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This paper describes an alternative to currently dominant approaches to the meta-

physics of causation. It is motivated by the gap between metaphysical accounts and

recent epistemological research on causal reasoning and methods for discovering

causal relationships. Our approach aims to characterize structural features of the

actual world that support, and are exploited by, successful strategies for causal

reasoning and discovery. We call these features the “worldly infrastructure” of

causation. We identify elements of this worldly infrastructure, sketch accounts of

their physical bases, and explain how they contribute to the possibility of successful

causal reasoning.

1 Introduction

Recent work on causation has taken a variety of forms. Researchers in statis-

tics, econometrics, and machine learning have been mainly interested in epis-

temological and methodological issues surrounding causal inference – issues

concerning how one can reliably infer causal conclusions from various sorts
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of data. Examples include the constraint-based causal discovery methods in

(Spirtes et al., 2000), results about identifying causal effects (e.g., (Pearl,

2009)), machine learning techniques for inferring causal direction (Peters

et al., 2017) and the potential outcome frameworks employed by many so-

cial scientists (Rubin, 1974; Hernán and Robins, 2020). Many philosophers

– especially those focusing on causal explanation – have devoted significant

attention to these methods. Many others have instead been concerned with

the metaphysics of causation. This work also takes various forms. Some hold

that the metaphysics of causation requires the introduction of special entities

– powers, capacities, or the like. Others reduce causal claims to counterfac-

tuals and elucidate the latter through possible worlds semantics. Still others

propose that causal claims be understood via their relation to laws of nature.

In addition, some philosophers claim that causation or causal relationships

can be identified with processes or relationships in fundamental physical the-

ories so that, metaphysically, causation is just, e.g., transfer of energy and

momentum. Common to all these efforts is a search for “truthmakers” or

“grounds” for causal claims and/or attempts to specify what causation “is”

or what in the world “corresponds” to the causal nexus.1

These metaphysical projects are conducted with little or no connection

to the work on the epistemology of causation referenced above. Indeed,

many contemporary metaphysicians insist that analyzing the metaphysics

of causation can, and perhaps should, be sharply separated from the study

of epistemological strategies for discovering causal relationships – the latter

1Still other authors analyze “our concept” of causation, typically with the aim of re-
ducing that concept to non-causal ingredients. We will not discuss these projects but they
are also distinct from the infrastructure project we describe.
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regarded as being of “merely” methodological or practical interest.

A recent prize-winning book (Paul and Hall, 2013) exemplifies this general

practice. They aim to reduce garden-variety causal claims to counterfactuals,

with their semantics determined by choosing a Cauchy surface on which the

antecedent is true and evolving it forward in time using equations of motion

of fundamental physical theories (following Maudlin (2007, chapter 1)). Or-

dinary subjects making causal judgments obviously don’t use anything like

this procedure, but Paul and Hall provide no epistemological story about

how, if this is what causal claims are, people are able to reason to correct

causal judgments. We single out Paul and Hall not for special criticism,

but because their book is a well-known and particularly thoughtful repre-

sentative of the general practice of analyzing the metaphysics of causation

independently of epistemological work on how causal claims are established.2

Our goal is to describe and develop a project that is different from the

metaphysical projects described above, but is also not properly described as

epistemology. It represents a third possibility. This project aims to eluci-

date what we call the “worldly infrastructure” underlying the application of

causal concepts and causal reasoning. The basic idea is this: there are generic

2This separation is facilitated by Paul and Hall’s focus on “actual cause” claims, for
which there is no consensus on an appropriate discovery methodology. The epistemological
strategies and infrastructure features to which we draw attention are primarily exploited to
identify type-level causal relations. We understand type-level causal relations as depending
on token causal claims (Woodward, 2005, p. 44), but claims about “actual causes” further
seek to make post-hoc responsibility attributions for the occurrence of a token effect. Type-
level causal claims like “smoking causes cancer” do not entail claims about any individual
smoker so there remain some linguistic questions about how to interpret such statements
(Hausman, 1998, chapter 5), but the epistemic utility of the causal discovery methods we
consider does not depend on those linguistic questions.
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features of our world that license and support causal reasoning. These fea-

tures include (but are not limited to): (i) some variables are statistically

independent of others (not everything is correlated with everything else); (ii)

interventions, in the sense of unconfounded exogenous manipulations that

satisfy criteria like those described in (Woodward, 2005) are often possi-

ble and furthermore, many systems exhibit naturally occurring exogenous

sources of variation that count as interventions even though they do not in-

volve human manipulation;3 (iii) the macroscopic, coarse-grained behavior of

many systems is largely independent of variations in their microscopic realiz-

ing details and this allows for “unambiguous” interventions on coarse-grained

properties of such systems and the discovery of robust causal generalizations

about their macroscopic behavior.

Our concepts and strategies for causal reasoning developed to exploit

the fact that we live in a world in which these generic features obtain. For

example, the truth of (ii) is one factor that contributed to our developing a

notion of causation that is closely linked to what happens under interventions

– (ii) helps to ensure that this intervention-based notion will be useful. If

interventions were rarely or never possible, we would not have developed a

notion of causation tied to interventions. This is the sort of thing we have

3We emphasize several things about this notion of an intervention. The first is that it
is not limited to manipulations available to human agents, even in principle; it is perfectly
sensible to talk about intervening on the mass of the up or down quark to determine
the effect on the mass of the proton, for example. The second is that many human
manipulations will not satisfy the conditions of an intervention and establishing that any
particular human manipulation qualifies as an intervention can be non-trivial. However,
it does not follow from this that most, or even many, human manipulations of a candidate
cause will not count as interventions; see (Woodward, 2021) for extensive discussion of
the role of interventionist reasoning in everyday causal cognition. We thank a referee for
encouraging these clarifications.
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in mind when talking about the worldly infrastructure that supports causal

thinking.

Our project is also motivated by the empirical success of the causal dis-

covery methods mentioned above. These methods reliably deliver knowledge

about causal relations and it is natural to ask why they are successful. Main-

taining that these methods are of no “metaphysical” significance denies any

tight connection between the success of these methods and the structure of

the world and leaves us with an account of causation that is unable to ex-

plain why these methods are successful, a position we consider untenable.

We consider it a virtue that our project is responsive to the epistemology

and methodology of causal inference, identifying features of the world that

explain the success of those methods. As we will argue, the claim that the

success of causal discovery methods supports the structural presuppositions

underlying those methods has much in common with inferences commonly

made elsewhere in science.

Furthermore, cataloguing the infrastructure features that underlie our

successful causal reasoning invites the further question of why, in any par-

ticular system, those features are present. Accordingly, it may be useful

to think of the “worldly infrastructure” project as having a natural second

stage which builds on the catalogue of worldly infrastructure on which the

success of our causal reasoning depends. This second stage aims to identify

worldly bases for the infrastructure features themselves: to offer explana-

tions of why the infrastructure features obtain in any given system. While

the explanatory targets in the first stage are the successes of various strate-
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gies used in causal inference, the explanatory targets for the second stage are

the infrastructure features themselves. We do not expect this second stage

to output one-size-fits-all-systems explanations for any particular infrastruc-

ture feature; for example, we note below that explanations of modularity

in biological systems frequently advert to evolutionary considerations, but

those considerations are obviously inapplicable when explaining the presence

of modularity in a particular model of (say) a classical fluid.

