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Abstract

Faced with the mathematical possibility of non-Euclidean geometries, 19th Century geometers were tasked with the problem of
determining which among the possible geometries corresponds to that of our space. In this context, the contribution of the Belgian
philosopher-mathematician, Joseph Delboeuf, has been unduly neglected. The aim of this essay is to situate Delboeuf’s ideas
within the context of the philosophies of geometry of his contemporaries, such as Helmholtz, Russell and Poincaré. We elucidate
the central thesis, according to which Euclidean geometry is given special status on the basis of the relativity of magnitudes,
we uncover its hidden history and show that it is defensible within the context of the philosophies of geometry of the epoch.
Through this discussion, we also develop various ideas that have some relevance to present-day methods in gravitational physics
and cosmology.
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Dieser Stoff kann also vorgestellt werden als ein
physischer Raum; dessen Punkte sich in dem
geometrischen bewegen.

Bernhard Riemann
Gravitation und Lichts, 1853

Introduction

Following the discovery of the mathematical possibility
of non-Euclidean geometries by Lobachevsky (1829a,b), the
“problem of space”, that is, the problem of determining which
among the available geometries should be chosen as that which
represents the space of our physical world, drew the attention
of pre-relativistic physicists, philosophers and mathematicians
throughout the 19th Century. The well known contributions
of Helmholtz (1870, 1876), Riemann (1854), Poincaré (1898)
and Lie (1893) brought together an assemblage of empiricist
and neo-Kantian ideas which would give birth to new perspec-
tives, such as geometrical conventionalism. On one hand, neo-
Kantian strands of thought suggested that the geometry of space
should be something regarded as distinct from the material con-
tents therein; on the other hand, empiricists argued that geome-
try is only an abstraction from the observed behaviours of ma-
terial bodies. By considering space as a condition for the pos-
sibility of measurement rather than a condition for the possi-
bility of experience, Helmholtz developed a form of empiricist
neo-Kantianism, which had a profound and enduring influence
on later neo-Kantians and logical positivists (Ryckman, 2003;
Friedman, 2001, 2009).

There are, however, some problems with this standard 19th
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Century approach to the problem of space: Helmholtz’s “con-
ditions for the possibility of measurement” rely on an approx-
imately physically instantiated notion of rigid bodies, which
was undermined by later developments in special and general
relativity. Whereas Poincaré’s lesser emphasis on empiricism
arguably avoids this issue, the Helmholtzian views which he
adopts appear to be inconsistent with certain other aspects of
his philosophy of space (see sec. 3.3).

The aim of this paper is to introduce English-speaking au-
diences to Joseph Delboeuf’s alternative approach to the space
problem, which has been overlooked by recent accounts such
as Dewar and Eisenthal (2020); Heinzmann (2001). Although
Delboeuf’s work engages deeply with the Kantian tradition, he
is not even mentioned in recent neo-Kantian texts in the philos-
ophy of physics such as Friedman (2001, 2014/1983); Ryckman
(2005); Bitbol et al. (2009). The most significant acknowledge-
ment of Delboeuf’s contribution since the mid 20th Century
is by Torretti (2012/1978). But while Toretti recognises that
Delboeuf was “probably the earliest philosophical writer who
had first-hand acquaintance with the works of Lobachevsky”
(p.153), and acknowledges Delboeuf’s ideas as “interesting”
(p.298), he ultimately gives them a disfavorable verdict, and
even revives a fallacious objection to delboeuf’s philosophy
of geometry which had formerly been touted by Russell and
Poincaré (see sec. 3.2).

Delboeuf defended the apriority of Euclidean space on the
basis of the relativity of magnitudes. Although he developed
his ideas independently, the central argument dates back all the
way to Wallis (1696) (see sec. 2.2.1), and has recently been
revived by Čulina (2020, 2018, 2023). Delboeuf is unique in
that he gives this notion of the relativity of magnitude the status
of “first postulate”, thereby attempting to erect geometry upon
new foundations. Delboeuf rejected the prior systems of geom-
etry of Euclid, Lobachevsky, Mill and Kant on the basis that
none of these had rationally deduced the postulates or axioms
taken as primary. If geometry is the study of determinations
in space, Delboeuf claims that our concept of space is charac-
terised by the notion of “homogeneity” by which he means not
only that the properties of space are the same in all its parts,
but also that these are independent of its size (Delboeuf, 1860,
p.126). In other words, in geometry we must be able to consider
the shape and size of figures independently. For Delboeuf, this
notion of homogeneity is not an empirical fact about some “real
space” (Delboeuf, 1893), rather, it is the result of the process
of abstraction which the intellect undertakes in its effort to de-
scribe nature in terms of universal laws, i.e. to step outside of
the contingency of given (real) material objects.

While Delboeuf’s philosophy of science is a fascinating topic
in its own right, we will not dive too deeply into this topic here.
Our discussion will be mostly limited to situating this author’s
ideas concerning geometry within their historical context in the
19th Century and drawing parallels with ideas of other philoso-
phers and mathematicians. Among the novel arguments and
findings made in this essay: (1) We uncover a convergence of
thought between Delboeuf’s approach and an essay by Leibniz
titled Uniformis locus which has only been made available rel-
atively recently by De Risi (2005, 2007) (see section 2.3). (2)

we elucidate the fundamental difference between Helmholtz’s
empirically realisable motions, and Delboeuf’s symmetry con-
ditions, and argue that only the latter are relevant to the Kantian
conception of space (see section 3.1). (3) We refute Bertrand
Russell’s enduring ‘relative angles’ objection to Delboeuf’s no-
tion of the relativity of magnitudes (see section 3.2). (4) We
propose that Poincaré’s “principle of relative motion” and his
more general conception of the mathematical infinite can be
grounded in Delboeuf’s philosophy (see section 3.3). We con-
clude in section 4 with some suggestions concerning the rele-
vance of these findings to the methods of modern physics.

Given that Poincaré’s philosophy of space has some sig-
nificant similarities to Delbouef’s, is better-known than Del-
boeuf’s, and represents in some sense a lucid synthesis of many
of the findings that were made by investigators in the late 19th
Century, we have chosen in section 1 to set the scene by dis-
cussing certain key aspects of Poincaré’s philosophy of space
that do not directly involve the question of geometry, but which
are nonetheless deeply relevant to later discussions.

1. Preliminary remarks on Poincaré on space

While Poincaré is quite famous today for his geometrical
conventionalism (which will be discussed in section 2.1), other
aspects of his philosophy of space and mathematics are equally
significant and will help provide context for our subsequent
discussion of geometry. In this section, we will briefly cover
some of these aspects: (1) Poincaré’s revision of the Kantian
notion of synthetic a priori reasoning, (2) Poincaré’s empiricist
account of the distinction between changes of state and changes
of place, (3) the distinction between empirical objects and their
mathematical idealisations.

1.1. Mathematical reasoning
By the late 19th Century, Kant’s claim that mathematics con-

tains synthetic a priori propositions was being subjected to se-
vere criticism by the logicists. Frege and Russell attempted
to show that all true mathematical statements could be derived
from a basic set of concepts defined terminologically. Thus all
mathematical truths would be reduced to logic, without need of
intuitions.1 Poincaré, on the other hand, did not abandon the
notion of synthetic a priori reasoning, but rather, attempted to
revise it.2

Poincaré develops his conception of synthetic a priori knowl-
edge in the first chapter of Science and Hypothesis, titled On the
Nature of Mathematical Reasoning. Kant had claimed that the
basic propositions of arithmetic, such as 5 + 7 = 12, are syn-
thetic, since nowhere in the concept of the sum of 5 and 7 is
contained the concept of 12. Something additional is needed
for Kant, that is, an intuition of space in which the two quan-
tities can be placed side-by-side with one another, and the op-
eration of summation can be accomplished (Kant, 2004/1783,

1Note that for Frege, this meant that mathematics would be purely analytic,
whereas Russell viewed logic as synthetic.

2See (Folina, 2016/1992) for an in depth discussion of Poincaré’s neo-
Kantianism.
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p.18). Such a claim is controversial, in part because it depends
greatly upon how we define things. It is not too difficult to de-
fine our numbers in such a way that basic propositions of arith-
metic, such as 5+ 7 = 12 or 2+ 2 = 4 appear as analytic truths.
Unlike Kant, Poincaré does not argue that there is anything syn-
thetic in these basic propositions; instead, he claims that the so-
called “demonstrations” of these sums are really only analytic
“verifications”. However, these trivial verifications are not the
true subject matter of mathematics, on the contrary, Poincaré
(2015/1913, p.33) insists:

It may even be said the very object of the exact sci-
ences is to spare us these direct verifications.

