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In artificial intelligence (AI) literature, “delusions” are generally characterized as the generation 

of false, nonsensical or unfaithful output from reliable source content (Ji et al., 2023, p.3). The 

occurrence of delusions questions the ability of generative AI models to work in real-world 

contexts and have real-world applications, raising a serious challenge to the development of the 

field in the future. For example, in medical applications, reports generated from patient data using 

generative AI models may contain unfaithful information that could put the patients’ lives at risk 

(ibidem). This means that the delusion problem needs somehow to be addressed. There is an 

extensive literature on computer-generated delusions, which ranges from tackling hallucinations, 

like the production of nonsensical images, in Computer Vision (Baker & Kanade, 2006) to 

dismantling nonsensical or factually false text generated by (natural) Language Models, but this 

literature is predominantly taxonomic, focusing especially on ways to classify various delusions: 

visual- vs text-based delusions, intrinsic (the generated output contradicts the source content) vs 

extrinsic (the generated output is not verifiable from the source content) delusions (Ji et al., 2023, 

p.4) etc. 

 

In a recent research paper titled “Shaking the Foundations: delusions in sequence models for 

interaction and control” (Ortega et al., 2021), a group of scientists from DeepMind successfully 

presented a well-defined formal treatment of the delusion problem for an entire class of generative 

AI models (Ortega & Braun, 2009; Rezende et al., 2020) focused on modeling purposeful adaptive 

behavior. While Ortega’s et al. (2021) result does not comprehensively explain all types of 

computer-generated delusions or their sources, nor does it aim to do so, it bears significance across 

a wide range of generative AI models gathered under the umbrella of sequence models or 

transformers (e.g., foundation models, language models, reinforcement-learning models etc.), in 

which purposeful adaptive behavior is expected to occur. As the authors show, in sequence models 

or transformers, delusions are in fact auto-suggestive, i.e., they are self-induced and self-

propagated by the models themselves due to confounding in the underlying stochastic model. 

Confounding, in this context, means that the models fail to distinguish their own actions (like 

generating an output) from observations by which they represent the source content.  

 

In the case of large Language Models and natural language processing based on sequence models, 

the literature documenting and classifying computer-generated delusions is growing at an 

extremely fast pace (Ji et al., 2023; Li et al., 2023; Zheng et al., 2023) but little has been said about 

auto-suggestive delusions (Ortega et al., 2021). Usually, auto-suggestive delusions are equated 
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with exposure bias (He et al., 2021), but exposure bias does not say much about the nature of the 

delusions it produces. To this purpose we may employ a different notion: i.e., the delusion is 

triggered by the fact that the language model treats both the observations (the ground-truth data) 

and its own actions (the model’s own samples generated from the ground-truth data) as language 

tokens. The consequence is a form of confounding (Pearl, 2009), in the sense that the model ends 

up taking its own actions as observations – as evidence about the world, thus generating self- or 

auto-suggestive delusions. 

 

Many problem formulations in the evolving field of generative AI still lack a straightforward 

formalization, so this neat formal result, i.e., the presence of stochastic confounding in sequence 

models, is notably valuable for a conceptual analysis of delusions in the field of machine learning. 

Sequence models or transformers trained using exclusively self-supervised learning (Amatriain et 

al., 2023) are most prone to auto-suggestive delusions, because the manner in which these models 

sample data from the training set is entirely up to them. In the family of large Language Models, 

relevant examples in this category are older transformer models based on BERT or GPT-3. 

Nevertheless, even more recent hybrid transformer models, like those based on GPT-3.5 (such as 

ChatGPT), are exposed to this kind of delusion, although they are trained using self-supervised 

learning followed by a human-in-the-loop fine tuning or reinforcement learning with human 

feedback – RLHF fine tuning (ibidem), which constrains the models into sampling relevant data 

from the training set and minimizes exposure bias. The primary reason for the occurrence of auto-

suggestive delusions is that neither transformer models with human-in-the-loop fine tuning (or 

reinforcement learning with human feedback – RLHF) explicitly address the underlying problem 

of confounding, although the exposure bias is acknowledged and reduced through approaches like 

RLFH. 

 

In short, whenever a confounder of the type discussed here (Ortega et al., 2021) is identified in a 

sequence model or transformer, such as a large Language Model of the GPT-3.5 sort, it presents 

an opportunity to ask whether the resulting self- or auto-suggestive delusions of the model could 

be likened, not so much to “stochastic parroting” (Bender et al., 2021), but rather to what in the 

philosophy of language and mind may be called a private language, yet in a weak sense – that is, 

a language that exhibits a systematic deviation from what we generally call the human language. 

The main rationale for asking this question is that, even though the model could learn a stochastic 

representation of the world (the human language included), it could still take its own actions, e.g., 

the generated text, as evidence (as ground-truth data) about the world (the human language 

included), creating systematically wrong representations, and so “altering” both the world and the 

meaning of words. 

 

This further raises the question as to whether the presence of self- or auto-suggestive delusions 

could indicate that, at least in theory, large Language Models are likely to be also solipsistic, that 
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is, likely to become further and further disconnected from the world, instead of just and simply 

biased. 

 

The plan of the paper is as follows. I will begin by providing a brief overview of exposure bias in 

sequence models, including language models. Following that, I will introduce the formal 

framework that elucidates the probabilistic delusions capable of explaining exposure bias in a 

broad manner. This will provide the basis for discussing self- or auto-suggestive delusions in 

sequence models. Moving on to the third section, I will analyze self- or auto-suggestive delusions 

by proposing an analogy with the rule-following problematic originating in the philosophy of mind 

and language. Lastly, in the fourth section, I will argue that this comprehensive approach leads to 

the suggestion that sequence models, large Language Models in particular, may develop in a 

manner that touches upon solipsism, understood here as a gradual tendency to go further and 

further astray in representing the world, and the emergence of a private language in a weak sense, 

that is a made-up language, progressively detached from human language. 