Our primary aim in this paper is to describe this approach to thinking

about causation and illustrate it, first and foremost by identifying some core

worldly infrastructure features on which our causal reasoning depends but

also by providing illustrative sketches of how explanations characteristic of

the second stage of the project might proceed. In that sense, the paper has

a somewhat programmatic character. It is also true that with respect to

the second stage of the worldly infrastructure project, seeking to identify

physical or biological bases for properties of the world that facilitate causal

reasoning certainly does not originate with us; to take just two examples, it is

common for biologists to explain the modularity present in biological systems

by appealing to evolutionary considerations and there have been a number

of attempts to identify a physical basis for the principle of the common

cause.4 However, such projects have been pursued somewhat piecemeal in

the literature, and in the absence of anything like the first stage of our project

4A useful discussion of such attempts to explain modularity is given by Steel (2007,
chapter 3.4). Hofer-Szabó et al. (2013, chapter 8) provide a recent example of the second
project, attempting to locate a basis for the principle of the common cause in the structure
of quantum field theory (though see (Forster, 2014) on Hofer-Szabó et al.’s characterization
of the principle of the common cause).
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serving to identify a full suite of explanatory targets for such physical or

biological explanations. One hope we have is that distinguishing the worldly

infrastructure project as a novel approach to thinking about causation will

lead to such projects being pursued more systematically and in closer contact

with work in causal discovery.

2 The General Framework

The framework we adopt has several parts. First, there are the infrastructure

features themselves, such as (i)-(iii) above. Second, there are connecting prin-

ciples that license inferences from the presence of some particular infrastruc-

ture, typically in conjunction with other information, to causal conclusions.

In this sense the connecting principles reflect the use of the infrastructure in

causal inference. The general form P of the connecting principles is:

(a) Particular instances of infrastructure features obtain (e.g., variables

exhibiting some pattern of statistical (in)dependence, some manipula-

tion of X with respect to Y has the characteristics of an intervention,

etc.)

(b) Additional information (possibly causal in character)

∴ Causal conclusion (from (a) and (b)).

For example, the claim (1) that interventions are often possible is a gen-

eral claim about an infrastructure feature. The claim (2) that some particular
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manipulation of X with respect to Y satisfies the conditions for an interven-

tion is a claim of form (a). The characteristic interventionist claim (M) –

if an intervention I on X is possible and Y systematically changes under I,

then X causes Y – is a connecting principle of form P. If the antecedent

of M is satisfied, this licenses a causal conclusion. For (M), the additional

information (b) referred to in P is built into the characterization of an inter-

vention, which includes causal information about the effect of an intervention

I on X.

If (1) were false and interventions were rarely possible, (M) would be

largely useless as a principle in causal inference since its antecedent would

rarely be satisfied. Assuming that our ways of thinking about causation have

developed because they are functional or useful in some way (Woodward,

2014), it is hard to see why we would have developed a notion of causation

in which (M) plays a central role if (1) were false. In reality (1) is true, so

it has been useful for us to develop a notion of causation that is intimately

connected with what happens under interventions. This is one illustration

of what we have in mind when we say that our thinking about causation

is formed in response to, and exploits, the presence of the infrastructure

features.

It may be helpful to clarify the functional approach to causal reason-

ing with an analogy. When disambiguating visual scenes, the human visual

system relies on the built-in assumption that illumination is generally from

above (i.e., from the sun) and that objects tend to be convex. That this

assumption is generally correct partially explains why the visual system is
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generally reliable when inferring shape from shading; it also partially explains

why the human visual system developed to exploit it. We see the existence

of the causal infrastructure analogously: the worldly infrastructure is analo-

gous to the physical facts about illumination from above and the convexity

of objects, while the inferential principles that exploit that infrastructure to

deliver causal conclusions are analogous to the visual system that exploits

those physical facts to deliver reliable inferences of shape from shading.

The infrastructure features are related to each other in a way that sup-

ports consistent causal reasoning and inference. That is, we can exploit the

presence of distinct infrastructure features in ways that converge on con-

sistent causal conclusions – conclusions that thus can be transferred across

different inferential contexts. As an illustration, consider the principle of the

common cause (CC): if X and Y are statistically dependent, then either X

causes Y , Y causes X, or X and Y have a (set of) common cause(s). Per-

haps one could imagine a world in which CC regularly fails when “cause” is

understood along interventionist lines: a world in which frequently X and Y

are statistically dependent but interventions on X are not associated with

changes in Y , interventions on Y are not associated with changes in X, and

there is no third variable Z such that interventions on Z are associated with

changes in X and Y . Our world is not like this. In our world, there are

systematic connections between patterns of statistical association and what

will happen under interventions that are captured by the principle of the

common cause. This means that in our world, there is a connection between

what may be inferred from statistical dependencies and what will happen

under interventions. Given CC and that X and Y are statistically depen-

9



dent, if we determine that X and Y do not have a common cause and Y

does not cause X, we may infer that some intervention on X is associated

with changes in Y . (Here we employ a connecting principle of form P which

uses CC, information about statistical dependence, and information about

the absence of other causal relations to infer a causal conclusion.) Again, our

ways of thinking about causation have developed to take advantage of such

connections.

As another illustration, consider the Causal Markov Condition (CMC).

CMC is satisfied if, for every variable Xi in a causal graph G, condition-

ing on the parents (direct causes) of Xi renders Xi statistically independent

of every other variable in G, except possibly its descendants (effects). It is

crucial for usefully applying CMC that statistical dependencies – uncondi-

tional and conditional – not be ubiquitous. Suppose instead that for any

set of variables X = {X1, . . . , Xn} we could measure, each Xi and Xj were

statistically dependent and remained statistically dependent as we condi-

tioned on all subsets of other variables in X. Applying CMC alone to X

generates a set of fully connected graphs (every variable directly causally

connected to every other), the size of which grows quickly with n, so CMC

alone would be of little use. Normally we invoke additional conditions, like

the widely used faithfulness condition, that select sparser graphs over fully

connected ones.5 However, if for every set of variables X, no (unconditional

and conditional) statistical independence relationships obtain, conditions like

5Faithfulness is often useful for causal inference, but not indispensable; it could be
replaced by one of several weaker alternatives (Zhang and Spirtes, 2016; Forster et al.,
2018). CMC is at least a candidate general truth about the world; faithfulness and its
weakenings should be understood as defeasible model selection strategies.
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faithfulness would add nothing to our ability to infer anything definite about

causal structure. Fortunately, in our world there is a considerable amount of

unconditional and conditional statistical independence and we regularly ex-

ploit that, in conjunction with other conditions (like CMC and faithfulness),

to learn about causal relations.

The existence of variables that are statistically independent is also re-

quired for other familiar causal inference procedures like the use of random-

ized experiments – we cannot randomize if there are no natural statistical

independencies among the variables of interest and we cannot produce any.