The essence of mathematics, for Poincaré, lies in the ability
to generalise across an infinity of cases, using what is called
“reasoning by recurrence”, or “mathematical induction”. The
basic structure of a proof by induction proceeds as follows:

1. The theorem is proven for n = 1.
2. It is shown that if it is true for n = a, it must be true for

n = a + 1.
3. Therefore we know that it is true for n = 2, and likewise

n = 3, 4, 5.... By induction, we have shown that it must be
true for all n ∈ Z.

This enables one to make generalisations about some theorem
over an infinity of cases.3 It is in this possibility of reasoning
by recurrence—which Poincaré calls “the mathematical reason-
ing par excellence”—that he locates the true synthetic a priori
judgement (Poincaré, 2015/1913, p.39):

This rule, inaccessible to analytic demonstration and
to experience, is the veritable type of the synthetic a
priori judgment. [...] Mathematical induction, that is,
demonstration by recurrence, [...] imposes itself nec-
essarily because it is only the affirmation of a prop-
erty of the mind itself.

1.2. Empirical ground of space
In chapter IV of Science and Hypothesis, titled Space and

Geometry, Poincaré takes up the perspective of a naive in-
vestigator attempting to make sense of the world present to
his senses while lacking any pre-conceived notions about how
these ought to be organised and interpreted. How do we come
to the idea of space, and in particular, how do we distinguish be-
tween changes of position and changes of state (such as changes
in colour)? Poincaré presents this problem as follows (Poincaré,
2015/1913, p.70):

Whether an object changes its state or merely its posi-
tion, this is always translated for us in the same man-
ner: by a modification in an aggregate of impressions.
How then could we have been led to distinguish be-
tween the two?

3In section 3.3, we will argue that it is not the notion of infinity, but the a
priori concept of symmetry or mathematical equality that makes reasoning by
recurrence possible.

His solution is rather straight forward:

It is easy to account for. If there has only been a
change of position, we can restore the primitive ag-
gregate of impressions by making movements which
replace us opposite the mobile object in the same rel-
ative situation. We thus correct the modification that
happened and we reestablish the initial state by an in-
verse modification.

A change in spatial position is distinguished from a change in
state by the possibility of performing the reverse operation by
means of the correlative movement of our own bodies. In the
case of sight, this movement may also be performed by the “ap-
propriate movement of the eyeball.”

Now the possibility that certain “aggregates of impressions”
may be restored through our correlative movements depends
upon the existence of “solid bodies”, i.e. bodies which re-
tain the relations among their parts while changing position
with respect to us. Indeed, it is the observation of solid bod-
ies, Poincaré argues, that has taught us to distinguish between
changes of state and changes of position, such that, he con-
cludes:

if there were no solid bodies in nature, there would be
no geometry.

1.3. Mathematical idealisation

While this empiricist account of the origin of geometry is
persuasive, it does not lead directly to the complete mathemat-
ical notion of geometric space. While I may observe that as
a body recedes from me, I can restore its original size by ap-
proaching it once more, I can never infer from experience that
this will continue to be true if the body recedes to an arbitrar-
ily large distance. Should my concept of space therefore be
limited to distances for which the compensation is practically
realisable? Clearly, when we imagine objects in geometrical
space, we do not limit ourselves to distances which our bodies
are capable of traversing. Rather, we consider space as poten-
tially infinite in extent, and thereby we implicitly imagine an
idealised observer capable of visiting all parts of this space at
will to perform the necessary compensatory motions. The space
of geometry differs in this respect from the empirical condition
that motivated its invention.

It is even more clear that an idealisation is involved when
we place our representations in space-time.4 In space-time
we imagine bodies, extended in time as well as in space, and
thereby we implicitly invoke the possibility of an idealised ob-
server that may travel to the different parts of this space-time
and measure it with ideal rulers and clocks. But these motions
are by no means physically realisable. It is not even possible
to visit distant points which seem to lie in our plane of simul-
taneity, let alone to travel into the past. If geometry can, in any
sense, be said to have an empirical origin, it must have departed

4The present comments concerning space-time are not drawn directly from
Poincaré’s works, however, they are inspired by his discussions of the issues.

3



from its empirical roots in order to encompass the notion of
time.

A second issue concerning the difference between the empir-
ical and mathematical concepts of space is that no empirically
given “natural solid” is absolutely rigid. When we look at any
given body close enough we find motion and change in its struc-
ture, modifications due to heat, the vibrations of the constituent
particles, and so on. These contingencies make it impossible
for us to use empirical objects as standards for the definition of
a mathematical space. As Poincaré (2015/1913, p.79) puts it:

Geometry would be only the study of the movements
of solids; but in reality it is not occupied with natural
solids, it has for object certain ideal solids, absolutely
rigid, which are only a simplified and very remote
image of natural solids.

To reach the mathematical concept of space, we must substitute
our empirical notions of solid bodies with their ideal counter-
parts; and in so doing we substitute the empirically grounded,
physical concept of space—which we have no definite knowl-
edge of—with the pure, mathematical concept of space, of
which we have absolute knowledge a priori. Once we have
performed this substitution of the empirical objects with their
ideal counterparts we make it possible to apply the mathemati-
cal reasoning which Poincaré characterises as synthetic a priori:
While we may attempt to infer by physical induction that a rock
remains the same wherever it is placed in relation to the other
bodies of the universe, this knowledge will only ever be approx-
imate, contingent and subject to the possibility of being refuted
by experience. However, if my object is not a rock, but an ideal
rigid body in Euclidean space, I can say with absolute certainty
that it will retain the relations amongst its parts no matter where
it is placed in this space.

2. The problem of space’s geometry

In the first part of this section, we briefly recount the well-
known history of Helmholtz and Riemann’s canonical 19th
Century approach to the problem of spatial geometry which was
based on the notion of the free mobility of bodies (2.1). In the
latter parts (2.2 and 2.3), we discuss the alternative approach
of Delboeuf and some others which is based on the idea of the
relativity of magnitudes.

2.1. The axiom of free mobility
The repeated failures to prove the necessity of Euclid’s

fifth postulate on the basis of the first four culminated in
Lobachevsky’s construction of a self-consistent geometry based
on the denial of the parallel postulate (Lobachevsky, 1829a).
Just as theorems concerning shapes in Euclidean geometry can
be studied and proven, a corresponding set of theorems per-
taining the Lobachevsky’s hyperbolic geometry can be proven
mathematically. Which set of theorems is, then, true of our
space? This glaring ambiguity at the level of mathematics
prompted various thinkers, including Riemann and Helmholtz,
to seek an empirical ground for the validity of Euclidean geom-
etry, or lack thereof.

2.1.1. Riemann
Following from Gauss’ work on the geometry of curved sur-

faces, Riemann developed the general concept of a “multiply
extended manifold” whose curvature may vary from point to
point. Since the metrical properties of this manifold should be
grounded in empirical facts, this manifold needed to be sus-
ceptible of measurement, which implied the mobility of certain
quantities in space (Riemann, 1854):

Measuring involves the superposition of the quanti-
ties to be compared; it therefore requires a means of
transporting one quantity to be used as a standard for
the others.

The first hypothesis that Riemann explores is that “the length of
lines is independent of their configuration, so that every line can
be measured by every other.” This allows for a broad class of
possible geometries that we now know as Riemannian geome-
tries. Riemann also remarked that if we assume—not only that
lines are independent of configuration—but also that the bodies
are so, then:

it follows that the curvature is everywhere constant,
and the angle sum in all triangles is determined if it is
known in one.

2.1.2. Helmholtz
Helmholtz placed great emphasis on this latter idea, arguing

that the mobility of rigid bodies was a necessity for the possi-
bility of measurement, and concluded that only the spaces of
constant curvature could properly be considered as geometry
(Helmholtz, 1866, 1870). Helmholtz acknowledges, however,
that the natural bodies apparent to observation are never identi-
cal to our idealisations of these. In his latter paper (Helmholtz,
1870), Helmholtz approaches something like a Kantian view,
according to which the notion of a geometric figure would
be “formed independently of actual experience”. However,
Helmholtz insists that:

we should have to maintain that the axioms of geome-
try are not synthetic propositions, as Kant held them:
they would merely define what qualities and deport-
ment a body must have to be recognised as rigid.

