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Abstract

Over the past decade, the physics literature on torsionful non-relativistic
gravity has burgeoned; more recently, philosophers have also begin to ex-
plore this topic. As of yet, however, the connections between the writings
of physicists and philosophers on torsionful non-relativistic gravity remain
unclear. In this article, we seek to bridge the gap, in particular by situ-
ating within the context of the existing physics literature a recent theory
of non-relativistic torsionful gravity developed by philosophers Meskhidze
and Weatherall (2023); we also discuss the philosophical significance of
that theory.
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1 Introduction

Newton-Cartan theory (NCT) was developed initially by Cartan (1925) and
Friedrichs (1928) as a curved spacetime model of Newtonian gravity. The the-
ory went through a classical phase of investigation in the 1960s and 70s (see
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in particular Dautcourt 1964; Dixon 1975; Havas 1964; Künzle 1972, 1976;
Trautman 1965), two of the many fruits of which were the Trautman (1965) ge-
ometrisation and recovery theorems, which together establish a precise sense in
which NCT is ‘equivalent’ to standard Newtonian gravity. More recently, NCT
has undergone a renaissance in which it and its torsionful generalizations have
been applied to non-relativistic holography (see e.g. Christensen et al. 2014a,b)
and condensed matter physics, especially the fractional quantum Hall effect (see
e.g. Geracie, Prabhu, et al. 2016; Son 2013; Wolf, Read, and Teh 2023).

More recently, philosophers have also begin to study torsion in the classi-
cal spacetime context. Motivated by questions raised by Knox (2011), Read
and Teh (2018) explore the extent to which the mappings between NCT and
ungeometrised, potential-based Newtonian gravity (henceforth NGT)—made
precise in Trautman geometrisation/recovery—can be understood as a case of
‘teleparallelisation’—i.e., the map relating general relativity to its torsionful
equivalent, teleparallel gravity (TPG)—arguing for an affirmative answer: NGT
is in a certain sense the teleparallel equivalent of NCT, and the gravitational po-
tential of that former theory can be understood as a (gauge-fixed) ‘mass torsion’,
associated with the mass gauge field which arises once one gauges the Bargmann
algebra (Andringa et al. 2011; Read and Teh 2018; Teh 2018; Wolf, Read, and
Teh 2023). Read and Teh (2018) also show that this NCT–NGT correspondence
is the non-relativistic limit of the GR–TPG correspondence, when said ‘limit’ is
implemented via null reduction; an alternative non-relativistic limit (now imple-
mented via a 1/c expansion) is undertaken by Schwartz (2023), from which the
NCT–NGT correspondence is also obtained. Building on this, Read and Teh
(2022) exploit these connections in order to explore the status of ‘Newtonian
equivalence principles’; Wolf, Read, and Vigneron (2023) use these results to
motivate the construction of a purely non-metric equivalent to NCT, thereby
completing a ‘non-relativistic geometric trinity’;1 and March et al. (2023) iden-
tify that the ‘common core’ of this non-relativistic trinity is Maxwell gravitation
(on which see Chen 2023; Dewar 2018; March 2023).2

To this by-now quite mature physics literature, and still-blossoming philo-
sophical literature, Meskhidze and Weatherall (2023) have recently added their
own contribution.3 In their article, they seek to construct a non-relativistic
theory of gravitation which is (in some sense) equivalent to NCT, yet the grav-
itational effects in which are manifestations only of (spatiotemporal) torsion.
This theory is certainly interesting and worthy of study; however, there remains
much to be said about it, especially with respect to the following questions:

1This yields the non-relativistic analogue of the relativistic ‘geometric trinity’ of gravity
(Jiménez et al. 2019), which is a trio of three empirically equivalent gravitational theories
which are formulated using different geometric degrees of freedom: curvature for GR, tor-
sion for TPG, and non-metricity for ‘symmetric teleparallel gravity’ (STGR). See Wolf and
Read (2023) and Wolf, Sanchioni, et al. (2023) for further philosophical discussion on issues
concerning theory equivalence and underdetermination in this context.

2Here, ‘common core’ is meant in the sense of Le Bihan and Read (2018).
3To be perfectly clear on the chronology: (Meskhidze and Weatherall 2023) appeared as

an online preprint a couple of months before (March et al. 2023; Wolf, Read, and Vigneron
2023).
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1. How is the Meskhidze-Weatherall theory best situated with respect to the
existing physics literature on non-relativistic torsionful theories of gravi-
tation?

2. What is the best interpretation of the Meskhidze-Weatherall theory qua

theory, and how best to extract its philosophical significance?