 

 

1. Stochastic parrots and exposure bias 

 

There is a rapidly expanding body of literature focused on the diverse issues arising from large 

Language Models. Among them, an apparently inherent tendency towards randomness, which was 

observed in the behavior of these models, has earned them the moniker of “stochastic parrots” 

(Bender et al., 2021). It is posited that, despite their proficiency in multiple languages, these 

models lack a genuine comprehension of linguistic meaning, relying instead on a statistical 

matching of linguistic tokens (i.e., words) to generate various forms of text. Yet these forms of 

text are often hallucinatory, suggesting that Language Models are nothing but random machines.  

 

This characterization, however, offers a broad and somewhat unsatisfactory representation of 

computer-generated delusions within large Language Models. Alternative, more systematic 

approaches seek to furnish precise definitions of delusion and to establish classifications grounded 

in their distinct sources and manifestations (Ji et al., 2023; Li et al., 2023). Thus, some delusions 

result from the heuristics of data collection and mismatches in the data  (Dhingra et al., 2019). 

Others, derive from the model itself, i.e., from aspects related to training and inference in the 

models. Some models learn imperfect representations of context, in the sense that they “learn 

wrong correlations between different parts of the training data” (Ji et al., 2023, p. 8; Aralikatte et 

al., 2021).  

 

Other models draw incorrect inferences due to exposure bias. Exposure bias refers to the 

discrepancy between how a model is trained and how it is used at inference time. During the 

training of a language model, the model is typically exposed to ground-truth data, meaning it is 

provided with the correct or target sequence of language tokens (Brown et al., 2020), at each step 
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of the sequence generation. This allows the model to learn and adjust its parameters based on 

ground-truth information. These models are trained using a maximum likelihood estimation 

(MLE) objective. This objective encourages the model to generate text that maximizes the 

likelihood of the correct next token given the previous context: 𝑃 (𝑇𝑛+1 | 𝑇1, … . , 𝑇𝑛). In short, the 

model learns to predict the most likely token Ti at each step in a sequence. In this phase, the model 

has access to perfect information.  

 

However, during the inference or generation phase, the model is not provided with ground-truth 

information. Instead, it starts by generating a sequence of tokens based on its own predictions from 

training, one token at a time (see Fig.1), and uses its own generated tokens as input for generating 

subsequent tokens. The exposure bias, then, arises from this difference between training and 

inference. Since the model is not exposed to ground-truth information during inference, errors can 

accumulate, as it generates a sequence, and these errors can compound over time (Ji et al., 2023)  

producing delusions. “The web is full of actions (text) produced by many other agents, mostly 

people, but recently by machines too, such as GPT-3. Language models (...) are often pre-trained 

with self-supervising learning techniques. These pre-trained models are agents that can generate 

actions by conditioning on previous actions.” (Ortega et al., 2021, p. 9). So, once a model’s own 

actions enter the mix, chances are that the model will delude itself. 

 

 
Figure 1. A graphical representation of exposure bias. During generation, the model is fed ground-truth 

data tokens, from P(Data). During inference, the model instead uses tokens from the model’s own samples 

P(Model). Source: (He et al., 2021: 1) 

 

This kind of delusion, however, is far more interesting than a delusion generally understood as a 

“generated content that is nonsensical or unfaithful to the provided source content” (Ji et al., 2023, 

p. 4; Maynez et al., 2020),  because of its peculiar nature. Even we, as humans, experience it and 

we often find it compelling; we experience it, for instance, when we take what we do (e.g., what 

we hold to be the case) as what is (e.g., what is factually the case).  

 

In some sense, this is a solipsist delusion: it occurs whenever we equate our actions or beliefs with 

objective reality. Now, what is even more fascinating is that we can encounter the same kind of 

delusion in machines that are devoid of any subjectivity as we know it. Their delusions can be 

called self- or auto-suggestive delusions because such machines can behave quite like us, i.e., they 
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are prone to taking what they do as something that they see. And as Pearl & Mackenzie (2018) 

show, this is essentially a problem of confounding1: 𝑃(𝑇𝑛+1 | 𝑇1:𝑛)  ≠  𝑃(𝑇𝑛+1| 𝑑𝑜 (𝑇1:𝑛)). 

 

 

2. Probabilistic delusions, a formal approach 

 

Probabilistic models are, in fact, prone to producing delusions. This is something that anyone who 

has ever delved into causal inference has heard about. In this section, we will tackle two standard 

types of probabilistic delusions: colliders (which are interesting for introducing the topic of how 

our mind plays tricks on us) and confounders (which are specifically relevant to our discussion). 

 

Even though pure probabilistic associations seem incomprehensible to us2, they are, in fact, quite 

common around us. Think, for example, a simple experiment like the next one (Pearl & Mackenzie, 

2018, p. 185). We conduct a series of one hundred simultaneous coin tosses using two coins, Coin 

1 and Coin 2. Using a table, we only record the outcome of a toss when at least one of them displays 

Heads. Eventually, this will end up counting roughly 75 entries in the table. Upon examining the 

table, we then notice that the tosses of the two coins are not entirely unrelated; but in every instance 

in which Coin 1 landed on Tails, Coin 2 landed on Heads. In other words, whenever Coin 1 

displays Tails, it is certain that Coin 2 displays Heads. Now, this is a purely probabilistic 

association without an underlying common cause; and even if we have the illusion that the coin 

tosses are not causally independent, in fact they are. “The correlation that we observe is, in the 

purest and most literal sense, an illusion. Or perhaps, even delusion: that is, an illusion we brought 

upon ourselves by choosing which events to include in our data-set and which to ignore.” (Pearl 

& Mackenzie, 2018, p. 185). 