Rather than being a condition for the possibility of representa-
tion, like Kant thought, space and its geometry become condi-
tions for the possibility of measurement, as it were.5 Helmholtz
finishes his essay by settling on a conventionalist stance accord-
ing to which: if taken apart from mechanical propositions, the
axioms of geometry “constitute a form into which any empiri-
cal content whatever will fit.” However, this is not only true of
Euclid’s axioms, but also of the axioms of spherical and pseu-
dospherical geometry (Helmholtz, 1870).6

5This view is elaborated by Russell (1898).
6The “pseudospherical” geometry is Helmholtz’s term for the hyperbolic

geometry of Lobachevsky and Bolyai.
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2.1.3. Poincaré

Following Helmholtz, Poincaré further developed this con-
ventionalist standpoint (Poincaré, 1898, 1905/1902). Accord-
ing to Poincaré any empirical assertion of some given geom-
etry over another is founded on a “disguised definition”; It is
a convention, and only an appeal to some extra-empirical the-
ory virtue such as “simplicity” may allow us to decide between
conventions. Poincaré’s preference for conventionalism, rather
than a purer form of Kantianism was grounded in his group-
theoretic approach to the problem. For Poincaré space is not a
form of the sensibility, since “sensations by themselves have
no spatial character”, rather the “sensible space” must be a
form of our understanding: “it is an instrument which serves us
not to represent things to ourselves, but to reason upon things”
(Poincaré, 1898).

However, the geometry of this form cannot be determined a
priori for Poincaré, since there are a multiplicity of conceiv-
able forms that we may use to reason on things. These are the
group structures, which are the objects of study of mathemat-
ics. The various transformations on a Euclidean space are only
one among a multitude of possible group structures that may
be employed if experience warrants it. From this point of view,
nothing truly distinguishes Euclidean geometry from the alter-
natives apart from its simplicity. The empirical observation that
it is at least approximately instantiated in the observable be-
haviours of natural solids and rays of light does not even distin-
guish it from geometries of very low curvature.

Despite claiming the conventionality of geometry, Poincaré
devotes very little attention in his work to geometries of chang-
ing curvature. The bulk of Poincaré’s discussion of the conven-
tionality of geometry in part II on Space (chapters III, IV and V)
of Science and Hypothesis concerns the geometries of constant
curvature. The reason for his neglect of the former is given in
the one passage in which they are briefly discussed (Poincaré,
2015/1913, p.63):

most of these definitions are incompatible with the
motion of a rigid figure, [...] These geometries of
Riemann, in many ways so interesting, could never
therefore be other than purely analytic and would not
lend themselves to demonstrations analogous to those
of Euclid.

Like Helmholtz, Poincaré rejects Riemann’s geometries of
changing curvature on the basis that they are incompatible with
the motion of rigid figures. However, for Poincaré the crucial
point here is that this incompatibility would undermine the very
aim of mathematics. Since the geometrical properties of figures
in a space of changing curvature would depend upon the value
of the curvature from place to place, it would become hopeless
to make those inductive generalisations that Poincaré views as
so central to mathematical reasoning. Particular propositions
about these geometries would not be synthetic, but analytic,
since they would depend upon how the curvature is defined to
change from point to point.

2.2. The relativity of magnitudes I: before Delboeuf
Helmholtz and Poincaré’s refutations of Kant’s Euclidean

a priori rest essentially on a single claim: that the geome-
tries of constant positive or negative curvature of Riemann
and Lobachevsky respectively may just as well serve as forms
into which the empirical content of our sensations may be
placed. These geometries, they say, have just the same right
to be viewed as “transcendentally given” as that of Euclid
(Helmholtz, 1870).

But is there not some characteristic of Euclidean space, be-
yond its mere “simplicity”, that sets it apart from those of
constant non-zero curvature? Indeed there is. It is that Eu-
clidean space remains similar to itself at different scales. In
other words, we may zoom into some part of this space with-
out changing anything about it. Thinking in terms of figures,
rather than space itself, Euclidean space is the only space which
allows for the possibility of incongruent similar figures (i.e.
figures which differ in size but possess the same shape). All
other geometries necessarily fail this test since curvature is a
scale-dependent property of space. For instance, the sum of the
angles of a triangle placed in Lobachevsky’s hyperbolic space
will shrink as the triangle is enlarged with respect to this space;
therefore, two equilateral triangles of different sizes will not be
similar.7

This criterion, by which Euclidean space can be uniquely
determined, seems to have only been considered a handful of
times in the history of geometry. For us, it is easy to become
conscious of it, since we have knowledge of non-Euclidean ge-
ometry, and we can thereby easily identify what characteristic
distinguishes Euclidean geometry by contrast. Prior to the de-
velopment of the theory of non-Euclidean geometries however,
it would have been more difficult to deduce the relationship be-
tween the absence of an absolute scale and the parallel postu-
late.

2.2.1. Wallis (1663)
The relationship between the possibility of similarities and

the parallel postulate was first recognised by the English math-
ematician John Wallis, Savilian Chair at Oxford, in 1663 (al-
though his proof was published in 1696 (Wallis, 1696)), over a
century prior to the development of the theory of non-Euclidean
geometries. Wallis attempted to show that Euclid’s fifth postu-
late can be deduced from ideas which are self-evident. Though
his proof is usually regarded as yet another failed historical at-
tempt to prove the parallel postulate, we will see that his argu-
ment is quite significant and profound.8

Wallis’s proof is in two parts:9

7Throughout this paper, we use the term “similar” in the geometrical sense
to denote figures of different sizes which have the same shape; we also some-
times refer to shape-preserving scale-transformations as “transformations by
similarity” or simply “similarities”.

8See for instance Jammer (2013, p.145) for a characterisation of Wallis’s
proof as a failed attempt to prove the parallel postulate.

9The original text is written in Latin by Wallis. We will not go through the
details of Wallis’s demonstration here; the reader can consult this in Hill (1925)
for a reconstruction of the proof in English. See also Therrien (2020) for a more
detailed discussion of Wallis’s proof.
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1. Firstly, Wallis demonstrates that Euclid’s fifth postulate is
identical to the possibility of constructing similar trian-
gles, that is, triangles which have the same shape though
they differ in size.

2. Secondly, Wallis provides a metaphysical argument for the
possibility of transformations by similarity. This is due to
the distinction between quality and quantity. Whereas, for
Wallis, the size of a figure is a quantity, the shape of a
figure belongs to the category of quality. Being different
categories, each of these two must be able to vary indepen-
dently of the other.

2.2.2. Carnot and Laplace
The next mention of this relationship between the possibility

of similar figures and the parallel postulate appears in a note in
Carnot’s Géometrie de Position (Carnot, 1803, p.481):10

The theory of parallels depends on a more primary
notion which appears to me to be of the same order
of clarity as that of the perfect equality or superpo-
sition of figures; this is the notion of similarity. It
seems to me that it can be regarded as a self-evident
principle, that that which exists as large, such as a
ball, a house, a drawing, can be made in small, and
vice-versa; by consequence, whatever figure we may
imagine, it is possible to imagine others of all sizes
and similar to the first, that-is-to-say of which all the
dimensions have amongst themselves the same pro-
portions as that of the first. This notion once admit-
ted, it is easy to establish the theory of parallels, with-
out recourse to the notion of infinity.

Though Carnot asserts that the proof is easy, he does not derive
it. Moreover, he does not cite Wallis’s proof, so it is not clear
whether or not he learned of it from there.

This idea is also mentioned by Laplace in passing amid a
discussion of the scale-invariance of the inverse-square law of
gravitational attraction (Laplace, 1835, p.471-472). Likewise
in a footnote we find:11

10Translation of: “La théorie des parallèles tient à une notion première qui
me paroı̂t être à-peu-près du même ordre de clarté que celle de l’égalité par-
faite ou de la superposition; c’est la notion de similitude. Il me semble qu’on
peut regarder comme un principe de première évidence, que ce qui existe en
grand, comme une boule, une maison, un dessin, peut être fait en petit et
réciproquement; que part conséquent, quelque figure qu’on veille imaginer,
il est possible d’en imaginer d’autres de toutes grandeurs et semblables à la
première, c’est-à-dire dont toutes les dimensions aient entre elles les mêmes
proportions que celles de la première. Cette notion une fois admise, il et facile
détablire la théorie des parallèles, sans recourir à la notion de l’infini.” (Em-
phasis in original).