In thise case, there would be no possibility of causal learning on the basis

of randomized experiments. Again, we should distinguish between (i) the

connecting principle that licenses causal conclusions from the results of ran-

domized experiments – roughly, if in an experiment in which assignment of

C is randomized, the incidence of E is higher in the treatment group than

in the control group (and we rule out that this a statistical fluke), then infer

that C causes E – and (ii) the infrastructure feature: generically available

statistical independencies that enable randomization. That the infrastruc-

ture (ii) is required for the strategy (i) illustrates the general fact that our

causal reasoning strategies can only profitably be applied to worlds in which

the infrastructure supporting those strategies is present.
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3 Some examples of worldly infrastructure

We now turn to some candidates for the worldly infrastructure of causation

(including some already introduced). Our aim at this point is only to describe

some of the features that a world must possess to support causal reasoning

strategies like our own. To streamline prose we will use “variable” to describe

both elements of the world standing in causal relations and representations

of those elements.6

3.1 Statistical Independence

The world contains many n-tuples of variables that are strictly statistically

or probabilistically independent of each other, and many others that are “ef-

fectively independent,” i.e., sufficiently close to independence that they can

be treated as independent for many inferential purposes. Some examples:

(A) The outcomes of successive coin tosses with the same generating set up

are typically effectively independent. Those outcomes are also strictly inde-

pendent of many other variables: ambient temperature, fluctuations in stock

prices, etc. (B) Mendel’s law of independent assortment states that alleles

for different traits are passed to offspring independently of each other. This

“law” does not always hold (because of genetic linkage, among other consid-

erations) but when it does, the independence relations it generates can be

exploited in causal inference, as in the use of “Mendelian Randomization”

6The reader is free to use “quantity” (where quantities can be two-valued, real-valued,
etc.) when the discussion concerns causal relata in the world and reserve “variable” for
representations of quantities.
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to make inferences about the role of environmental exposures in causing dis-

eases (Lawlor et al., 2008; Sanderson et al., 2022). (C) Assumptions that the

velocities of any two molecules in a dilute gas are statistically independent im-

mediately prior to their collision – like the Stosszahlansatz or the assumption

of “molecular chaos” – have played an important role in statistical physics

since the time of Boltzmann (Brown et al., 2009).

We have already described several ways in which the presence of statis-

tical independence is exploited in causal inference. The presence of such

independence is often a foundational assumption of core principles of causal

inference; for example, the standard proof of CMC assumes that each vari-

able is a deterministic function of other measured variables (its parents) and

an additive “error” term. The error term for each equation is assumed to

be probabilistically independent of the parents and the error terms across

equations are assumed to be independent of each other.

As another illustration, techniques for inferring causal direction often ex-

ploit information about statistical independence. As a simple example, con-

sider a system of three variables, with X independent of Y but X and Z

dependent and Y and Z dependent. Then a reliable heuristic delivers the

judgment that X and Y cause Z: the causal direction goes from X and from

Y to Z, with X and Y causally independent.7 Obviously we could not de-

velop or use this heuristic if all or most variables were pairwise statistically

dependent.

7See Woodward (2022a) for more on why this and other, more sophisticated procedures
for inferring causal direction work.
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Looking beyond explicit frameworks for causal discovery, the factoriz-

ability of joint probability distributions (reflecting statistical independence)

is commonly understood as indicating causal independence in science. This

has important methodological consequences, not least that knowing that a

joint probability distribution factorizes often justifies analyzing the causally

independent subsystems independently, greatly facilitating computation. For

instance, the factorization of a joint distribution in physics is commonly un-

derstood to reflect facts about (effective) causal independence of the sub-

systems (i.e., the absence of nontrivial physical influence between the sub-

systems). Such inferences are ubiquitous in classical physics and, although

quantum entanglement makes the connection subtle, remain extremely com-

mon in quantum physics as well. To take a particularly well-known example,

this connection between the factorizability of a probability distribution and

causal independence is the essence of the so-called “Bell locality” condition

that is assumed in proofs of Bell-type theorems.8 The enormous difficulty

that people have had in coming to grips with the fact that quantum sys-

tems in entangled states apparently can violate this condition speaks to the

centrality and importance of this type of reasoning in physics.

3.2 The possibility of interventions

We noted that it is frequently possible to intervene on some variables with

respect to others; that is, it is possible to manipulate some variables in a

way that is independent (causally and statistically) of the values of other

8For readers unfamiliar with this condition, see, e.g., (Norsen, 2011).

14



variables, and in a way that influences certain other variables only indirectly,

if at all, or to find naturally occurring variables satisfying this condition. Our

world does not conspire to make such interventions impossible. For example,

our world is not superdeterministic (Shimony et al., 1976): that would entail

that whenever a researcher does an experiment in which she thinks she is

performing an intervention I that manipulates X, and records a change in

Y , this is actually due to some unobserved common cause of I and Y , or

due to some common cause of X and Y that “just happens” to be correlated

with I.9 This would imply that the supposed intervention I is not really an

intervention at all and the conclusions the researcher draws about the causal

relation between X and Y are mistaken. The assumption that this sort of

systematic confounding is not widespread is required to draw correct causal

conclusions from experiments.10

Going further, often variables occur “naturally” that have the characteris-

tics of interventions (i.e., they are “exogenous” to a candidate causal relation-

ship from X to Y and provide sources of variation in X that are associated

with variation in Y only through the variation in X they produce). Such

variables greatly facilitate causal inference, making possible “natural exper-

iments” in many areas of science and the identification of variables that can

serve as “instruments” (i.e., instrumental variables) for investigating causal

relationships (Angrist et al., 1996). These techniques illustrate, among other

9Superdeterminism is different from – and much stronger than – the possibility that
the world is governed by deterministic laws. The latter poses no particular problems for
causal inference.

10It is also generally true that local interventions are possible. This means, roughly, that
when it is possible to intervene with I on X, I itself does not consist of some delicately
tuned manipulation of many other, perhaps spatially separated, variables.
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things, that even if the relationship between X and Y is confounded (by a

common cause Z, for example), as long as we can find an instrumental vari-

able W that is an additional source of variation in X, where this variation is

independent of the variation inX caused by Z, we can use this information to

detect whether there is a causal relation between X and Y . Variables having

these intervention/instrument-like characteristics are not always available,

but often they are (even if identifying them requires considerable ingenuity)

and can be exploited in causal inference. As with other infrastructure fea-

tures, the existence of such variables is a generic empirical fact about our

world.

A related observation is that it is sometime possible to “fix” the val-

ues of variables exogenously by imposing values that remain unchanged, via

processes that are causally uninfluenced by other variables in the system.

Consider the ideal gas law (IG) PV = kT that relates the pressure P , vol-

ume V , and temperature T of a gas at thermodynamic equilibrium. (IG) is

silent about the causal relationships among these variables. Now consider a

gas confined to a box of fixed volume and immersed in a heat bath of fixed

temperature. The heat bath fixes the value of T exogenously (since the other

variables V and P do not influence the heat bath), while V is fixed exoge-

nously by enclosing it in a rigid container. We can represent this with the

equations (2) V = v and (3) T = t indicating that these variables have been

set to fixed values. We can then use (2) and (3) to solve for the pressure

using (IG). In a more general setting, Simon (1953) used such facts about the

order in which the values of variables in a set of equations can be determined

to infer causal direction (i.e., which variables cause others). In the specific
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experimental setup we consider, this licenses the inference that volume and

temperature are causes of pressure.