 

For such a delusion, a perspicuous formalism exists, called causal diagrams, which exposes the 

nature of the problem quite neatly. The causal diagram formalizing the delusion in our experiment 

is called a collider (Pearl, 2009). A collider is a variable that is influenced by two other variables, 

thus leaving the misleading impression that the two other variables are somehow connected (see 

Fig.2). 

 

 

 
1 “Confounding (...) should be defined as anything that leads to a discrepancy between 𝑃(𝑌 | 𝑋) and𝑃(𝑌 | 𝑑𝑜(𝑋)).” 

(Pearl & Mackenzie, 2018, p.143) 
2 As Pearl & Mackenzie (2018) note, “...we find it utterly incomprehensible that there is a probabilistic association. 

Our brains are not prepared to accept causeless correlations and we need training.” (p.183).  
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Figure 2. Causal diagram representing a collider. The two arrows starting in Coin 1 and Coin 2, which are 

coin tosses, pointing into Toss Outcome, which is the joint outcome of the two tosses, represent the fact 

that whenever Coin 1 displays Tails, Coin 2 displays Heads. 

 

Another type of causal diagrams formalizing delusions in probabilistic models are called 

confounders (Pearl, 2009). Confounders are, in the formal sense, the opposite of colliders (see 

Fig.3). 

 

 
Figure 3. Causal diagram representing a confounder, usually called a “fork” (Pearl & Mackenzie, 2018, p. 

112). Age, from which the arrows start, is called a common cause or a confounder of both children’s Height 

and Reading proficiency, such that Height and Reading appear to be statistically correlated. 

 

A confounder is, usually, an underlying variable that influences two other variables, such that it 

induces a spurious correlation between them. Reading proficiency in children, for example, is 

strongly positively correlated with children’s height, although reading proficiency does not 

influence height or vice versa. Nevertheless, one can predict reading proficiency from height or 

vice versa, because of the underlying factor, age. 

  

Confounders are, in fact, a source of important probabilistic delusions in sequence models. In order 

to see this more clearly, let us take a look at a familiar toy problem called the “prize or frog” 

(Ortega et al., 2021), represented in Fig.4 below. We have two boxes; in one box there is a frog, 

in the other one there is a prize, say a candybar. The aim is to open the box containing a candybar, 
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thus avoiding the frog. Let us first define our three variables: 𝛩 (theta) = the configuration of the 

box (candybar or frog); A = the action (“open box 1” or “open box 2”) and O = the outcome (get 

a candybar or get a frog).  

 

 

 
Figure 4. A causal diagram representing the “prize or frog” problem. A (the action) and O (the outcome of 

the action) are confounded by 𝛩 (the configuration of the box), which is known by the expert. The arrow 

from A to O also represents the fact that the outcome is dependent on the action. Source: (Ortega et al., 

2021, p. 3). 

 

Two problem scenarios can be imagined, one in which the model is only asked to predict the next 

successful action, and another one in which the model is asked to choose the next successful action, 

both based on recording the previous actions of an expert (who knows in which box there is a 

candybar and in which there is a frog). The prediction scenario corresponds to the training phase 

in a sequence model, while the choice scenario corresponds to the inference phase (see section 1 

above). 

 

In the training phase, in which the aim is to predict the action which will result in finding a 

candybar by watching an expert do it, a probabilistic model is devised to characterize the problem:  

𝑃(𝐴𝑛+1  =  𝑎𝑛+1 | 𝑎1:𝑛 , 𝑜1:𝑛) where a  is an action to be taken and o is an observation recording 

the outcome of the action. Basically, given that 𝛩 is not known to the agent, so it’s a latent variable 

in the model, the task will be to predict the action A and the observation O, such that the probability 

of A leading to outcome O is maximized. 

 

A sequence model will do that by using the probability distributions 𝑃(𝐴) and 𝑃(𝑂 | 𝐴), given the 

conditional probability formula: 

 

(Cond) 𝑃(𝑎, 𝑜)  =  𝑃(𝑎) 𝑃(𝑜 | 𝑎). 

Thus: 

i) The model will start by predicting 𝑃(𝑎) =  ½ (because it does not know in which box there is a 

candybar).  
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ii) Then it will observe the expert issue an action 𝐴 =  𝑎.  

iii) Since the expert who issues action a knows the configuration of the boxes, the subsequent 

observation O = candybar will follow with certainty. Therefore, given the dependency of A on 

𝛩, the posterior probability 𝑃(𝑜 | 𝑎) will be 1, since:  

 𝑃(𝑜 | 𝑎)  =  1 when 𝑜 =  𝑐𝑎𝑛𝑑𝑦𝑏𝑎𝑟 and  𝑃(𝑜 | 𝑎)  =   0 when 𝑜 =  𝑓𝑟𝑜𝑔.  

iv) So, 𝑃 (𝑎) will be updated to 1, such that: 

v) 𝑃(𝑎 , 𝑜)  =  1. 

 

Let us now move to the second scenario, in which the model is required to choose by itself the 

action which will result in finding a candybar. Given that it does not know the configuration 𝛩 of 

the boxes, the task is difficult.  It will have to choose an action A such that the probability of A 

leading to the outcome O is maximized. As before, it will do it by using the probability 

distributions P(A) and P (O | A), given the conditional probability formula: 

  

(Cond) 𝑃 (𝑎 , 𝑜)  =  𝑃(𝑎) 𝑃(𝑜 | 𝑎). 