11Translation of: “La perception de l’étendue renferme donc une propriété
spéciale, évidente par elle-meme et sans laquelle on no peut rigoureusement
établir les propriétés des parallèles. L’idée d’une étendue limitée, par exem-
ple du cercle, ne contient rien qui dépende de sa grandeur absolue. Mais, si
nous diminuons, par la pensée, son rayon, nous sommes portés invinciblement
à diminuer dans le meme rapport sa circonférence et les côtes de toutes les fig-
ures inscrites. Cette proportionnalité me parait être un postulatum bien plus
naturel que celui d’Euclide; il est curieux de la retrouver dans les résultats de la
pesanteur universelle.”

The perception of extension contains a special prop-
erty, self-evident and without which we cannot rigor-
ously establish the properties of parallels. The idea
of a limited extension, for example of the circle, con-
tains nothing which depends on its absolute size. But,
if we diminish, by thought, its radius, we are in-
evitably inclined to diminish in the same ratio its cir-
cumference and the sides of all the figures inscribed.
This proportionality appears to be a much more nat-
ural postulate than that of Euclid; it is curious to find
it again in the results of universal gravity.

Once again, the work of Wallis is not mentioned.

2.3. The relativity of magnitudes II: Delboeuf
Joseph Delboeuf was a Belgian psychologist, mathematician,

and philosopher. Although he spent the bulk of his career as
an experimental psychologist, he obtained doctoral degrees in
both philosophy and mathematics and was deeply concerned
with the foundations of geometry in his youth. While he was
studying philosophy at the University of Liège, his friend and
colleague François Folie had attempted to prove the necessity
of Euclid’s parallel postulate. Folie’s professor had pointed out
the questionable proposition involved, and this disappointment
led Folie to abandon the endeavour (Delboeuf, 1895, p.346).
Delboeuf, on the other hand, did not abandon his youthful am-
bitions, and some years later published a radical reconception
of geometry that would place Euclidean intuitions surely at its
foundation (Delboeuf, 1860).

The difficulty with Euclid’s fifth postulate draws investiga-
tors into a labyrinth from which they can only escape by a to-
tal revolution in thinking about geometry. In this respect, two
pathways are available; we may either (1) seek new founda-
tions for Euclidean geometry, or (2) we should absorb Euclid’s
geometry into a more general conception, of which Euclid’s is
only a special case. The second approach, that of the “neo-
geometers”, has been favoured by history. Delboeuf, on the
other hand, embarks upon the first project (Delboeuf, 1894b,
p.122). Lobachevsky’s discovery, for Delboeuf, did not dis-
prove the necessity of the parallel postulate in geometry; rather,
it only served to help us better understand what our Euclidean
intuitions are founded on.

2.3.1. The homogeneity of space
In his Prolégomènes Philosophiques De La Geometrie Et So-

lution Des Postulats (henceforth Prolégomènes) of 1860, Del-
boeuf independently rediscovers the insight of Wallis, Carnot
and Laplace that the “mutual independence of shape and size”
implies the Euclidean nature of space (Delboeuf, 1860). He ele-
vates this insight to the “first postulate” of geometry and argues,
much like Wallis, that it is in philosophy and metaphysics, not
geometry, that we must seek its justification. This justification
is found, for Delboeuf, to be implicit in the concept we have
of space, namely, that it is “homogeneous”. Homogeneity, for
Delboeuf, is a more restrictive criterion than what this word
usually means today. Today, we generally recognise a manifold
M as homogeneous if all points stand in the same relation to
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the whole. This can be specified mathematically in terms of the
isometry of the metric g under the group action of the transla-
tion group T . Delboeuf calls this property “isogeneity” rather
than homogeneity, and recognises that it holds for instance of
the circumference of a circle, the surface of a sphere, as well
as non-Euclidean geometries of constant curvature such as the
hyperbolic geometry of Lobachevsky and the spherical geom-
etry of Riemann. The word “homogeneity”, for Delboeuf, is
reserved for an extension which is self-similar, that is to say,
invariant under scale transformations; in present day language
we would call this rescaling conformal isometry: the group ac-
tion ϕ transforms the metric g such that ϕ∗g = Ω2g, where Ω is
constant across space. It can be shown that a geometry (M, g),
which is isometric under translations as well as rescalings must
be Euclidean (Wald, 2010).

For Delboeuf, the assertion of the homogeneity of space is
not some habit of thought taught by the regularities of our ex-
perience, as an empiricist such as Mill might see it, on the con-
trary, Delboeuf sees the space and time of our experience as
heterogeneous (Delboeuf, 1860, p.41)12:

Any being does not remain the same when we trans-
port it from here to there; today it is different from
what it was yesterday and from what it will be tomor-
row.

Instead, the notion of space’s homogeneity follows from the
method of science, it is the consequence of the effort of our in-
telligence to uncover the unity underlying the multiplicity given
in phenomena13:

It is from this vast whole that intelligence must seek
the laws; it is this infinite variety of facts that she must
reduce to a few general facts. For this, she resorts
to a first abstraction; she supposes time and space to
be perfectly homogeneous, that is to say, as we will
explain later, indefinitely and arbitrarily divisible into
parts which differ only by their magnitude.

Through this process of abstraction, of “ideal homogeneifi-
cation” of space and time, we make the world appear as “inert”
and “infinitely divisible” (p.42). But it is only insofar as we
carry out this abstraction that we are able to subject this world
to universal laws. In bk. I, ch. 2 of Prolégomènes, Delboeuf de-
scribes how the object of science changes across multiple con-
secutive processes of abstraction. Zoology and botany study or-
ganisms insofar as they are instances of their species, the phys-
ical and chemical sciences consider bodies as inert, they are no
longer unique individuals but assemblages of some basic sub-
stances such as elements which are each universal. Through

12Translation of: “Un être quelconque, ne reste pas le même quand d’ici on
le transporte là ; aujourd’hui il est différent de ce qu’il était hier et de ce qu’il
sera demain.”

13Translation of: “C’est ce vaste ensemble dont l’intelligence doit chercher
les lois c’est cette infinie variété de faits qu’elle doit ramener à quelques faits
généraux. Pour cela, elle a recours à une première abstraction; elle sup-
pose le temps et l’espace parfaitement homogènes, c’est-à-dire, comme nous
l’expliquerons plus tard, indéfiniment et arbitrairement divisibles en parties qui
ne diffèrent que par leur grandeur.”

a further abstraction we reach the mathematical sciences: me-
chanics considers bodies in terms of the actions they exert on
one-another, which we call force. Now if we abstract further,
away from the changes and motions which result from the in-
equality of forces, Delboeuf writes (p.67)14:

the universe is reduced to an ensemble of figures. The
science of these figures is called geometry.

All figures are endowed with a shape and a size. Indeed ge-
ometry can be studied from either perspective. Delboeuf gives
the name “synthetic geometry” to the study of the figure “in-
itself”, that is, if we “bring back questions of size to questions
of shape”. Conversely, he calls “analytic geometry” the study
of shapes in terms of relations of magnitudes, for instance “the
shape of a figure is given in terms of the length of the coordi-
nates of each of its points” (p.69). The postulate of the mutual
independence of shape and size is thus inherent to synthetic
geometry, since it is assumed in the notion that one can study
shape in itself. As well as the homogeneity of space, Delboeuf
identifies this first postulate with the recognition of the relativ-
ity of magnitude (p.129)15:

To say that space is homogeneous is at bottom noth-
ing but the assertion that there is no absolute magni-
tude.

2.3.2. Leibniz and the definition of the straight
Interestingly, the concepts of homogeneity and isogeneity

had previously been discussed by Leibniz under the names of
“self-similarity” and “self-congruence” respectively. In an un-
published essay titled “Uniformis locus” which has so far been
discussed solely in the work of Vincenzo de Rizi (De Risi, 2005,
2007, 2015), Leibniz includes the definitions of the plane, the
straight and space in terms of their self-similarity16:

A locus can be called uniform or self-congruent if
its congruently bounded parts are congruent. On
the other hand, a locus is self-similar if its similarly
bounded parts are similar. The only self-similar loci
are the straight line, the plane, and space itself. Uni-
form loci include all self-similar loci and, besides,
others—that is to say, among the lines, the arc of a
circle and the cylindrical helix and, among the sur-
faces, the spherical and the cylindrical ones.

Indeed Leibniz even recognises the same concept of “homo-
geneity” as Delboeuf, though he does not use the term “iso-
geneity”, prefering to use “equality” instead:

14Translation of : “l’univers se réduit à un ensemble de figures. La science
des figures est la géométrie.”