3.3 Modularity

A system at a chosen scale of analysis is modular if it has a representation

that correctly predicts that if we modify selected causal relationships be-

tween variables of the system, certain other causal relationships will remain

unchanged. (Modularity is not a binary property but comes in degrees.)

For example, a system of two coupled springs is modular to the degree it

is possible to modify the relationship F = −k1x1(t) governing one spring

(e.g., by heating the spring) while leaving the relationship characterizing the

other spring unchanged. It is implausible that it is somehow metaphysically

necessary that there exist modular representations for all systems of interest

and nothing guarantees that such representations will exist at any chosen

level of description. Nevertheless, we are sometimes able to discover mod-

ular representations of systems and this greatly facilitates causal analysis.

For example, if intervening to knock out one gene in a genetic regulatory

network will not lead the entire system to reorganize so that causal rela-

tions throughout the network change (which would be a massive failure of

modularity), this makes it much easier to learn about the causal structure

of the network. (Many investigations of genetic regulatory networks assume

this sort of modularity, often with good empirical support; the influential
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work of Davidson (2010), for example.)11 Again, it is a fact about our world

that many systems of causal relations are modular at some accessible level

of measurement and description.

3.4 Value-Relation Independence

Our discussion of principles such as CC and CMC has emphasized “constraint-

based” methods for learning causal structure based on conditional indepen-

dence relations, but there now exist machine learning methods for causal

inference that exploit properties of probability distributions besides condi-

tional (in)dependence. Central to these methods is the “principle of inde-

pendent mechanisms” (PIM) (Peters et al., 2017, chapter 2.1). Consider

a system of two random variables in which X causes Y ; PIM formalizes

the sensible expectation that the “mechanism” that determines the proba-

bility distribution over the cause variable X operates independently of the

“mechanism” that determines the conditional probability distribution over

the effect variable Y , given X. More concisely, PIM requires that Pr(Y |X)

be “independent” of Pr(X). Here “independence” clearly cannot mean sta-

tistical independence.12 Rather, it means something like Pr(Y |X) and Pr(X)

11Mitchell (2009) (following Greenspan (2001)) describes a hypothetical gene network in
which interventions on one gene or node produces a change in causal relations throughout
the network, so the system is non-modular at this level of description. We agree that
there may be real gene networks that behave this way but if the failure of modularity is
sufficiently massive we think it becomes an open question whether it is useful or appropriate
to talk about “the” causal structure of the network.

12The basic obstacle is that when considering the independence of Pr(C) and Pr(E|C),
one does not have access to a statistical sample of probability distributions that could be
used to check whether Pr(C) and Pr(E|C) covary. See (Peters et al., 2017, section 4.1)
for a pedagogical explanation of the challenge to understanding the independence asserted
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can vary independently of one another, in the sense that Pr(Y |X) will not

change under suitable changes in Pr(X) (changes in Pr(X) produced by in-

terventions, roughly speaking), and vice versa. This can be understood as a

modularity condition (since it asserts that the mechanism generating X can

be modified independently of the mechanism connecting X to Y ) and reflects

the assumption, common to many areas of science, that laws and initial con-

ditions can be formulated such that the latter can change independently of

the former.13

One virtue of PIM is that by exploiting information about probability

distributions that goes beyond that used by constraint-based causal discov-

ery methods, it can solve problems that those methods cannot. For example,

for a system of two variables X and Y , principles like CMC and faithfulness

that exploit only conditional and unconditional (in)dependence relations are

unable to distinguish between X → Y and X ← Y . PIM helps because,

given various additional assumptions, if it is satisfied by X → Y then it

will not be satisfied by X ← Y , so it can be inferred that the direction in

which PIM is satisfied is the correct causal direction (Shimizu et al., 2006).14

Such methods have been tested on data in which the causal direction is inde-

by PIM as statistical independence and for several non-statistical, information-theoretic
formalizations of PIM.

13As Woodward (2022a) argues, one of the crucial features of the distinction between
laws and initial conditions is that we expect the former to remain stable or invariant under
changes in the latter. This invariance requirement is closely connected to the expectation
that the mechanisms that generate initial conditions are independent of the laws that
evolve those initial conditions.

14These additional assumptions take a variety of forms but concern the functional re-
lation between X and Y ; for example, that it can be represented by an “additive error
model” of the form Y = f(X) + U or X = f(Y ) + V , or that the distribution of at least
one of the variables in the model is non-Gaussian.
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pendently known (e.g., the relationship between altitude and temperature)

and perform well above chance (Mooij et al., 2016). PIM thus identifies fur-

ther worldly infrastructure that, when present, can be exploited to facilitate

reliable causal inference.

3.5 Realization Independence

It is often true that upper-level systems of causal relationships display a sub-

stantial degree of “realization independence” with respect to their lower-level

realizing details: the same upper-level causal relationships continue to cor-

rectly characterize the behavior of a system across some range of changes in

its lower-level realizers. For example, the thermodynamic behavior of a sam-

ple of bulk matter is essentially independent of its exact microstate, as long as

that state resides within the appropriate region of the state space. For many

psychological and neurobiological phenomena, it appears that the specific

behavior of any individual neuron (which is typically stochastic) hardly mat-

ters – the aggregate properties of populations of neurons is what matters.

Many powerful theoretical tools – such as renormalization group methods

and homogenization techniques – were developed to exploit the presence of

realization independence, in its myriad forms, to simplify (or make possi-

ble at all) prediction and explanation (e.g., (Batterman, 2001)). Realization

independence, when it obtains, also allows us to ignore or abstract away

from lower-level details (the modeling of which is often intractable) and thus

facilitates causal analysis (Woodward, 2018; Robertson, 2021).
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If the behavior of some upper-level system exhibits widespread failure of

realization independence, then to achieve causal understanding of the sys-

tem’s behavior we must advert to some lower-level description that provides

stable, realization-independent relations. If this lower level is not epistem-

ically accessible, or we lack a good theory of its behavior, or informatively

connecting it to upper-level behavior is computationally intractable, then

our pursuit of causal understanding of the higher-level system will stall. To

illustrate, Goldenfeld and Kadanoff (1999) consider the possibility that to

adequately model the behavior of a bulldozer, one would have to appeal

to quantum chromodynamics. They remark that one would have “model

chaos”: the choice of a model for bulldozer behavior would be highly sensi-

tive to assumptions about the correct model for the behavior of the strong

force, the state of the quark and gluon fields that (partially) realize the

bulldozer, etc. This is information that we have no serious possibility of con-

necting to bulldozer behavior; if it were necessary, bulldozer science would

be impossible. If realization independence failed to anything like this degree

for sufficiently many natural phenomena, scientific inquiry itself – let alone

causal understanding – would be impossible.

3.6 Independence as a Common Thread

All of these infrastructure features concern independence relations: statisti-

cal independence among variables, the existence of variables that are causally

independent of other variables (making possible interventions and natural ex-

ogenous sources of variation), the independence of upper-level relationships

21



from details of their lower-level realizers, the independence of causal rela-

tionships from the mechanism(s) determining the cause variable(s) in those

relationships (PIM), and the independence of some causal relationships gov-

erning the behavior of a system from others (modularity). This varied store

of independence relations provides the primary resources we use to learn

about causal relationships: it is the existence of such independence relation-

ships that supports causal learning and the applicability of causal notions.