Thus: 

i) it will first suggest 𝑃(𝑎)  =  ½  (because it does not know the configuration of the boxes).  

ii) then it will choose an action 𝐴 =  𝑎 by sampling it from 𝑃(𝐴), which is the probability 

distribution of the expert’s past actions. 

iii) since all expert’s past actions are successful (because A is dependent on 𝛩), the subsequent 

observation 𝑂 =  𝑐𝑎𝑛𝑑𝑦𝑏𝑎𝑟 will follow with certainty, hence 𝑃(𝑂 | 𝐴)  =  1. 

iv) So, 𝑃 (𝑎) will be updated to 1, such that: 

v) 𝑃(𝑎 , 𝑜)  =  1. 

And yet, the model will not be successful, because the probability of a should still be 𝑃(𝑎)  =  ½. 

 

The explanation for this error is that here we have a confounder: by training the model only on 

expert-generated data, the model falsely infers from observations of the expert’s actions that all 

actions sampled from the probability distribution 𝑃(𝐴) are successful actions. Thus, the knowledge 

the expert possesses about the configuration of the boxes creates a spurious correlation in the 

model between actions and their outcomes. The model could have sampled any other action from 

the distribution 𝑃(𝐴) and the outcome would have been the same, that is:   

𝑃(𝑂 =  𝑐𝑎𝑛𝑑𝑦𝑏𝑎𝑟 | 𝑎)  = 1 (Ortega et al., 2021).  

 

This is precisely a delusion in the general sense of Pearl & Mackenzie (2018), that is “an illusion 

we brought upon ourselves by choosing which events to include in our data-set and which to 

ignore.” (p.185). In particular, it is a delusion resulting from confounding: i.e., from taking 

something that we do as something that we see. 
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3. Auto-suggestive delusions, an analogy with rule following 

 

If we are to take an even more abstract stance to probabilistic delusions in sequence models, the 

following considerations will provide a stimulating perspective. 

 

“This was our paradox: no course of action could be determined by a rule, because any course of 

action can be made out to accord with the rule. If every course of action can be brought into accord 

with the rule, then it can also be brought into conflict with it. And so there would be neither accord 

nor conflict here.” (Wittgenstein, 1958, §201) 

 

The way in which the rule-following paradox is usually articulated within the philosophy of 

language and mind is not only intriguing but also remarkably versatile. It possesses the generality 

required for accommodating various formulations, reaching far beyond its original scope (see 

Peacocke & Kripke, 1985). The trick that makes the case of sequence models relatable to the rule-

following paradox is the perplexing result: 𝑃(𝑂 = 1 | 𝑎)  = 1, for any a that is sampled from 

𝑃(𝐴), obtained in the previous sections. In other words, although actions are not easy to predict 

from previous actions and observations of their outcomes (e.g., by determining a rule, such as a 

marginal distribution), it is significant that actions are never groundless. 

 

One straightforward interpretation of the rule-following paradox is, for example, that a rule is 

unable to uniquely dictate a specific course of action because, by merely observing actions, one 

cannot determine the general rule or the next action. The paradox, however, is not that perplexing 

and not really a paradox once we analyze it as a problem of “inverse” probabilities (Bayes) as we 

did previously, in scenario 1 of the “prize or frog” problem. The idea can be illustrated by looking 

at the two cases below: 

 

(I) Whenever I'm hurt, I cry.  (II)  (Whenever I'm hurt, I cry.) 

I am hurt.      I cry. 

---hence--->      ---hence--->   

I cry.      Am I hurt?  

 

 

In Bayesian language, case (I) is a forward-probability problem: I know that I am hurt, and I want 

to know the probability of me crying. Case (II), on the other hand, is an inverse-probability 

problem: I know that I cry, and I want to know the probability of me being hurt. It is interesting 

that the Bayes formula allows one to switch between cases (I) and (II), depending on the amount 

of information one has in each of the cases, thus deriving the probability of an event in one 

direction from the probability of an event in the other direction. 

(forward probability) 𝑃(𝑋 , 𝑌)  =  𝑃(𝑌 | 𝑋) 𝑃(𝑋). 

https://www.zotero.org/google-docs/?wqkAvI
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(inverse probability) 𝑃(𝑋 , 𝑌)  =  𝑃(𝑋 | 𝑌) 𝑃(𝑌). 

(Bayes formula): 𝑃 (𝑌 | 𝑋) 𝑃(𝑋)  =  𝑃(𝑋 | 𝑌) 𝑃(𝑌). 

In our example, case (I) provides more information than case (II), because in the first case one 

knows the rule. So, by applying Bayes’ formula, which allows to derive case (II) from case (I), 

one can easily determine the inverse probability 𝑃(𝐻𝑢𝑟𝑡 | 𝐶𝑟𝑦) as: 

𝑃(𝐻𝑢𝑟𝑡| 𝐶𝑟𝑦)  =  𝑃(𝐻𝑢𝑟𝑡, 𝐶𝑟𝑦) / 𝑃(𝐶𝑟𝑦). 

This means that the rule-following paradox has no true bearing in a purely factual setting. Once 

the probability of the rule (𝐻𝑢𝑟𝑡, 𝐶𝑟𝑦) is determined from the forward probability, one can use it 

to update the inverse probability, and thus determine to which extent the fact that I cry indicates 

that I am hurt. 