15Translation of: “Dire que l’espace est homogène, revient, au fond, à dire
que rien n’a une grandeur absolue.”

16The term “locus”, which Leibniz uses, corresponds to the term “quantum”
in Delboeuf’s writings. We have also used the term “extension” in this text to
denote the same concept.
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As I have discussed similarity and congruence, I have
also distinguished between homogeneity and equal-
ity. In fact, the loci that can be transformed into sim-
ilar ones are homogeneous; while the loci that can be
transformed into congruent ones are equal.

The resemblance to Delboeuf’s writings here is quite striking.17

In fact, Delboeuf himself placed great emphasis on defining not
only space, but the straight line and the plane in terms of their
homogeneity or self-similarity (Delboeuf, 1860, p.180)18:

The plane is a homogeneous surface; the straight
is a homogeneous line; that is to say that a por-
tion of a plane, magnified, generates the same plane;
that a portion of a straight, magnified, reproduces the
straight. We can therefore regard homogeneity as be-
ing the genetic characteristic of space, of the plane,
and of the straight line.

As Delboeuf notes, historically there have been a multitude of
apparently different definitions of the straight: viewed from
the standpoint of distance, it is the shortest path between two
points; from that of direction, it is a line of constant direc-
tion, and so on (p.175). Given one of these definitions, the
others would appear as synthetic truths, but none can be used
to deduce the others analytically. However, these synthetic the-
orems, Delboeuf argues, are each in fact analytic decomposi-
tions of the original intuition that gave rise to them all (p.177).
If we wish to escape the paradoxes, to overcome the impossible
task of deriving one definition from another, we must seek to
characterise the fundamental essence of the straight or of the
plane. This leads Delboeuf to define them in terms of their ho-
mogeneity; like Euclidean space, the straight and the plane are
distinguished by their invariance under dilations. Although the
original intuition which underlies our notion of the straight is
not itself conceptual, it can be captured by a concept—that of
homogeneity—from which the theory can be developed.

Given this definition, the notion of straight lines in non-
Euclidean geometries automatically becomes absurd; the
geodesics of a curved space will not be invariant under dila-
tions since the space itself is not invariant under these trans-
formations: a great circle on a sphere surface will be pushed
outside of the sphere it inhabits if it is dilated with respect to
that surface. The notion of geodesics which is proper to Rie-
mannian geometry assumes one of the secondary definitions of

17There is no evidence that Delboeuf was aware of the above mentioned es-
say by Leibniz, since it had not been published at the time. In fact, Delboeuf
recounts that he was only alerted to the similarity between his work and some
of Leibniz’s other writings (which had just been made available two years prior
in Leibniz (1858)) by his mentor Ueberweg shortly after the publication of Dl-
boeuf’s book (Delboeuf, 1895, p.346). While it is plausible that Delboeuf may
have been influenced indirectly by Leibniz through his conversations with Ue-
berweg, the similarity between Leibniz and Delboeuf should be understood first
and foremost as an instance of convergence of thought, suggesting an affinity
between these two thinkers.

18Translation of: “Le plan est une surface homogène; La droite est une ligne
homogène ; c’est-à-dire qu’une portion de plan, majorée, engendre le même
plan; qu’une portion de droite, majorée, reproduit la droite. Nous pouvons
donc regarder l’homogénéité comme étant le caractère génétique de l’espace,
du plan, de la droite.”

the straight: that it is the shortest path between two points, but
if we follow Delboeuf and take the essence of the straight to be
its homogeneity, we would no longer recognise the geodesics
of non-euclidean spaces as straight lines, and the controversy
concerning Euclid’s postulate of parallels would be resolved.
As De Risi (2015, p.61) puts it in his commentary on Leibniz’s
definition19:

one could say that the truth of the Parallel Postulate is
the condition for such a definition or rather that this
last notion of a straight line, taken as a real definition,
already implies the truth of the Parallel Postulate.

2.3.3. Neo-Kantianism?
While there are many aspects of Delboeuf’s philosophy of

geometry and science in general that could reasonably be char-
acterised as neo-Kantian, Delboeuf explicitly made an effort to
distinguish himself from Kant. The central argument of Del-
boeuf’s book is framed in terms of a dialectic between Kant’s
apriorism and Mill’s empiricism, which he seeks to reconcile
by recognising the process of abstraction as the source of the
apodicticity of the laws of nature (Delboeuf, 1860, p.50)20:

It is therefore on an abstraction of our mind that the
apodicticity of the laws of nature rests; and the fa-
mous axiom on the constancy and invariability of
these same laws is itself only a consequence. [...]
This solution reconciles empiricism and idealism,
Mill and Kant.

Delboeuf’s main objection to Kant’s account of geometry is
that it only “push[ed] back the difficulty instead of resolving it”
since it makes the laws of geometry “the laws of our nature [...]
without telling us why it is that precisely the ideas of geometry
are innate to us” (p.8). As we have seen, Delboeuf seeks to an-
swer this “why” by identifying homogeneity as the key concept
that characterises this intuition, and from which the postulates
of geometry would follow.

Like Kant, Delboeuf recognises the invariability and unifor-
mity we discover in nature as the imprint of our own reasoning
(Delboeuf, 1860, p.51)21:

We are also getting closer to Kant; when we discover
nature’s agreement with the laws of our mind, we re-
cover what we have placed in her: we have given her

19For more information concerning Leibniz’s development of this notion of
the self-similarity or homogeneity in geometry, see De Risi (2015).

20Translation of: “C’est donc sur une abstraction de notre esprit que repose
l’apodicticité des lois de la nature ; et le fameux axiome sur la constance et
l’invariabilité de ces mêmes lois, n’en est lui-même qu’une conséquence. [...]
Cette solution concilie à la fois l’empirisme et l’idéalisme, Mill et Kant.”

21Translation of: “Nous nous rapprochons aussi de Kant. En effet, quand
nous constatons dans la nature l’accord avec les lois de notre esprit, nous y
retrouvons ce que nous y avons mis nous y avons mis l’ordre et l’invariabilité ;
nous y retrouvons l’ordre et l’invariabilité ; nous y voyons ce que nous pouvons
y voir ; nous la voyons comme nous pouvons la voir. L’abstraction est une
opération de notre esprit, et la nature est pour nous devenue abstraite elle nous
montre des lignes droites , des cercles parfaits ; nous y découvrons des corps
simples, des corps purs,de l’eau distillée,du nitrate de potasse, du carbonate de
chaux , tandis qu’elle nous fournit des mélanges, l’eau de la mer et des fleuves,
du salpêtre, de la craie et du marbre.”
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order and invariability; we discover order and invari-
ability; we see what we are capable of seeing; we see
nature as we are capable of seeing her. Abstraction is
an operation of our mind, and nature has become ab-
stract for us; it shows us straight lines, perfect circles;
We discover simple and pure bodies, distilled water,
potassium nitrate, carbonate of lime, whereas it pro-
vides us with mixtures, water from the sea and rivers,
saltpeter, chalk and marble.

Concerning space, we have already seen that Delboeuf makes
an effort to distinguish “real” or empirical space from “geomet-
rical” space. In fact, in 1893, returning to the topic of geometry
after a three decade hiatus, Delboeuf devotes an entire essay to
emphasising this very distinction (Delboeuf, 1893). Concern-
ing “real” space, Torretti (2012/1978) has brought attention to
the following intriguing passage in which Delboeuf argues that
the non-Euclidean geometries of constant curvature would in no
ways help us to represent real space better than the Euclidean
(Delboeuf, 1894a, p.372)22:

We can therefore say of Riemann and Lobachevsky’s
spaces that they are artificial spaces, like Euclidean
space; and in this respect they are just as geometrical
as Euclidean space. But they have no special quality
to represent real space better than the latter. This [real
space] certainly has a curvature, but this curvature is
different at each of its points and varies there at each
instant. The real figures, that is to say, the bodies,
change with time and place. The constant curvatures
of meta-Euclidian spaces are therefore as far from re-
ality as is the homogeneity of Euclidean space.

From the present-day perspective, we are compelled to respond:
why not then ditch Euclidean space, and the “meta-Euclidean”
spaces of constant curvature? Why not embrace the varying
curvature of real space and apply Riemann’s broader notion of
differentiable manifolds? Delboeuf seems on the point of antic-
ipating the revolutions of the subsequent decades, but instead
he passes by this and retreats to his aprioristic defence of Eu-
clidean geometry. Torretti (2012/1978, p.300) takes this as evi-
dence that Delboeuf had not read Riemann. However, it is more
likely that Delboeuf avoided considering Riemann’s geometries
of changing curvature for the very same reason that most com-
mentators did at the time; that, as Poincaré put it, these ge-
ometries are purely analytic, they do not permit the kinds of
mathematical generalisations that are the essence of all a priori
synthetic reasoning.