Somewhat counterintuitively, we learn about (causal) dependence, first and

foremost, by exploiting information about independence.

4 Does the Infrastructure Call for Further

Explanation?

Our concern so far has been to elucidate the infrastructure features that our

causal thinking has developed to exploit and which support our ability to

learn and reason about causal relations in our world. In the Introduction,

we also flagged a natural second stage of the worldly infrastructure project:

pursuing the further, albeit independent question of why those infrastructure

features are present. What, for example, accounts for the ubiquity of statisti-

cal independencies? Why is it often possible to perform interventions whose

effects are largely independent of the lower-level realizers of the manipulated

variable? Any attempt to systematically answer such questions lies beyond

the scope of the present paper, not least because we expect that accounting

for the presence of any particular infrastructure feature in different systems
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will often require different explanations, but we sketch some scientific details

we take to be relevant. We hope this will illustrate how the infrastructure

project opens the door to novel lines of inquiry that are easily overlooked

when pursuing more familiar metaphysical projects.

Consider statistical independence (though these considerations also bear

on the possibility of interventions). One important consideration concerns

certain properties of physical forces in the actual world. Forces between bod-

ies fall off with distance fairly rapidly: polynomially for the gravitational and

electromagnetic forces and exponentially for the weak and strong forces.15

This means that (i) at length scales longer than an atomic radius, only the

gravitational and electromagnetic forces are relevant and (ii) at any scale,

the dominant contributions to the dynamical evolution of a physical system

typically come from other systems in its immediate environment: the fall-

off of forces ensures that interventions on physical systems even relatively

short distances away often have negligible effect. It is also the case that (iii)

essentially all macroscopic systems are electrically neutral under ordinary

conditions, so electromagnetic interactions will not naturally produce corre-

lations between properties of bulk matter and (iv) the gravitational force is

sufficiently weak, and the gravitational effect of any object in our immedi-

ate vicinity so dramatically swamped by the gravitational force exerted by

the earth, that in many circumstances gravity is also an ineffective means

of naturally producing correlations between properties of bulk matter. The

result is that many variables of many natural systems, particularly macro-

15At least, at scales larger than about 10−5 meters. Inside protons and neutrons the
strong force between quarks and gluons increases with distance, resulting in the confine-
ment of those quarks and gluons.
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scopic systems, will be effectively independent under most ordinary physical

conditions.

The fall-off of forces also underpins a central pillar in the structure of

quantum theories, the cluster decomposition principle (Reed and Simon,

1979; Weinberg, 1995; Duncan, 2012). Remarkably, although the cluster de-

composition principle plays a deep role in shaping the structure of quantum

theories (Williams et al., 2024), on one way of looking at it, it essentially

amounts a statement of (a spatiotemporally local version of) the CMC.16

Cluster decomposition constrains scattering processes in a quantum theory:

it requires that the presence (or absence) of measured correlations between

particle properties in the post-scattering state be fully explained by those

particles having causally interacted (or not) during the scattering event. The

basic idea is that as two “clusters” of particles are translated a large spacelike

distance away from one another (i.e., out of local causal contact), the total

probability distribution over the possible outcomes of the total scattering pro-

cess should factorize into a product of independent probability distributions,

one for each of the two causally unrelated “clusters”. Any correlations be-

tween post-scattering properties of particles within a cluster should, in turn,

be fully accounted for by that scattering interaction. In other words, cluster

decomposition requires that any measured post-scattering correlations be-

tween any two quantities X and Y must be screened off by the scattering

16We said above that we would be considering statistical independence, but a referee
asked about the relationship between the fall-off of forces with distance and the CMC.
We consider the CMC a connecting principle, not an infrastructure feature, and so its
explanation does not really fit into what we’ve called the second stage of the worldly
infrastructure project, but we nevertheless thought it best to address the question here.
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interaction Z. One can prove that this principle is satisfied if and only if the

forces between any two particles in the model fall-off sufficiently rapidly with

distance.17

More generally, there will be many physical situations in which the fall-off

of forces with distance will ensure that error terms for variables of interest

will be independent. As mentioned in section 3.1, this means that long as

the effect variables are functions of their immediate causes (as is standardly

the case in physical modeling) and an additive error term, it follows that

the model will satisfy CMC. For example, consider two bodies of masses m1

and m2 orbiting a central body of mass M ≫ m1,m2. (Two celestial bodies

orbiting a large star, for instance.) The gravitational influence of the central

body is the dominant contribution to the dynamical evolution of each of the

two lighter bodies; local influences on body 1 and body 2 make comparatively

negligible contributions to that dynamical behavior and will accordingly be

modeled as error terms. For sufficiently distant bodies and/or an appropriate

coarse-graining of the variables of interest, the local influences on body 1 will

be independent of those on body 2, securing the independence of error terms.

A second important physical consideration is that the interaction of a

system with a larger environment (or even with other parts of the system

itself) can produce decorrelation and effective independence among variables

17More precisely, cluster decomposition requires that while the S-matrix that determines
the probability distribution over the properties of the scattered particles should be invari-
ant under a simultaneous spatial translation of all the scattering particles, it cannot be
invariant under any spatial translation of only a subset of the scattering particles. It can be
shown that this is equivalent to a constraint on the Hamiltonian governing the dynamical
evolution of the scattering particles, requiring that the forces between any two particles
fall of sufficiently rapidly with distance.
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within the system, both classically and quantum mechanically. The envi-

ronment can, and typically does, interact with the system in a way that

“washes out” (often rapidly) statistical correlations within the system. For

example, although two molecules in a gas will have correlated momenta im-

mediately after they collide, their momenta rapidly become effectively in-

dependent as a result of subsequent independent collisions of each particle

with other molecules in the gas. In quantum theories, environmental de-

coherence produces a similar result. Consider a “system” – two particles,

with entangled spins – interacting with molecules constituting an ambient

“environment”. This interaction rapidly entangles the system with the envi-

ronmental molecules, and although the entanglement between the two initial

spins entails that results of appropriate measurements of those spins should

be correlated, the entanglement between system and environment renders

these correlations inaccessible to us via measurements. The result is that

environmental decoherence rapidly renders measurements of the spins of the

“system” particles effectively statistically independent (see e.g., Schlosshauer

(2019)).

Another important consideration, relevant to the above, is that whether

variables are independent can depend on their “grain” as well as the “cut”

we make to distinguish the system of interest from some larger environment.