In a more sophisticated interpretation, however, the rule-following paradox could suggest 

something more interesting, which resembles scenario 2 in the previous “prize or frog problem”. 

Suppose, this time, that our setting is not factual and our purpose is not to merely predict an action 

from a rule (or a marginal distribution), but instead act by applying the rule: that is, the setting is 

now normative. The paradox, in this interpretation, implies that one cannot apply or follow a rule 

by merely imitating someone who is known to apply the rule, because there is no way to determine 

which actions do indeed count as applying the rule, and which fail to do so. For example, one can 

pretend to be making a fine-dining dish by merely watching, hearing, and reproducing what 

Gordon Ramsey does in his fancy kitchen. Nevertheless, such an approach often ends up in 

culinary disaster, even when no step of the recipe is missed. The reason for this is deeply embedded 

in the normativity of rule following: no matter what action the apprentice chooses to perform, she 

deems it as correct because it is what the expert was seen doing. In this sense, predicting an action 

from observing actions conforming to the rule and acting by applying a rule are entirely two 

different things. 

In order to see this more clearly, let us consider another two cases (simplified from the “prize or 

frog” problem). 

(Ib) Expert      (IIb) Agent 

1)Whenever fire,      1) (Whenever fire, 

call the firefighters,    call the firefighters, 

kill fire.      kill fire.)      

2)(Fire, hidden) Call the firefighters 2)Call the firefighters (sampled  

          from the expert’s actions, who does 

not call the firefighters for no 

reason) 

---hence--->     ---hence---> 

3) Kill fire     3) Kill Fire, with probability P=1  
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(given the expert-induced 

association between calling 

firefighters and fire) 

---hence--->     ---hence--->  

4) Call the firefighters,    4) Call the firefighters,  

with probability P=1.    with probability P=1. 

 

 

First of all, the transition from step (2) to step (3) in the Agent scenario can be labeled as a 

probabilistic delusion because a confounder is present: i.e., the normative or expert-induced 

association between calling firefighters and extinguishing a fire (see Fig.5 below3). Second, the 

transitions in steps (3) and (4) mark the auto-suggestive delusion because, given the spurious 

normative association between actions and their outcomes, which cannot be made explicit in the 

model, the agent ends up deviating completely from reality: even if in reality there is no fire, the 

agent will keep on summoning the firefighters to extinguish a fire, in an endless loop, without 

realizing that it is wrong. The explanation for the auto-suggestive delusion is hence that, due to the 

confounder present in the model, the agent is unable to distinguish its actions from those of the 

expert, treating its own actions (step 2) as expertise (step 3), and then acting accordingly (step 4)4. 

 

Figure 5. Diagram representing the self-delusion problem (Ortega et al., 2021:5). Conditioning on the 

model’s self-generated action (Call firefighters) leads to wrong inferences about the outcome (Kill Fire), 

because, due to confounding, an action and its outcome are both determined by the state of the world (i.e., 

by whether there is a fire or not).  

 
3 In order to draw the diagram at least three (random) variables are required, so I modified the example a little, in order 

to accommodate three variables.  
4 As Ortega et al. (2021) point out: “The reason is subtle: the model update triggered by the collected data differs 

depending upon whether the data was generated by the model itself (i.e. actions) or outside (i.e. observations), and 

mixing them up leads to incorrect inferences. These take the form of self-delusions where the model takes its own 

actions as evidence about the world (...) due to the presence of confounding variables.” (p. 2). 

https://www.zotero.org/google-docs/?f6LkDD
https://www.zotero.org/google-docs/?M2uAds
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In the diagram above, the variable labeled as “Fire” (which records the state of affairs existent in 

the world, which the expert knows in order to ground their actions) is a confounding factor, 

introducing in the probabilistic model a spurious correlation between the action “Call firefighters” 

and the singular outcome “Kill fire”. Because of this spurious correlation, the posterior probability 

denoted in the model as P (Kill Fire | Call Firefighters) becomes equal to 1, regardless of how 

things stand in the world. So, the agent never understands that something is wrong with its 

representation of the world. Mutatis mutandis, someone who wishes to learn how to make a dish 

by imitating Gordon Ramsey’s moves in the kitchen will probably fail to understand that they 

failed to prepare Gordon Ramsey’s dish, because they have no idea how it should taste. So 

probably they will keep on going about it the wrong way. This understanding of auto-suggestive 

delusions aligns, in fact, with another core aspect of the rule-following paradox, which emphasizes 

the idea that to follow a rule is something that is somehow entrenched in what we do, turning what 

we do into a correct or an incorrect action5. As Ortega et al. (2021) spell it out, “imitation requires 

knowing the reasons behind actions” (p. 8). 

What makes an action correct or incorrect is captured in the reasons for doing it (in the “why”-s 

for taking that specific action). Following a rule resides in knowing what a correct or incorrect 

action is with respect to that rule. The expert, in our example, calls the firefighters because there 

is an actual fire that is getting out of hand. Their action is the correct one – it is done for the right 

reason and it leads to the extinguishing of an actual fire. Imitating the expert and therefore 

producing a correct action requires the model to understand the expert’s reason for taking that 

specific action. But the model does not understand the reason behind the expert’s action. Only due 

to confounding, it sometimes happens that the model takes the action that conforms to the rule 

(i.e., call the firefighters when there is an actual fire). In this sense, the model exhibits only 

apparent expertise.  

That the model’s expertise is only apparent becomes evident once we get rid of the confounder 

and notice that the behavior of the model changes. When we block the confounder (which contains, 

in fact, the expert’s reasons for their actions), the model starts to behave in a random manner (see 

Fig.6). Note now that the confounder „Fire” is blocked by forcing a value on the action „Call 

firefighters”, in accordance with the general logic of do-calculus (Pearl, 2009; Pearl & Mackenzie, 

2018). To force a value on an action means simply to do something.  