Moreover, it is worth remarking that Riemann’s own writ-
ings are not in contradiction with Delboeuf’s position as Torretti

22Translation of: “On peut donc dire des espaces de Riemann et Lo-
batschewsky, que ce sont des espaces artificiels, comme l’espace euclidien; et
sous ce rapport, ils sont tout aussi géométriques que l’espace euclidien. Mais ils
n’ont pas qualité spéciale pour représenter mieux que lui l’espace réel. Celui-
ci, comme je l’ai dit dans ma première étude, a certainement une courbure,
mais cette courbure est différente en chacun de ses points et y varie à chaque
instant. Les figures réelles, c’est-à-dire les corps, y changent avec le temps
et avec le lieu. Les courbures constantes des espaces méteuclidiens sont donc
aussi éloignées de la réalité que l’est l’homogénéité de l’espace euclidien.”

seems to believe. Amid some of Riemann’s most suggestive re-
marks, in which he proposes (in 1853) that the force of gravity
be described along with inertia in terms of the dynamical ge-
ometry of a physical space, anticipating Einstein’s equivalence
hypothesis (Riemann, 1876), we find a similar distinction be-
tween a physical (or real) and a geometrical space that Delboeuf
makes:23

I seek the cause [of gravity] in the state of motion of
the continuous substance spread throughout the entire
infinite space. [...] this substance may be thought of
as a physical space whose points move in geometrical
space.

This passage suggests that Riemann may have endorsed the
recognition of two distinct notions of space; on one hand a
real space as a kind of substance, a physical field, and one
the other hand a geometrical, conceived space with respect to
which we define and measure the motion or curvature of the
physical space.

Although Kant himself had not considered the possibility of
non-Euclidean spaces, it is worth noting that Kant does make
a similar distinction between “empirical” and “absolute” space
according to which the latter, which exists “for the sake of the
possibility of experience”, is considered as “in itself nothing,
and no object at all” (Kant, 1970/1786, p.16). We may here
draw an analogy: whereas the motion of an empirical, rela-
tive space, for Kant, “presupposes in turn an enlarged space” in
which it is moved, we could say that the curvature or inhomo-
geneity of some empirical space presupposes a homogeneous
space with respect to which this curvature would be defined. In
this way we would arrive by abstraction at Delboeuf’s notion
of a homogeneous space, lacking curvature, not as a physical
thing, but as a reflection of a fundamental feature of the scien-
tific method.

Overall, it seems fair to characterise Delboeuf’s philoso-
phy of geometry as broadly neo-Kantian; moreover, unlike the
well established neo-Kantianism of today (Friedman, 2001; Bit-
bol et al., 2009) which was to some extent inaugurated by
Helmholtz, Delboeuf’s approach offers a path forwards which
avoids parting ways with Euclidean apriorism.

3. Reflections and discussions

3.1. Mobility or Leibniz shifts?

Readers may have noticed the contrast between Delboeuf’s
arguments for scale-invariance and Helmholtz’s requirements

23The contracted passage given above is from Peter Pesic’s English trans-
lation (Riemann, 2007/1853). The full passage in German reads as follows:
“Die nach Grosse und Richtung bestimmte Ursache (beschleunigende Schw-
erkraft); welche nach 3. in jedem Punkte des Raumes stattfindet, suche ich in
der Bewegungsform eines durch den ganzen unendlichen Raum stetig verbre-
iteten Stoffes, und zwar nehme ich an, dass die Richtung der Bewegung der
Richtung der aus ihr zu erldarenden Kraft gleieh, und ihre Geschwindigkeit der
Grosse der Kraft proportional sei. Dieser Stoff kann also vorgestellt werden als
ein physischer Raum; dessen Punkte sich in dem geometrischen bewegen.”
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for the possibility of congruence. Helmholts’s notion of con-
gruence is empirically grounded, it depends upon the physi-
cally realisable motions of natural solids. Dilations of natural
solids, on the other hand, are not physically realisable. On what
grounds, then, do we assert the possibility of similarities?

In the physically realised motion of a natural solid, the given
body is known to have been moved because it has changed its
relation to other bodies. Has it moved in geometrical space?
That is entirely a matter of convention since this space is a cre-
ation of our minds. The only space in which we know it to be
moved is the relative space defined, and perhaps conditioned,
by the surrounding bodies. By verifying the empirical pos-
sibility of congruence, we have only shown that this physical
space—the relative space conditioned by surrounding bodies—
is approximately isogenous. We have shown nothing of geo-
metrical space.

The translations that are analogous to the dilations imagined
by Wallis, Laplace, Delboeuf, and others, are not translations
of single bodies with respect to others, they are Leibniz shifts:
motions of all bodies in the universe with respect to geomet-
rical space itself. These motions lack any physical meaning,
and take place only in our minds. We are not concerned with
motions of some bodies with respect to others, since such mo-
tions could only tell us of the properties of bodies. We want to
know about the properties of space itself, and, since we con-
ceive this space as passive, we may assert that the relations
among bodies should be invariant under Leibniz shifts. This
condition tells us with certainty that the curvature of geomet-
rical space is constant. Further, we also assert the invariance
of the relations among bodies under universal dilations, which
tells us that geometrical space must be Euclidean.

The impossibility of dilating natural solids with respect to
one another informs us that the real, physical space they mutu-
ally inhabit possesses a definite scale, but tells us nothing about
the properties of an ideal space. The converse is also true: the
possibility of dilating all bodies with respect to an imagined
space ensures that it must be Euclidean, but says nothing of the
physical properties bodies possess with respect to one another.
One class of motions is proper to the one, the other to the other,
but the two are not interchangeable. As we have seen above,
in the Metaphysical Foundations of Natural Science, Kant ex-
plicitly distinguishes between absolute space, which is an ideal
form, and empirical or relative space which are those spaces in
which we perceive objects to be moved (Kant, 1970/1786, p.16-
17). Therefore Helmholtz’s claim that the possibility of con-
gruence of natural solids implies anything about Kant’s forms
of intuition, is simply mistaken.

If we admit that Helmholtz’s empiricist method can only tell
us of the geometry of a real or physical space, then history has
vindicated Delboeuf’s objection to this. As we saw in section
2.3.3, Delboeuf insisted that real space has a curvature which is
“different at each of its points and varies there at each instant”,
therefore the non-Euclidean spaces of constant curvature “have
no special quality to represent real space better than the [Eu-
clidean]” (Delboeuf, 1894a, p.372). On the other hand, If we
wish to determine the properties of a space conceived as a pure
form in the Kantian sense, then, once again, it is Delboeuf’s

method which is more appropriate.

3.2. Russell’s relative angles objection

The tendency to assert the relativity of position to the neglect
of the relativity of magnitude is epitomised by Russell (1897,
1898). Towards the end of the 19th Century, like Helmholtz
and Poincaré, Russell defended the notion that space should be
of constant curvature, but that we had no criterion by means of
which to favour Euclidean geometry. In his “Essay on the foun-
dations of geometry”, Russell emphasises above all the passiv-
ity of space, arguing that “Geometry depends throughout on the
irrelevance of causation” (Russell, 1897, p.112). On this ba-
sis he endorses Helmholtz’s axiom of free mobility, yet rejects
Delboeuf’s argument for space’s “homogeneity”. Russell’s re-
jection is founded on a peculiar understanding of the “space-
constant” of a non-Euclidean space of constant curvature, ac-
cording to which it is not itself a magnitude but a “standard
of comparison” between magnitudes (Russell, 1897, §79, §98).
Accordingly, a dilation of all magnitudes with respect to space
would leave no observable change since the value of the space
constant would be transformed along with all the magnitudes.

Since Delboeuf himself had unfortunately died abruptly in
1896 at the age of 64, prior to the publication of Russell’s
book, his view was defended instead by the French philosopher-
mathematician Louis Couturat. In a response essay to Rus-
sell, Couturat remarks that Russell’s conception of the space-
constant is at odds with other statements Russell makes such as:
“although measurement and the judgment of quantity express
the result of comparison, yet the terms compared must exist be-
fore the comparison” (Russell, 1897, §164, ft.2). Since a given
magnitude can be measured with respect to the space constant,
this implies that the space constant must be a real thing (Coutu-
rat, 1898)24:

It is therefore not correct to say that the spatial con-
stant is not a quantity, how could it not be one, since
all the quantities of the corresponding space can be
related to it? We can only measure a quantity by a
quantity of the same kind; now, if we can measure all
the magnitudes of a space in relation to the constant
of this space, this constant must obviously be itself a
magnitude, indeed a spatial magnitude.