By choosing an appropriate graining of variables and an appropriate sys-

tem/environment cut, we can sometimes characterize systems in such a way

that few variables are correlated and many are independent, thus maximiz-

ing the information that can be exploited for causal discovery. In particular,

a description of a system using fine-grained variables which are dependent
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can sometimes be replaced by a description using more coarse-grained vari-

ables that are independent. For example, the exact positions of atoms in my

coffee cup may be, at some divinely accessible level of precision, correlated

with my position at my desk because of gravitational interactions. But if we

adopt more tractable, coarse-grained variables – variables that track atomic

positions to something like the 10th digit would suffice, let alone variables

that track only the position of the coffee cup itself on the desk – there will

be no such correlation. (Incidentally, this is one reason why the claim that

everything in the backward light cone of some event E is causally related to

E shows much less than is often supposed. The claim might be correct, in

some sense, for maximally fine-grained descriptions of all systems and events

involved, but even mildly coarse-grained variables will exhibit effective inde-

pendence. It is those variables that are of interest, even in the practice of

fundamental physics (cf. Frisch, 2014, pp. 68-70).18

Causal inference does not require that variables (or relationships) be fully

independent (or modular) at all spatiotemporal scales, only that they be

effectively independent at a particular scale of interest. To claim that rainfall

is exogenous with respect to crop growth (Simon and Rescher, 1966), it need

not be that agriculture has no long-term influence on climate. It only need

be that over the timescale of interest (say, five years) any influence of crop

growth on rainfall is sufficiently small to be negligible on that scale. That

independence is often only approximate is not in tension with recognizing

independence as a genuine feature of the world. It is still the case that the

possibility of differentiating between dependent and independent variable

18It may be that only those variables are even physically meaningful (Miller, 2021).
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sets at one scale requires it not to be the case that all variables influence

all others equally at all scales (Weinberger, 2020). It is fortunate for causal

analysis that it is possible to successfully characterize the dominant behaviors

of worldly systems at different scales in terms of a relatively small set of causal

influences.

Space constraints leave us able only to sketch explanations for the pres-

ence of other infrastructure features, but we emphasize that these explana-

tions will typically be domain or system-dependent. For example, in biolog-

ical systems like brains or genomes there are reasons to believe that natural

selection will often produce modular systems and systems whose behavior is

somewhat insensitive to lower-level details (Wagner et al., 2007; Clune et al.,

2013). The explanation of modularity and the autonomy of higher-level be-

havior in physical systems, when present, obviously proceeds along much

different lines (e.g., for the latter, often by appeal to renormalization group

methods).

5 Success, Realism, and Effective Theories

We have argued that the presence of the worldly infrastructure features ex-

plains the success of our procedures for making inferences about causal re-

lationships.19 This argument is an instance of a general form of reasoning

employed throughout science. Scientific modeling rests on empirical presup-

19More precisely, it is an indispensable part of the explanation. The success of those
procedures also depends on obvious factors like the existence of users of the procedures,
their cognitive abilities, etc.

28



positions. The application of textbook techniques for calculating scattering

cross sections in quantum field theory involves several: for example, that the

scattered particles interact weakly and that the scattering occurs at effec-

tively zero temperature. The use of polygenic risk scores to predict behavioral

traits and diseases rests on the presupposition that the traits in question are

the result of a large number of genetic factors, each individually contribut-

ing a very small and approximately additive effect on the trait in question;

it also presumes that the ingredients (SNPs) that go into the scores, if not

themselves causal, are correlated with genuinely causal factors (Kendler and

Woodward, 2023). When these applications are successful, we can infer that

the real-world physical situation satisfies the presuppositions of our model-

ing strategies. For example, the fact that polygene risk scores are replicable

and predictively successful suggests to geneticists that these presuppositions

concerning genetic architecture are correct. It also helps to explain why

many previous attempts to identify common candidate genes with large ef-

fects on the traits in question were unsuccessful (i.e., fail to replicate): for

many traits, such genes do not exist. Concluding that the presuppositions

of a modeling strategy are satisfied in the real world on the basis of that

strategy’s empirical success is a familiar inference in the sciences. We claim

that a similar inference holds for the worldly infrastructure that underlies

successful causal reasoning: the success of various causal discovery strategies

reveals facts about what the world is like – i.e., about the presence of the

worldly infrastructure that supports the success of those strategies. In this

sense, we are simply treating causal discovery like other fields of successful

scientific inquiry.
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This “argument from success” may remind readers of similar arguments

by scientific realists: (1) science (or a particular theory) is predictively accu-

rate, (2) the success of science (or this particular theory) would be miraculous

if its descriptions of the world were not at least approximately true, therefore

(3) those descriptions are at least approximately true. We think our argu-

ment from success is stronger than this familiar argument in several respects.

One common objection to this argument for scientific realism invokes the

specter of underdetermination. One way to state the objection is that no

matter the predictive success of T, one cannot rule out that T is false and

some alternative T∗ is true, where T∗ is inconsistent with T but accounts

for the same phenomena. How seriously one should take this objection in a

given context depends, in part, on how plausible it is that there is any such

theory T∗. Applied to our argument, the analogous issue is whether there is

some alternative account, postulating very different worldly infrastructure,

that accounts equally well for the “phenomena”: the success of our causal

inference procedures. We are not aware of even a hint of a serious proposal

in this direction.

A second disanalogy: our reasons for thinking that the worldly infrastruc-

ture features are present go well beyond the inference to the best explana-

tion on which the scientific realist relies. Often we can directly establish that

the infrastructure features are present – we observe that certain variables

are statistically independent, etc. Direct observation that the infrastructure

features are present, combined with arguments that if present, they would

explain the success of our causal discovery procedures, and that no other po-
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tential explanations of success seem to be available, all support the claim that

the presence of the infrastructure features is crucial for the success of causal

discovery. We have something more like an argument that the presence of

the infrastructure features would be the only empirically viable explanation,

bolstered by independent evidence that the explanatory infrastructure is, in

fact, present.

We conclude by commenting on a distinct issue that might invite a sim-

ilar skeptical challenge: the status of the causal claims that our inference

procedures deliver. Suppose those procedures seem to tell us that (1) C

causes E. How do we know that some alternative account – perhaps a more

“fundamental”, fine-grained account – won’t one day be accepted, according

to which (1) is not true, but rather some alternative (2) is true: C∗ causes

E? If so, our causal inference procedures will not be successful in the sense

we have claimed.

One way this might happen is if there was some unrecognized source of

confounding in the procedures that we took to establish (1): we thought we

were intervening on C and observing changes in E, but some other factor

Z was associated with our attempted interventions and in fact Z causes E.

This is always possible in principle, but is extremely far-fetched in many

realistic cases and often not a possibility to be taken seriously in inquiry.

Suppose instead that we succeed in performing genuine interventions on

C and that E changes in accord with (M), or we provide evidence via other

inference strategies we have discussed for the same conclusion about how E

would respond to interventions on C. Might we still subsequently discover
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that (1) is false? This is harder to envision. This could be a genuine possi-

bility if (M) was an inadequate account of causation. The correct account

could be one that did not incorporate (M) but instead invoked some entirely

distinct condition(s) S, or one according to which a relationship is causal only

if it satisfies (M) and some additional condition R that (M) omits. Then it

might be that even though E changes in response to interventions on C, the

condition(s) S or R are not satisfied so the relation between C and E is not

really causal.

Of course, if (M) or something sufficiently similar is the correct account

of causation, that won’t be a genuine possibility. However, there is rea-

son beyond optimism about (M) to believe that statements of the form

“interventions on C are associated with changes in E” are unlikely to be

overturned by future developments. Statements of that form, established

on the basis of apparently well-designed experiments and reliable inference

procedures but then invalided by subsequent developments, are difficult to

come by. Subsequent discoveries may tell us more about why interventions

on C are associated with changes in E, about which components of C are

the genuine difference-making elements, about mediating variables, about

the range of conditions under which the original claim holds, and so on.

