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It’s well known that time is ‘the great simplifier’ [6]. The article under re-
view here exploits the time reparameterisaton symmetry of classical and quan-
tum particles in time-dependent potentials in order to identify a ‘maximally
simplifying’ temporal parameter and in turn to derive some interesting results
about how this parameter might be operationalised using quantum uncertainty.
In a little more detail, the article does the following:

(a) uses the time-reparameterisartion symmetry of the dynamics of a classical
particle in a time-dependent potential to map an arbitrary time-dependent
frequency to a constant frequency—this amounts to a choice of simplifying
‘clock’;

(b) derives a non-linear differential equation which must be satisfied by this
simplifying time parameter;

(c) identifies the conserved charges associated with this time-translation sym-
metry;

(d) turns to the quantum context, and in particular to the evolution of a
Gaussian wavepacket in a time-dependent potential, and notices that the
evolution of the width of the wavepacket in position space satisfies ex-
actly the above-mentioned non-linear equation, meaning that this width
operationalises the dynamics-simplifying ‘clock’ from the classical case;

(e) shows that this ‘quantum uncertainty’ is associated with a conserved
charge.

In the remainder of this review, I’ll go over the key points of the article, before
closing with some (positive) reflections on the significance of this work.
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1 The classical case

In this article, Livine first considers a classical particle evolving in the following
time-dependent potential:

sω[t, q(t)] =

∫
dt

[
1

2
mq̇2 − 1

2
mω(t)2q2

]
; (1)

the following time reparameterisations are symmetries of the dynamical equa-
tions associated with the above action after varying in accordance with Hamil-
ton’s principle: {

t 7→ t̃ := f(t),

q(t) 7→ q̃(t̃) := h(t)
1
2 q(t),

(2)

where h = ḟ . If one wants to exploit these symmetries in order to map a time-
dependent frequency ω(t) to a constant frequency Ω, one can derive, defining

η := h−
1
2 , that these two frequencies must be related by the following non-linear

differential equation:

η̈ + ω2η =
Ω2

η3
. (3)

The solution of this equation defines a ‘simplifying clock’,

τ(t) :=

∫ t dt

η2
, (4)

which maximally simplifies the dynamics of the system by mapping it to a simple
harmonic oscillator with constant frequency Ω.

2 The quantum case

In the quantum case, the relevant system is a one-dimensional wavefunction
ψ(t, x) with dynamics given by the TDSE:

iℏ∂tψ = − ℏ
2m

∂2xψ +
1

2
mω(t)2x2ψ. (5)

Livine then consider a Gaussian ansatz for the wavefunction,

ψGaussian(t, x) = Neiγei
xp
ℏ e−A(x−q)2 , (6)

which is well-known to be a ‘maximally classical’ state. For such a Gaussian
wavefunction, the position uncertainty is then shown to satisfy exactly the non-
linear differential equation (4). In this way, one sees that the quantum un-
certainty can be used as an intrinsic clock, and that the ‘beats’ of the clock
maximally simplify the description of the system.
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One upshot of this—as Livine identifies—is that the quantum uncertainty
can operationalise a solution to a classical mechanics problem. Livine then
goes on to show that the invariant associated with the quantum uncertainty—
the Ermakov-Lewis invariant—can be obtained by taking the classical limit of
the Noether charge associated with the conformal invariance of the classical
oscillator in a time-dependent potential.

3 Discussion

The paper raises several interesting questions. Here are three:

1. One can ask about the extent to which the approach can be generalised:
can other moments in a quantum mechanics problem be associated with
other physically significant parameters in a classical problem? (These
questions are also raised in the original article.)

2. One wonders about the extent to which the approach can be extended to
relativistic and curved spacetime settings, and about the extent to which
it might be applicable to the long-standing and vexed issue of operational-
ising clocks in curved spacetimes (see e.g. the introduction to [5] for some
sceptical remarks; for discussion on this point, see [2]).

3. In response to the well-known ‘problem of time’ in canonical approaches
to quantum gravity (also mentioned briefly by Livine in the article’s con-
cluding section)—according to which it follows from the Wheeler–DeWitt
equation Ĥ |ψ⟩ = 0 that no observables can have any time-dependence—
the Page–Wootters (PW) formalism [7] proposes to identify a time pa-
rameter with the readings of some subsystem of the universe which can
be regarded as a clock. (For detailed assessment of the PW approach,
see [1].) One might think that, given their natural ‘adaptation’ to the
unfolding of physical processes, the ‘clocks’ considered in the article un-
der review here could feature as obvious candidates for such clocks on the
PW approach. Moreover, one might wonder how these ‘clocks’ relate to
other ‘intrinsic’ clocks which have been introduced in order to address the
problem of time—see e.g. [3, 4, 8].

One could surely multiply possible applications: in general, this article and
potential extensions have the potential to be of great value to a number of
important issues in the foundations of physics.
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