In a follow-up article that same year, Russell appears to have
acknowledged Couturat’s critique, however he raises a new ar-
gument against Delboeuf’s ideas (Russell, 1898):

I come now to the principal argument in favour of
the a priori character of Euclidean space, namely the
argument which derives from the impossibility of an

24Translation of: “Il n’est donc pas exact de dire que la constante spatiale
n’est pas une grandeur comment n’en serait-elle pas une, puisque toutes les
grandeurs de l’espace correspondant peuvent lui être rapportées? On ne peut
mesurer une grandeur que par une grandeur de même espèce; or, si l’on peut
mesurer toutes les grandeurs d’un espace par rapport à la constante de cet es-
pace, il faut évidemment que cette constante soit elle-même une grandeur, et
une grandeur spatiale.”
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absolute magnitude. For this discussion, it will suit
me better to adopt Delboeuf’s terminology than to
insist upon my own. [...] The question is: Can it be
demonstrated that homogeneity is an a priori property
of space?

On this point, a strong argument in my favour is de-
rived, I believe, from the absolute magnitude of an-
gles. Those who affirm it to be evident a priori that
the sides of a triangle can be lengthened in a given ra-
tio without altering the angles, ought to hold, it seems
to me, that it is equally possible to alter all the angles
in a given ratio without altering the sides. But that,
we know, is impossible in all Geometries. If the log-
ically relative nature of all magnitude is admitted, I
cannot see why the argument would apply only to lin-
ear dimensions, and not to angles, which are equally
magnitudes.

This rather strange argument by Russell might be dismissed as
an idiosyncrasy were it not that others have claimed the same.
It is independently repeated by Torretti (2012/1978, p.297) for
instance, and even Poincaré (1898) raises the same objection in
his own essay of 1898:

It is absurd, they say, to suppose a length can be equal
to an abstract number. But why? Why is it absurd for
a length and not absurd for an angle?

Since Couturat appears not to have addressed this objection,
and Delboeuf did not live to see it, we will here show, on their
behalf, that it is founded on a blatant misconception.25

The rebuttal to this argument is suggested by Russell’s for-
mulation of it; the relativity of angles is impossible in all ge-
ometries. Why is this?

One does not need to compare two angles in order to measure
them. The angle of intersection of two lines is already a rela-
tion, a relation between the directions of these two lines. An
angle denotes an objective relation between two directions, not
a relation of an object to space. While we may assert the rela-
tivity of directions (based on the isotropy of space), we cannot
assert the relativity of angles. Similarly, while we may assert
the relativity of magnitudes (based upon the homogeneity of
space), we cannot assert the relativity of ratios between mag-
nitudes. We cannot assert the relativity of angles therefore, for
the very same reason that we cannot assert the relativity of ra-
tios between magnitudes.

To Russell, the fact that angles seem “tied absolutely to their
magnitude” is evidence for the existence of an angular space-
constant:

We have an angular space-constant in every space,
namely the four right angles. [...] angles are tied ab-
solutely to their magnitude, and cannot be conceived
as all expanded in a given ratio. We cannot therefore
infer, from the fact that magnitude is relative, the im-
possibility of a space-constant.

25Note, Russell and Couturat would go on to have an extended multi-year
correpondence (Schmid, 1983).

But Russell makes a mistake when he imagines that 2π is an
angular space constant; Russell is implicitly assuming here that
angles denote relations of things to space. In fact, they do not,
rather, as we have seen, angles denote relations between the di-
rections of lines. The claim that 2π (which is the angle between
two lines that have the same direction) represents an angle con-
stant everywhere in space is as meaningless as the claim that
at each of its points, space is endowed with a ratio constant
of 1, i.e. the ratio between two lengths of the same magnitude
which might form a standard with respect to which other ratios
can be defined. But we naturally understand that a ratio is not
a relation of an object to space, but rather, represents a rela-
tion between two objects in space. Delboeuf’s assertion of the
homogeneity of space is, above all, an assertion of its ideality.
Real things do not have real relations to space, but only to one
another. If space possessed a scale constant, then bodies would
be endowed with real relations to space, this property of space
would become measurable, and space would no longer be ideal.

As relations, angles are measurable in and of themselves,
whereas the magnitudes of bodies must be compared to one
another if they are to be measured. This is the source of their
relativity. Epistemically, all measurement is a relation between
two given things. By means of this principle, it is easy to rule
out the possibility of using non-Euclidean geometries as forms
for phenomena; for if it is claimed that we live, or should repre-
sent ourselves to live, in a space of constant positive or negative
curvature, we must ask upon what reason this claim is based.
There are two options:

1. If this choice is grounded upon some empirical observa-
tions, suppose for instance that we live on the surface of a
hypersphere; then according to the principle stated above,
this hypersphere—whose curvature is measurable with re-
spect to real objects—must be a real object itself.

2. If on the other hand it is not grounded empirically, rather,
this geometry is being used purely in its capacity as a form;
then there is no reason to choose it over the Euclidean. In
this case, Poincaré’s simplicity criterion rules it out, more-
over, a compensatory field would need to be invented to
abrogate its needless effects.

In both cases we find therefore that the geometries of con-
stant, nonzero curvature, cannot—despite what was asserted by
Helmholtz and others—be used as forms for phenomena on ac-
count of the relativity of all measurement of sizes. This argu-
ment naturally carries over to the more general geometries of
changing curvature as well, which are even less competent to
be conceived as forms. We are forced to the conclusion that
space, as pure form, must be Euclidean.

3.3. Synthetic knowledge and the passivity of space

Given the weakness of the relative angles objection, it is sur-
prising that Poincaré approves it in his essay of 1898 (Poincaré,
1898). A decade later, however, Poincaré’s views concerning
the relativity of magnitude seem to have changed. In book II of
his volume Science and Method (Poincaré, 1914/1908), amid
comments concerning the relativity of space, Poincaré affirms
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the relativity of magnitude, citing Delboeuf as the principal pro-
ponent of this idea26:

there is another [sense of the relativity of space], upon
which Delbeuf [sic] has particularly insisted. Sup-
pose that in the night all the dimensions of the uni-
verse become a thousand times greater: the world will
have remained similar to itself, giving to the word
similitude the same meaning as in Euclid, Book VI.
Only what was a meter long will measure thenceforth
a kilometer, what was a millimeter long will become
a meter. [...] When I awake to-morrow morning, what
sensation shall I feel in presence of such an astound-
ing transformation ? Well, I shall perceive nothing at
all. [...]

Poincaré uses this idea to deny that we can have knowledge of
absolute magnitudes (Poincaré, 2015/1913, p.414), but does not
go on to discuss Delboeuf’s argument for the Euclidean nature
of space.

Poincaré’s deliberate avoidance of Delboeuf’s thesis may be
connected to his personal enthusiasm about non-Euclidean ge-
ometries as mathematical objects of study. In a well-known
anecdote, he recounts how, out of the blue, upon stepping onto
an omnibus in Coutances, it suddenly hit him with full clarity
that “the transformations [he] had used to define the Fuchsian
functions were identical with those of non-Euclidean geome-
try” (Poincaré, 2015/1913, p.417). This realisation would have
taken place at some time before 1880 (Gray, 1997). It is plausi-
ble that Poincaré’s personal involvement with the development
of non-Euclidean geometries drove him away from the defend-
ers of Euclidean apriorism, who, at the time, were largely con-
sidered to be a reactionary force, opposed to those that were
creatively driving the progress of knowledge. This may have
led him to seek out conventionalism as a mid-way compromise
between empiricism and apriorism.

Elsewhere in his writing, however, Poincaré has based his
“principle of relative motion” on an affirmation of the “passiv-
ity of space” (Poincaré, 2015/1913, p.83). Russell too, who,
even more than Poincaré, defended non-Euclidean geometries
of constant curvature, affirmed that space is passive. But what
is the root of this intuition of space’s passivity?

