only ‘modality’ we keep is ‘possible size’,
which is relegated to the set-theoretic metatheory’ (152).

Shapiro’s remarks about the considerations adducing in favor of the logi-
cality of non-effective, second-order validity generalize to Ω-logical validity. In
the previous section, the modal profile of Ω-logical validity was codified by
the duality between the category, A, of coalgebraic modal logics and complete
Boolean-valued algebraic models of Ω-logic. As with Shapiro’s definition of log-
ical consequence, where Φ holds in all possibilities in the universe of models
and the possibilities concern the ‘possible size’ in the set-theoretic metatheory,
the Ω-Conjecture states that V |=Ω ϕ iff VB |=Ω ϕ, such that Ω-logical validity
is invariant in all set-forcing extensions of ground models in the set-theoretic
universe.

Finally, the epistemic tractability of Ω-logical validity is secured, both – as
on Shapiro’s account of second-order logical consequence – by its soundness, but
also by its being the dual of coalgebras.

17The Downward Lowenheim-Skolem theorem claims that for any first-order model M , M
has a submodel M ′ whose domain is at most denumerably infinite, s.t. for all assignments s
on, and formulas ϕ(x) in, M ′, M ,s⊩ ϕ(x) ⇐⇒ M ′,s⊩ ϕ(x).
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3.2 Hyperintensionality and the Concept of Set
In this section, I argue, finally, that the hyperintensional profile of Ω-logic can
be availed of in order to account for the understanding-conditions of the concept
of set.

Putnam (op. cit.: 473-474) argues that defining models of first-order theories
is sufficient for both understanding and specifying an intended interpretation
of the latter. Wright (1985: 124-125) argues, by contrast, that understanding-
conditions for mathematical concepts cannot be exhausted by the axioms for
the theories thereof, even on the intended interpretations of the theories. He
suggests, e.g., that:

‘[I]f there really were uncountable sets, their existence would surely have to
flow from the concept of set, as intuitively satisfactorily explained. Here, there
is, as it seems to me, no assumption that the content of the ZF-axioms cannot
exceed what is invariant under all their classical models. [Benacerraf] writes,
e.g., that: ‘It is granted that they are to have their ‘intended interpretation’: ‘∈’
is to mean set-membership. Even so, and conceived as encoding the intuitive
concept of set, they fail to entail the existence of uncountable sets. So how can
it be true that there are such sets? Benacerraf’s reply is that the ZF-axioms are
indeed faithful to the relevant informal notions only if, in addition to ensuring
that ‘∈’ means set-membership, we interpret them so as to observe the constraint
that ‘the universal quantifier has to mean all or at least all sets’ (p. 103).
It follows, of course, that if the concept of set does determine a background
against which Cantor’s theorem, under its intended interpretation, is sound,
there is more to the concept of set that can be explained by communication of
the intended sense of ‘∈’ and the stipulation that the ZF-axioms are to hold.
And the residue is contained, presumably, in the informal explanations to which,
Benacerraf reminds us, Zermelo intended his formalization to answer. At least,
this must be so if the ‘intuitive concept of set’ is capable of being explained at
all. Yet it is notable that Benacerraf nowhere ventures to supply the missing
informal explanation – the story which will pack enough into the extension of
‘all sets’ to yield Cantor’s theorem, under its intended interpretation, as a highly
non-trivial corollary’ (op. cit).

In order to provide the foregoing explanation in virtue of which the concept
of set can be shown to be associated with a realistic notion of the cumulative
hierarchy, I will argue that there are several points in the model theory and epis-
temology of set-theoretic languages at which the interpretation of the concept
of set constitutively involves hyperintensional notions. The hyperintensionality
at issue is consistent with realist positions with regard to both truth values and
the ontology of abstracta.

One point is in the coding of the signature of the theory, T, in which Gödel’s
incompleteness theorems are proved (cf. Halbach and Visser, 2014). The choice
of coding bridges the numerals in the language with the properties of the target
numbers. The choice of coding is therefore intensional, and has been marshaled
in order to argue that the very notion of syntactic computability – via the equiv-
alence class of partial recursive functions, λ-definable terms, and the transition
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functions of discrete-state automata such as Turing machines – is constitutively
semantic (cf. Rescorla, 2015). The choice of coding can be hyperintensional
if the coding is topic-sensitive and verified by truthmakers. Further points at
which hyperintensionality can be witnessed in the phenomenon of self-reference
in arithmetic are introduced by Reinhardt (1986). Reinhardt (op. cit.: 470-472)
argues that the provability predicate can be defined relative to the minds of par-
ticular agents – similarly to Quine’s (1968) and Lewis’ (1979) suggestion that
possible worlds can be centered by defining them relative to parameters ranging
over tuples of spacetime coordinates or agents and locations – and that a the-
oretical identity statement can be established for the concept of the foregoing
minds and the concept of a computable system. A hyperintensional semantics
for provability logic is suggested in Bowen (2023).

A second point at which understanding-conditions may be shown to be con-
stitutively hyperintensional can be witnessed by the conditions on the epistemic
entitlement to assume that the theory in which Gödel’s second incompleteness
theorem is proved is consistent (cf. Dummett, 1963/1978; Wright, 1985). Wright
(op. cit.: 91, fn.9) suggests that ‘[T]o treat [a] proof as establishing consistency
is implicitly to exclude any doubt . . . about the consistency of first-order num-
ber theory’. Wright’s elaboration of the notion of epistemic entitlement, appeals
to a notion of rational ‘trust’, which he argues is recorded by the calculation of
‘expected epistemic utility’ in the setting of decision theory (2004; 2014: 226,
241). Wright notes that the rational trust subserving epistemic entitlement
will be pragmatic, and makes the intriguing point that ‘pragmatic reasons are
not a special genre of reason, to be contrasted with e.g. epistemic, prudential,
and moral reasons’ (2012b: 484). Crucially, however, the very idea of expected
epistemic utility in the setting of decision theory makes implicit appeal to epis-
temically possibly worlds or hyperintensional epistemic states.

A third consideration adducing in favor of the thought that grasp of the con-
cept of set might constitutively possess a hyperintensional profile is that the con-
cept can have a hyperintension – i.e., a function from states to extensions. The
modal similarity types in the coalgebraic modal logic may then be interpreted as
dynamic-interpretational modalities, where the dynamic-interpretational modal
operator has been argued to entrain the possible reinterpretations both of the
domains of the theory’s quantifiers (cf. Fine, 2005, 2006), as well as of the in-
tensions of non-logical concepts, such as the membership relation (cf. Uzquiano,
2015). A hyperintensional semantics for dynamic-interpretational modalities is
countenanced in Bowen (2023).

The fourth consideration avails directly of the hyperintensional profile of
Ω-logical consequence. While the above dynamic-interpretational states will
suffice for possible reinterpretations of mathematical terms, the absoluteness of
the consequence relation is such that, if the Ω-conjecture is true, then Ω-logical
validity is invariant in all possible set-forcing extensions of ground models in the
set-theoretic universe. The truth of the Ω-conjecture would thereby place an
indefeasible necessary condition on a formal understanding of the hyperintension
for the concept of set.
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4 Concluding Remarks
In this essay I have examined the philosophical significance of the duality be-
tween coalgebras and Boolean-valued algebraic models of Ω-logic. I argued that
– as with the property of validity in second-order logic – Ω-logical validity is
genuinely logical. I argued, then, that modal and hyperintensional coalgebras,
which characterize the hyperintensional profile of Ω-logical consequence, are con-
stitutive of the interpretation of mathematical concepts such as the membership
relation.
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