However, they rarely show that under the specified conditions the original

claim is false. (And if they do, the mistake is usually discoverable via in-

vestigation at the level of the original causal claim, such as the presence of

an unknown confounder or a failure of replicability, and not via some means

that depend on future theorizing about causation.)20 This is, in part, be-

20For example, one way that a causal claim might be mistaken is that the cause variable
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cause interventionist causal claims are “thin”, i.e., relatively ontologically

non-committal. In particular, interventionist causal claims describe a depen-

dence relationship without making commitments about more “fundamental”

or fine-grained characterizations of the variables involved, nor about the spe-

cific mechanism responsible for dependence relationship. For example, if we

understand “aspirin causes headache relief” as a “thin” interventionist claim,

it is wildly implausible that it would be falsified by subsequent theoretical

developments. After all, it makes no commitments about how the causal

influence is transmitted (e.g., via inhibiting prostaglandin production vs. via

activating µ-opioid receptors) nor about the chemical composition of aspirin,

the physiological realizers of headaches, etc. This results in interventionist

relations typically being preserved under theory change, including the embed-

ding of high-level causal relations into more “fundamental” or fine-grained

theoretical descriptions.

This illustrates another important disanalogy with the familiar argu-

ment for scientific realism. There are many examples of theories that are

highly predictively successful but have mistaken ontological commitments –

nineteenth-century theories that held light and electromagnetism were trans-

mitted by a mechanical ether, Dirac’s “hole theory” that was used to predict

the existence of antimatter, and so on. By contrast, statements of the form

“interventions on C are associated with changes in E” describe a dependence

C might be discovered to be “ambiguous”: different interventions that set C to the same
value might be associated with different outcomes depending on how C is “realized” at
some lower level (Spirtes and Scheines, 2004). This mistake is something that can typically
be discovered by doing experiments at the level of C – no discovery of a deeper or more
fine-grained theory is required.
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relationship without making such ontological commitments. This makes it

possible for interventionist causal claims to survive subsequent scientific de-

velopments and attendant changes in ontology. This is just as true for claims

that more than 40 CAG repeats in the HTT gene causes Huntington’s chorea,

that the motion of a conducting material in a magnetic field causes induction

of a current, etc. as it was for the claim that aspirin causes headache relief.

Our invocation of “well-designed” experiments and inference procedures

may seem question-begging. We disagree. One can always be mistaken in

thinking that an experiment is well-designed, but whether this is the case

is usually something that can be determined by subsequent scrutiny of the

experiment itself. Consider the replication crisis affecting portions of psychol-

ogy. That the experiments claiming to show that certain manipulations cause

various effects (e.g., priming effects on behavior) were badly designed can be

revealed from inspection of the experiments themselves and the techniques

employed to analyze them (e.g., inappropriate statistical procedures), along

with the information provided by their failure to replicate. Again, we can

discover this via investigations at the same level as the original causal claim;

new scientific theories are not required. Our point is not that this is never

the case – nineteenth-century experimenters working with cathode ray equip-

ment could not possibly have recognized that their experiments were poorly

designed and that certain causal claims rested on shaky ground (because

they failed to control for X-rays) until X-rays were discovered by Roentgen

in 1895. Our point is that such cases are the exception, not the rule, and

do not justify anything like a general expectation that interventionist claims

are endangered by future scientific development.
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Physicists make widespread use of the notion of an “effective theory”.

This is a theory TE that accurately captures dependence relations over a re-

stricted range of scales or within a specified domain, but will not be predic-

tively accurate outside that domain. The use of effective theories is licensed

by the fact that their structure is relatively independent of the structure that

might be revealed by more fine-grained levels of analysis. Put otherwise, the

dependence relationships described by TE depend only weakly on which fine-

grained theory turns out to be correct: as long as that fine-grained theory lies

in a class of theories that satisfy specified conditions, the relationships in TE

will be retained by that theory (Williams, 2019).21 (In physics, this can of-

ten be demonstrated by the methods for exploiting realization independence

mentioned in section 3.6 or similar techniques.) The use of effective theories

in particle physics has received philosophical attention, but the concept can

be profitably applied more generally; for example, the use of Navier-Stokes

or Navier-Cauchy equations to model the continuum-scale properties of flu-

ids and solids (respectively) can be illuminatingly understood as making use

of effective theories (Batterman, 2021). We suggest that causal claims, in

an interventionist framework like (M), exhibit important similarities to de-

pendence relations found within effective theories throughout physics: they

are typically independent of many details of their lower-level realizers while

remaining non-committal about any detailed ontological account of those

realizers. As discussed above, these properties justify the expectation that

interventionist claims will remain stable across future theoretical develop-

ments.

21The formal specification of these conditions varies between theories, but they are in
general fairly weak.
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6 Disanalogies with Traditional Metaphysics

We presume it is clear that the “worldly infrastructure” project differs from

those typically engaged in under the heading of the metaphysics of causa-

tion. It requires no special metaphysical concepts or entities, like powers or

relations between universals. It neither relies upon nor attempts to system-

atize intuitive judgments about cases. It maintains tight connections with

the epistemology and methodology of causal inference, since the infrastruc-

ture features it aims to identify are precisely those on which successful causal

reasoning relies. Here we spell out some differences that may be less obvious,

with the aim of further elucidating our approach.22

Modal Ambitions: Metaphysicians of causation often understand their task

22A reviewer encouraged us to situate our project with respect to those of Andersen
(2017) and Papineau (2022) in particular. Andersen aims to provide a metaphysical ac-
count of causation that (i) allows a unification of causal process and counterfactual theories
of causation and (ii) will support an information-theoretic characterization of causation.
She proposes that a theory of causation be grounded on a pattern ontology: causal relata
are patterns in microphysical degrees of freedom (“the causal nexus”) which are charac-
terized by a qualitative “counterfactual robustness” based on the stability of the pattern
under variations in the state of the causal nexus. Her “core metaphysical view”, then, is
that “causation is a set of information-theoretic relations between patterns instantiated in
the rich causal nexus” (Andersen, 2017, p. 612). We do not offer a metaphysical account
of what causation, or causal relata, “are” nor attempt to provide a semantic basis for inter-
ventionist counterfactuals in some “causal nexus”; we do not aim at a unification of causal
process and counterfactual theories of causation; we do not aim at an information-theoretic
account of causation.
The primary points of departure between our project and Papineau’s are (i) he seeks a

reductive account of causal relations to statistical (in)dependence properties, while we do
not pursue (and indeed are skeptical of) any such reduction and (ii) he is focused exclu-
sively on statistical (in)dependence among exogenous variables and does not consider the
other infrastructure features we identify, nor does he suggest that there may be underlying
physical bases for this statistical independence (which would be akin to our “stage two”
of the worldly infrastructure project). There are myriad smaller differences between our
projects and those of Andersen and Papineau, but these strike us as the biggest.
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as characterizing features of causation that are “conceptually necessary” –

perhaps features that causation must possess in all “metaphysically possible”

worlds. The infrastructure project has more restrained modal ambitions. It

does not claim that the generic features that characterize the worldly in-

frastructure obtain as a matter of conceptual necessity, nor does it claim

that there is a conceptually necessary connection between causation and the

presence of those features. It does not attempt to identify causation with

the infrastructure features and it does not take the infrastructure features

to be “grounds” or “truth makers” for causal claims, in the metaphysician’s

sense of those terms (which imports assumptions about metaphysically nec-

essary relations). Instead, the infrastructure project is solely concerned with

properties of the actual world and how they support causal reasoning.