We have seen above that if we base some notion of the passiv-
ity of space on the invariance of bodies when they are moved
with respect to one another, we will only have learned of the
(approximate) passivity of a physical space (see section 3.1).
This physical space does not permit the dilations of individual
bodies, therefore it may be non-Euclidean. But who are we
to say that this physical space is passive? Why should physi-
cal space allow for the possibility and mobility of rigid bodies?
Even if we put aside the complications raised by modifications
due to heat, surely the question of whether a natural solid retains
the same relations among its parts when it is moved with respect

26This is a famous passage which has recently drawn attention due to its
suggestion of the possibility of scale-invariant cosmological models. See for
instance Gryb and Sloan (2021).

to other physical bodies is one that should be answered by em-
pirical science. Indeed this is what was done, through the recog-
nition of the equivalence principle—which, in the division be-
tween force and inertia, places gravity on the side of inertia
and (chrono-)metricity—Einstein fulfilled Riemann’s ideas and
showed once and for all that the physical space which governs
those motions which have traditionally been called “inertial” is
not passive, but dynamical.

But what then of our intuition of the passivity of space, and
the corollary relativity of motion? This law, and the intuition un-
derlying it, can only be based in a truly Kantian conception of
space, a space abstracted from all contingent phenomena. No-
tions of space’s passivity, the relativity of magnitudes, and the
relativity of motion are pervasive in Poincaré’s works. Poincaré
at times justifies these ideas on the basis that contrary hypothe-
ses would be “repugnant to the mind” (Poincaré, 2015/1913,
p.107-109), but he does not discuss why we feel this repug-
nance. I propose that these intuitions we have of space, of the
relativity of motion and of magnitudes, are rooted in this same
methodological concept of space’s homogeneity which is re-
sponsible for providing foundations for Euclidean geometry.

Quite apart from space and its geometry, we saw in section
1.1 that for Poincaré, the inductive method, which allows a for-
mula to generalise over an infinity of cases, is the “veritable
type of the synthetic a priori judgment” since it is “inacces-
sible to analytic demonstration and to experience” (Poincaré,
2015/1913, p.39). But what is it that makes this generalisa-
tion possible? Is it the mathematical concept of infinity? An
infinite set which is not ordered, which is not in some respect
homogeneous, does not permit of generalisations.27 It is not the
notion of infinity that allows for reasoning by recurrence, it is
the concept of symmetry, of the absolute mathematical invari-
ance of some property under transformations. It is through the
“process of abstraction”, described by Delboeuf, that we gain
access to this form of reasoning; and it is from this basic notion
of sameness, which we find in the notion of homogeneity and
of symmetry in general, and which, as Plato emphasises in the
Phaedo (Hackforth et al., 1972), is not known to us empirically,
that Poincaré’s “synthetic a priori” propositions arise.

4. Morals for scientific methodology

As we have seen, unlike other neo-Kantian influences on con-
temporary philosophy of space and time, that of Cassirer and
those of Helmholtz and Poincaré, Delboeuf’s neo-Kantianism
affirms the apriority of Euclidean geometry. It may be argued
that Delboeuf’s ideas, though perhaps interesting, have little
relevance to present-day physics and philosophy of physics,
since, after all, Delboeuf did not work directly in physics, his
ideas had little or no influence on the development of Einstein’s
theories, and, unlike Cassirer, his philosophy was not developed
in response to these paradigm-shifting ideas. In what respect,
then, should we take this account seriously?

27We are using the word “homogeneous” in this context in a more general
sense than Delboeuf and Leibniz’s notion of self-similarity.
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We have seen throughout this essay that the central insight
upon which Delboeuf grounds his philosophy of geometry—
that is, of the relativity of magnitude—was not unique to him.
It dates back at least to Wallis in 1663, and was recognised
by a variety of significant physicists and philosophers over the
centuries. We even saw that Leibniz embarked upon a project
very similar to Delboeuf’s in his attempt to find stable foun-
dations for geometry. Moreover, we have seen that Delboeuf’s
account is defensible in the context of the philosophies of ge-
ometry that were present at the time, it stands up to Russell
and Poincaré’s fallacious relative angles objection (sec.3.2), it
is both more Kantian and more self-consistent than Hemlholtz’s
allegedly neo-Kantian approach (sec.3.1), and it even resolves
certain problems in the foundations of Poincaré’s philosophy of
mathematics (sec.3.3).

Concerning the applications of these ideas to physics, it is
clear that Delboeuf can only contribute on the methodological
side of things. We may propose a strict distinction between ge-
ometrical space, conceived as a form, and physical space (or
space-time), conceived as part of the content of this form. In-
deed, as Lehmkuhl (2014) has shown, even Einstein showed
some restraint against unequivocally accepting the geometrical
interpretation of his theory; for instance in his review of Mey-
erson’s La déduction relativiste, he writes (Lehmkuhl, 2014;
Einstein and Metz, 1928):

The fact that the metric tensor is denoted as “geomet-
rical” is simply connected to the fact that this formal
structure first appeared in the area of study denoted as
“geometry”. However, this is by no means a justifica-
tion for denoting as “geometry” every area of study
in which this formal structure plays a role, not even if
for the sake of illustration one makes use of notions
which one knows from geometry.

Since the advent of general relativity, a vast literature of
flat space alternatives or subtle modifications has been pro-
posed.28 This literature raises a wide array of methodolog-
ical advantages of working in flat space, including: (1) the
recovery of a well-defined local gravitational energy and of
global energy conservation laws (Rosen, 1940a,b; Logunov and
Mestvirishvili, 1985),29 (2) greater consistency with methods in
particle physics (Lasenby et al., 1998), (3) avenues towards uni-
fication with particle physics and prospects of developing a the-
ory of quantum gravity (Dicke, 1957; Lasenby et al., 1998; Pitts
and Schieve, 2001), (4) the possibility of implementing vari-
ous interpretations of Mach’s principle (Sciama, 1953; Dicke,
1957), (5) the development of simplified models of gravity
which reproduce some of the basic results of Einstein’s the-
ory (Broekaert, 2005; Arminjon, 2002). Many of these models

28See for instance: Rosen (1940a,b); Gupta (1954); Kraichnan (1955); Dicke
(1957); Thirring (1961); Huggins (1962); Weinberg (1964a,b); Ogievetsky and
Polubarinov (1965); Mittelstaedt and Barbour (1967); Nachtmann et al. (1969);
Deser (1970); Fang and Fronsdal (1979); Cavalleri and Spinelli (1980); Davies
and Falkowski (1982); Logunov and Mestvirishvili (1985); Lasenby et al.
(1998); Pitts and Schieve (2001); Arminjon (2002); Broekaert (2005).

29In such theories, the principle of conservation of energy would appear, not
as a contingent empirical fact, but as a guiding methodological principle.

explicitly appeal to Poincaré’s notion of the conventionality of
geometry to justify their methods, however, given the findings
of the present paper, we suggest that Delboeuf’s forgotten argu-
ments may also help to provide a philosophical grounding for
these flat space approaches.

The topics that Delboeuf’s writings raise, however, are most
relevant to certain recent developments in the physics and phi-
losophy of cosmology. In recent years, Julian Barbour has
been attempting to extend the Machian research program to en-
compass a requirement for the scale-invariance of cosmological
models (Barbour, 2010). If we refuse to accept the existence
of epistemically inaccessible absolutes, then the universe must
consist only in the relative configuration of its parts—i.e., its
shape. This way of thinking has led to the developement of the
theory of Shape Dynamics (Barbour, 2012; Mercati, 2018). If
we recognise that the shape of a body consists of the internal
relations amongst its parts, while its size is an external rela-
tion to other bodies, then the universe as a whole, which has
no external reference possesses only a shape. The central in-
sight discussed in this essay—which was recognised by Wallis
and Delboeuf—is that the reciprocal independence of shape and
size implies the Euclidean nature of space. This essay may help
provide grounds for Barbour et al.’s use of Euclidean space as
a background for their models.

It is only in the context of cosmological models, rather than
in the study of subsystems of the cosmos, that transformations
of all bodies with respect to space, i.e. Leibniz shifts or trans-
formations by similarity, can be considered. Outside of shape
dynamics, the requirement for the invariance of dynamics under
similarity transformations in cosmology has been called “dy-
namical similarity”, and it is a growing area of research in cos-
mology (Sloan, 2018; Gryb and Sloan, 2021; Bravetti et al.,
2022). We hope that the ideas discussed in the present paper
will help to provide some philosophical context and justifica-
tion for these cosmological speculations.
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Čulina, B., 2020. Euclidean geometry is a priori .
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meyerson. Revue philosophique de la France et de l’étranger 105, 161–166.
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