In our case, the agent can choose at random between calling or not calling the firefighters, that is: 

𝑑𝑜(𝑎)  =  1 𝑜𝑟 𝑑𝑜(𝑎)  =  0, which under the back-door adjustment in do-calculus and given the 

uncertainty of „Fire”, yields: 

(F) P(𝑜 | 𝑑𝑜 (𝑎))  =   ∑ 𝑃(𝑜 | 𝐹, 𝑎) 𝑃(𝐹) 𝐹 =  1/2, or in other words:  

 
5 It is interesting how such idea comes up in the Philosophical Investigations: “For what we thereby show [by means 

of the rule-following paradox - n.a.] is that there is a way of grasping a rule (...) which, from case to case of application, 

is exhibited in what we call ‘following the rule’ and ‘going against it’.” (Wittgenstein, 1958, §201) 

https://www.zotero.org/google-docs/?syASmr
https://www.zotero.org/google-docs/?SC0MFS
https://www.zotero.org/google-docs/?SC0MFS
https://www.zotero.org/google-docs/?KP5w1b
https://www.zotero.org/google-docs/?unuQ1v
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𝑃(𝐾𝑖𝑙𝑙 𝐹𝑖𝑟𝑒 | 𝑑𝑜(𝐶𝑎𝑙𝑙 𝐹𝑖𝑟𝑒𝑓𝑖𝑔ℎ𝑡𝑒𝑟𝑠)) =

 ∑ 𝑃(𝐾𝑖𝑙𝑙 𝐹𝑖𝑟𝑒 | 𝐹𝑖𝑟𝑒, 𝐶𝑎𝑙𝑙 𝐹𝑖𝑟𝑒𝑓𝑖𝑔ℎ𝑡𝑒𝑟𝑠) 𝑃(𝐹𝑖𝑟𝑒)𝐹𝑖𝑟𝑒   = 1/2. 

 

 

Figure 6. A causal diagram representing the blocking of the confounder Fire, by forcing a value on the 

action Call firefighters, according to the rules of do-calculus. 

Formula (F) simply states that the probability to extinguish a fire, given that the firefighters were 

called, remains uncertain. Yet this result – unlike the paradoxical one in (IIb) – makes sense: 

selecting an action at random (to call or not to call the firefighters) does not provide any evidence 

about the real world, whose state (whether there is a fire to be extinguished or not) remains 

uncertain based on that evidence.  

Also, that this is essentially a problem of confounding is evident from:  

𝑃(𝐾𝑖𝑙𝑙 𝐹𝑖𝑟𝑒 | 𝐶𝑎𝑙𝑙 𝐹𝑖𝑟𝑒𝑓𝑖𝑔ℎ𝑡𝑒𝑟𝑠)  ≠  𝑃(𝐾𝑖𝑙𝑙 𝐹𝑖𝑟𝑒 | 𝑑𝑜(𝐶𝑎𝑙𝑙 𝐹𝑖𝑟𝑒𝑓𝑖𝑔ℎ𝑡𝑒𝑟𝑠)). 

And if the example we used so far seems artificial, we can turn to a more familiar example of auto-

suggestive delusion in large LMs. Let us say we ask ChatGPT, the chat-box based on GPT-3.5, to 

provide us with a list of references on a given topic. At a certain point, however, we notice that the 

reference list it has compiled for us contains a mix of relevant authors and titles, but some listings 

are completely wrong, such as Ludwig Wittgenstein being listed as the author of Wittgenstein on 

Rules and Private Language, which would imply that Ludwig Wittgenstein actually wrote a book 

about himself. This kind of delusion or “hallucination” has been reported by a large number of 

sources (see Sobieszek & Price, 2022). In fact, it has a straightforward formal explanation once 

we return to our notion of confounding.  

https://www.zotero.org/google-docs/?oMwGs2
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Let us look at Fig.7 below. The diagram emphasizes the underlying fact that some thematic 

grouping (or Theme) operates as a confounder in the model, inducing a spurious association 

between authors and titles.  

 

Figure 7. Diagram representing the self-delusion problem in the reference list case. Conditioning on the 

model’s self-generated action (Author) leads to wrong inferences about the outcome (Title), because, due 

to confounding, any listing of an author and a title depends on the thematic grouping (Theme).  

We can envision that when it comes to portraying a specific subject, taking into account its 

extensive training data, the GPT-3.5 model has acquired knowledge of ten notable author names 

along with several dozen noteworthy book titles. We can subsequently request the model to 

produce a list that includes a minimum of eleven author names, along with the titles of the works 

they've penned on that particular subject (refer to the table in Fig.8 for an illustration of this task). 

Theme  Author Title  P(Title | Author)6 

x 1 a 1 

2 b 1 

3 c 1 

… … … 

10 j 1 

3 k 1 

Figure 8. Table illustrating all the entries corresponding to the three variables in the model (Theme, Author, 

Title). Conditioning on the model’s self-generated action (Author) - see the last column in the table - leads 

 
6 Theme is hidden, just like in the previous examples. 
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to wrong inferences about the outcome (Title) - see the last row in the table. The explanation is that Author 

and Title are confounded by Theme. 

Considering that the underlying thematic grouping (Theme) acts as a confounding variable, such 

that only ten author names are included in the probability distribution of the agent’s representation 

of the topic, when asked about filling the eleventh entry (comprising both author name and title), 

the model assigns a title incorrectly, by mistakenly linking a new title to one of the author names 

already listed in the compilation. 