In line with its restricted modal ambitions, the infrastructure project de-

clines to take a stand on how to think about causal relations in “alien worlds”

– proposed worlds very different from our own in which the worldly infras-

tructure is not present or not connected with causation in anything like the

way it is in the actual world. The alien worlds typically considered are worlds

in which some or all of the worldly infrastructure that supports successful

causal reasoning in the actual world is missing. It is no surprise, then, that

we do not consider the judgments one may be tempted to make about such

worlds – using causal concepts and reasoning strategies developed in the ac-

tual world to exploit precisely that worldly infrastructure – to provide useful

information or insight into causation or causal reasoning in the actual world.

Indeed, our functionalism inclines us toward skepticism about whether there

is a determinate fact about how causal concepts developed to exploit a spe-
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cific worldly infrastructure can be applied to worlds that do not exhibit the

infrastructure presupposed by those concepts and strategies.23

Domain-specificity: Although the infrastructure features obtain generically,

it is entirely possible that there are actual systems that, at least at some

natural levels of analysis, fail to instantiate the infrastructure features to

such an extent that they resist causal analysis. For example, there has been

recent discussion about whether structural features of general relativity leave

it unable to provide causal explanations of various phenomena. Several of

those structural features apparently imply that certain interventions (and

the associated counterfactuals) that are crucial for causal interpretation are

ill-defined, which would mean a crucial element of the worldly infrastructure

is missing.24

If this is correct, and if sufficiently many other infrastructure features are

absent for certain systems modeled in GR, we think it warranted to conclude

that the behavior of such systems simply will not admit a straightforward

causal interpretation, at least on anything like how we presently think about

causation. This possibility illustrates our general point that some systems

– at least when modeled at certain levels of analysis – may simply be “un-

23For additional discussion, see Williams (2022b); Woodward (2022b).
24For discussion, see e.g., Curiel (2015); Jaramillo and Lam (2021). Problems with the

relevant counterfactuals arise in several ways. The stress-energy tensor is partly depen-
dent on metric structure for its characterization, so an intervention on the former with
respect to the latter is arguably not well-defined. This creates difficulties for the claim
that any chosen matter distribution “causes” metric structure. In addition, the absence
of unique vacuum solutions creates problems for counterfactuals concerning what would
happen if matter were removed from a region of spacetime (since there won’t be unique
situations associated with the antecedents of such counterfactuals). There are also global
constraints that follow from the field equations that create problems for the possibility of
local interventions.
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friendly” to causal analysis because important worldly infrastructure is not

present. Accepting this contingency of the worldly infrastructure stands in

contrast to the common philosophical expectation that causal notions should

be applicable everywhere that certain minimal constraints (e.g., the presence

of regularities) are satisfied.

Laws: Many philosophers advocate a tight connection between causal rela-

tions and laws of nature. A simple, especially strong form of this connection

asserts that C causes E if and only if C and E are “related by” a “law of

nature”. We do not necessarily dispute the “only if” direction, depending

on how the quoted terms are made precise. However, we do deny the “if”

direction. The infrastructure features include the presence of statistical in-

dependencies, the possibility of interventions, and so on. If these features

do not obtain then it may not be true that C causes E, even if C and E

are “related by” a “law of nature”. The presence of the infrastructure fea-

tures in some domain does not follow merely from the fact the domain is

law-governed, but depends on detailed, contingent features of those laws as

well as contingent (if generic) facts about initial and boundary conditions

(e.g., that the world is not superdeterministic). Our discussion of obstacles

to defining interventions and their associated counterfactuals in general rela-

tivity provide one example; anti-entropic systems also appear to defy causal

description, despite obeying the same laws of nature as entropic systems

(Williams, 2022b). These examples illustrate the general point that more is

required for causal notions to be applicable to a given system or relationship

than merely that it be lawlike.
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Relevance of Physics: The causal modeling techniques that inform our anal-

ysis are widely used in the social and behavioral sciences and increasingly in

portions of biology, including neurobiology and genetics. However, readers

may wonder whether these techniques can be usefully applied within physics

and, relatedly, whether the infrastructure features we describe are important

for causal reasoning in physics. We have several replies. First, there is now

a rapidly growing literature applying causal discovery methods to classical

and quantum physics, e.g., (Costa and Shrapnel, 2016; Janzing et al., 2016;

Allen et al., 2017; Barrett et al., 2020). Perhaps it is unsurprising, then,

that the infrastructure features on which we have focused do often figure in

physical reasoning. For instance, assumptions that causally unrelated vari-

ables will be statistically independent are very common; for example, this is

why, in the absence of delicately arranged contrivances, the possibility of co-

herent electromagnetic radiation converging on a source it is not considered

a serious physical possibility in the actual world, despite being consistent

with Maxwell’s equations. The need for theoretical structure to license in-

terventions also plays an important (albeit rarely explicit) role in physical

theorizing, from thermodynamics to quantum field theory.25 The principle of

independent mechanisms is also universally assumed to hold in physics and

has been exploited in classical and quantum physics for multiple purposes

(e.g., Maudlin, 2007, pp. 130-35; Janzing et al., 2016; Williams, 2022a).

25Treating thermodynamics as a “control theory” is a familiar idea (Wallace, 2014),
especially in engineering, but the invocation of quantum field theory may be surprising.
The cluster decomposition principle, mentioned above, is one of multiple principles that
plays this role: its satisfaction ensures that particles separated by sufficiently large spatial
or temporal intervals can be treated as dynamically independent. This allows one to define
a notion of an “essentially” localized state in quantum field theory, which in turn allows
for a well-defined notion of an intervention; again, see (Williams et al., 2024).
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Second, to the extent that these infrastructure features are not satisfied

by some physical systems and we cannot usefully apply causal inference tech-

niques, we think this may simply mark limits on the applicability of causal

thinking in physics. However, we do not conclude from these limits (should

they exist) that the features we discuss are somehow thereby unimportant to

causal reasoning in circumstances in which they are present. The legitimacy

of causal reasoning in genetics does not hinge on whether the Standard Model

of particle physics provides causal explanations of phenomena; whether and

when causal reasoning can be applied to any domain of natural phenomena,

including physics itself, depends on whether the worldly infrastructure that

supports causal reasoning is present.

7 Conclusion

This paper engages in a novel project – the elucidation of the worldly in-

frastructure that supports the application of causal analysis. This is distinct

from most projects pursued within mainstream metaphysics of causation,

but it also does not concern only the epistemology or methodology of causal

reasoning. Instead, it aims to identify the features that are “out there”

in nature that underlie our ability to learn about causal relationships and

successfully apply them. The project is is motivated by an idea that is rela-

tively uncontroversial elsewhere in the philosophy of science: when a theory

or methodology delivers reliable knowledge about its subject, it is worthwhile

to investigate the worldly features that help to explain that success.
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