This is a case in which the confusion between doing and seeing surfaces neatly: when the agent is 

asked to prompt an author, it simply samples it from the list it gathered before, generating a 

misleading response. This aspect is widely discussed in recent literature (see Sobieszek & Price, 

2022) under “exposure bias”. However, the issue lies deeper and concerns what the agent does in 

order to solve the task: that is, it takes its own generated actions as observations of the outside 

world, in the sense that, for the eleventh title listed under the topic, it predicts with certainty that 

one prominent author among the ten ones included already the list authored that work (see the last 

row and column in the table above), so it issues that action, which is, of course, wrong. The 

probability distribution that should model the world is, in fact, the probability distribution of the 

model's own actions. If we are to return to our discussion, the deep issue here is that the model 

produced an auto-suggestive delusion. 

 

4. Private language and the question of solipsism in large Language Models 

The rule-following paradox has a prominent linguistic facet, discussed extensively in the 

philosophical literature (see Soames, 2003). For example, we may have the impression that we 

really understand what one means when one writes: „a cat meows” by simply inspecting the words. 

But one might mean a cat barks, or a cat moos, or something else entirely. Why does this not 

usually happen? A very short answer would be that, for us, speaking and following rules are 

practices that we share (see Smith, 1998); we cannot simply mean anything we want. Linguistic 

practices are, consequently, normative. Using words has consequences that are sanctioned by the 

larger group of speakers. 

„To think one is following a rule is not to follow a rule.  (...) that’s why it’s not possible to follow 

a rule ‘privately’; otherwise, thinking one was following a rule would be the same thing as 

following it”. (Wittgenstein, 1958, §202) 

Starting from such general considerations, the rule-following paradox is often discussed in relation 

to the possibility of a so-called “private language” (see Kripke, 1982). Given that speaking a 

language is generally akin to following a rule, the question arises as to whether there can be such 

a language that is entirely private – that is, a language whose rules are known only to one speaker, 

https://www.zotero.org/google-docs/?so662V
https://www.zotero.org/google-docs/?so662V
https://www.zotero.org/google-docs/?Da5dTn
https://www.zotero.org/google-docs/?prrhH1
https://www.zotero.org/google-docs/?WIlZy1
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without being derived from any public language, like the human language. The question is 

tempting because, due to auto-suggestive delusions, large Language Models seem to behave as if 

there are speaking their own language and describing their own world. So, can it be that large LMs 

exhibiting auto-suggestive delusions are actually following their own rules, in which there is no 

distinction between actions and observations, such that even if their outputs are growing 

progressively remote from what we know to be the world, to the LMs they are entirely coherent, 

describing, in fact, an “alternate” world belonging only to the models themselves? 

The philosophical answer to this question would be “no”. As the quote above suggests, a rule 

cannot be followed privately because if that were the case, then anything anyone would ever do 

might count as following the rule. Hence, there will be no rule (since it would not exclude 

anything). Speaking a language, following a rule are normative practices in the sense that they are 

always sanctioned from a stance outside the agent herself. This is also why solipsism, as a stance 

in which only the agent exists, is neither possible, because no agency can be conceived without 

reasons, hence without rules, hence without a stance outside the agent herself. 

In large Language Models, like GPT-3 or GPT-3.5, such normative practices are missing. When a 

model is asked to answer a task by generating the next word (token) in a sequence of words 

(tokens), based on a distribution learned from previously observed sequences of tokens, the model 

can, in fact, use its own sampling from that distribution, even when there is a form of human-in-

the-loop or RLHF in the fine tuning of the model. “Consider a pre-trained language model whose 

job is to predict the fourth word given a sequence of three words proposed by us (experts). Without 

any loss of generality, we again introduce 𝜃 to capture information that is available to the experts, 

but not to the agent (...) The problem arises when we consider the interaction between the pre-

trained language and the environment.”(Ortega et al., 2021, p. 9). In other words, the problem 

appears when we shift from the training to the inference phase. “Suppose we use a language model 

API to enter the first word x1, but this time the model uses its own generated second word x2, and 

then we force the model to use our third word x3. We then try to predict the fourth word as before.” 

(ibidem). Nothing impedes the model to predict the fourth word in a manner that to us may seem 

nonsensical, e.g. “the dog moos loudly”. “In the extreme case, imagine that the language model 

generates a lot of text and that text is added to the data-set, say a web corpus. Then, relearning 

from this data-set will only confirm the model’s biases, that is, its delusions” (Ortega et al., 2021, 

p. 10). What this discussion illustrates is, hence, a clear tendency of accumulating bias, delusions, 

or nonsense, due to the absence of normative practices in the manner in which text is generated by 

the model. In the inference step, when the model imitates the expert, if fails to grasp the reasons 

behind the expert’s choice of words. By failing to grasp the reasons behind the expert’s choice of 

words, the model treats its own actions as observations of the expert’s own words. This further 

accumulates during retraining, when new text is added to the data-set, including text generated by 

the model itself, thus generating a spiral effect, which pushes the model further and further away 

from the manner in which human language is usually used. 

https://www.zotero.org/google-docs/?tZo8ab
https://www.zotero.org/google-docs/?GgJpkh
https://www.zotero.org/google-docs/?GgJpkh
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However, it cannot be said that model generates a private language per se, because the tokens it 

sequences are not based in a normative private practice (which, in fact, is impossible as the 

philosophical argument shows). Yet, what the model does in going further and further astray from 

the norms of human language is systematic. This is why a less radical concept of private language 

might be useful: it could be more suggestive than the “gibberish” or “parroting” that is usually 

ascribed to large LMs. The idea of a private language could emphasize the fact that the model’s 

tendency to accumulate bias, delusions, or nonsense is systematic and more pronounced with each 

retraining of the model. In the weak sense, a private language may be understood as a language 

that is systematically and increasingly deviating from human language; without being a coherent 

language in itself, it perseveres however some of the original coherence of the language that it 

gradually deviates from. A large LM’s actions (like writing words in a certain sequence) are 

systematic misrepresentations of the experts’ actions that it seeks to imitate (i.e., the experts’ 

writing of words in a certain order), due to confounding. Even if a sequence of words generated 

by the model may make sense (thus, resembling human language), this would only happen by 

accident – i.e., as a consequence of the fact that the confounder’s presence can sometimes be 

innocuous to the expected output. Retraining the model, however, will only make the confounder 

less and less innocuous.  

The correlate of that, when we take language tokens as data, is that even though the model could 

learn a stochastic representation of the world, it could still take its own actions (the generated data) 

as evidence (as ground-truth data) about the world, confusing his own generated data with what it 

observes (the ground-truth data). It is significant that we too face this kind of delusion in 

observational studies (Pearl & Mackenzie, 2018), in which it often happens to confuse data that 

we generate, through our collecting process, with ground-truth data. And regardless whether one 

is human or machine, this is akin to a solipsist delusion. This is so, because making an observation 

is something that we do, rather than something that we see; therefore, if we are not attentive 

enough, the manner in which we represent the world (the “do”) becomes the world itself (the 

“seen”). 

Humans, however, have ways of mitigating this problem: causal inference is one of them; 

normative practices are another. Artificial agents, on the other hand, still have a long way to go in 

both of these directions, although according to recent literature, progress is made. With respect to 

causal inference, methods like “counterfactual teaching” are developed (Ortega et al., 2021, p. 11). 

In counterfactual teaching, the agent issues an action by sampling it from the actions of the expert, 

as we have seen before. Then the action is compared against the expert’s own action, which is 

revealed to the agent, followed by a penalty cost applied to the agent. In this manner, which 

amounts to sequentially minimizing the penalty cost, an agent learns the consequences of its 

actions, improving its choices along the way. In Language Models, something similar can be done, 

which induces a sort of normative practice, i.e., a practice governed by rules and expertise. In 

recent literature, this is called “teacher forcing” (He et al., 2021): teacher forcing works by using 

https://www.zotero.org/google-docs/?NU8p7L
https://www.zotero.org/google-docs/?DwOEq5
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the actual or expected output from the training data-set at the current time step as input in the next 

time step t+1, rather than the output generated by the model (Goodfellow et al., 2016, p. 372). 

Substantially, however, both “counterfactual teaching” and “teacher forcing” require a form of 

supervised learning that assumes a recurrent architecture of the neural network; so, it seems that 

there are no strong or truly effective ways to learn counterfactuals and normative practices other 

than by explicit teaching in a network that is recurrent. This means that large LMs cannot really 

learn what we expect them to learn from scratch – that is, only in feed-forward fashion from what 

they observe, based on their transformer architecture. This also means that simply scaling-up 

already large models in unsupervised learning scenarios, even with RLFH fine tuning, may not 

lead to the outcome that we expect, as often pointed out (Bender et al., 2021). On the other hand, 

supervised models based on recurrent network architectures lack the capacity for generalization 

and novelty of the unsupervised transformer models. In their private and solipsistic fashion, 

understood as above, unsupervised transformer models are, in fact, terrifically creative (Boden, 

2009; Franceschelli & Musolesi, 2023). Put in most general terms, this may be because they are 

not bound by a causal representation of the world, nor by normative practices like we are; in short, 

they do not share our “form of life”. So, making them learn our “form of life” only from observing 

it, but not interacting with it, presents a genuine challenge, if not a genuine illusion. 

 

5. Concluding remarks 

The tendency of sequence models or transformers to accumulate bias, delusions, or nonsensical 

output is based in a confusion between their own generated data and ground-truth data. Given that 

this tendency is systematic, it could be said that it is reminiscent of a solipsist delusion, where 

observations end up in masking actions and so, observations fail systematically to provide an 

objective picture of the world. This phenomenon has parallels in human observational studies, 

where data generated through the collection process can be inadvertently equated with the ground-

truth data, therefore blurring the line between representation and reality in an equally systematic 

manner. 

 

On the other hand, the rule-following problematic, extensively discussed in philosophical 

literature, raises questions about the general ability of sequence models or transformers to 

understand language and follow rules. Linguistic practices are typically normative. In the context 

of large Language Models, like GPT 3 or GPT-3.5, normative practices are missing. Such models, 

designed to generate text based on learned probability distributions tend to produce nonsensical 

responses when engaging with humans. This tendency exhibits a systematic nature. Because it can 

be traced back to the absence of normative conventions or practices, this tendency may be 

considered similar to the emergence of a private language in a weak sense: i.e., as a systematically 

growing production of biased, delusional or nonsensical text, due to the fact the models fail to 

https://www.zotero.org/google-docs/?BW1B1B
https://www.zotero.org/google-docs/?eSXKgv
https://www.zotero.org/google-docs/?rChXkF
https://www.zotero.org/google-docs/?rChXkF
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distinguish what they do (their own words) from what they see (the experts’ words). Fine tuning 

with a human-in-the-loop architecture can address this issue partially, and this is why models like 

GPT 3.5 are performing better than their transformer ancestors, like BERT of GPT-3. However, 

overall, a recurrent architecture might be more suited for addressing the issue than the transformer 

architecture (even one with RLHF). 
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