Our goal in this article is to undertake a systematic exploration of the above
two questions. Accordingly, the structure of the note is as follows. In §2,
we introduce the technical details of the Meskhidze-Weatherall theory; in §3
we answer question (1) by situating this theory with respect to the existing
physics literature; in §4, we answer question (2) by engaging in a thoroughgoing
interpretation of this theory.

2 The Meskhidze-Weatherall theory

Let’s first recall the details of the Meskhidze-Weatherall theory of non-relativistic
torsionful gravitation (henceforth MWT). Kinematical possibilities of this the-
ory are tuples 〈M, ta, h

ab,∇, ρ〉, where the first four elements denote a classical
(i.e., non-relativistic) spacetime (assumed to be temporally orientable) in the
sense of Malament (2012, ch. 4), and ρ is a scalar field denoting the matter den-
sity content. In this theory,∇ is a derivative operator with torsion (which, recall,
encodes the antisymmetry of the connection—see Wald 1984, p. 53) generically
decomposable as

T a
bc = 2F a

[b tc]; (1)

where F a
b is spacelike in the upper index; one can treat this as a kinematical

restriction on the content of this theory. Dynamical possibilities of MWT are
picked out by the field equation

δna∇[nF
a
b] = 2πρtb; (2)

gravitating but otherwise force-free test bodies with velocity vectors ξa are sub-
ject to

ξn∇nξ
a = −F a

n ξ
n; (3)

hence, such bodies experience torsion-dependent forces and thereby exhibit non-
geodesic motion. Meskhidze and Weatherall (2023) prove a ‘recovery’ theorem
à la Trautman (1965) relating the models of Newton-Cartan theory (NCT) to
models of MWT—we return to this in §4.

3 Situating the Meskhidze-Weatherall theory in

the literature

With the details of MWT on the table, we now consider and assess some claims
made by Meskhidze and Weatherall (2023) with respect to the existing physics
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literature on torsion in non-relativistic gravity—claims which they use to moti-
vate the construction of MWT. There are, in particular, three claims made with
respect to that literature upon which we here focus: (i) claims regarding the
relationship between the existence of torsion and the closed nature of ta in a(n
orientable) classical spacetime model (§3.1), (ii) claims regarding the literature’s
supposedly restricted attention to a specific form of the connection (§3.2), and
(iii) a particular terminological choice regarding ‘spatial torsion’ and ‘temporal
torsion’ which it is worth reconciling with the existing literature (§3.3).

3.1 Does a closed clock form imply vanishing torsion?

Meskhidze and Weatherall (2023) assert that physicists often claim “that taking
∂µtν = 0, where ∂ is a (torsion-free) coordinate derivative operator will always
result in a torsion-free spacetime” (p. 9, emphasis in original). Presumably,
Meskhidze and Weatherall (2023) mean to have antisymmerised their equation
in the above passage, for the condition of interest is that the clock form be
closed, so dt = 0. Since all of the important action with respect to the above
quote concerns the relationship between (a) the existence of torsion and (b) the
closed nature of ta, we’ll focus our considerations upon said relationship in the
remainder of this subsection.

On this relationship, earlier in their article, Meskhidze andWeatherall (2023)
write that “it is widely claimed that a classical spacetime with torsion cannot
have a temporal metric that is closed[, but] this is not true” (p. 2). Denoting
schematically all torsion by T , Meskhidze and Weatherall (2023), in other words,
impute to the literature the claim that

T 6= 0
?

=⇒ dt 6= 0, (4)

which of course by contraposition is equivalent to the claim that

dt = 0
?

=⇒ T = 0. (5)

Now, on the one hand, Meskhidze and Weatherall (2023) are completely correct
that this claim is false (hence our oversetting with ‘?’ above)—one need only
look to the expressions for torsion in terms of exterior derivatives of gauge fields
given by e.g. Bergshoeff, Hartong, et al. (2014), Geracie, Prabhu, et al. (2015),
Hartong and Obers (2015), and Read and Teh (2018) to see that dt = 0 does
not imply that all components of the torsion vanish (see also §3.3 where these
formulae are reproduced). In addition, physicists have mentioned explicitly that
one can consider spacetimes with both torsion and absolute time. Consider
Geracie, Prabhu, et al. (2015, p. 14), who mention in a specific context that one
can still have a closed temporal metric and a spacetime with torsion (between
their equations (2.48) and (2.49)): “In case we have a torsionful causal spacetime
(n∧ dn = 0) or a torsionful spacetime with absolute time (dn = 0), we propose
an invariant spatial Newtonian condition of the form [...]”. One can, indeed,
also make this point by deriving the relationship—see e.g. Bekaert and Morand
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(2014, proposition 3.2)—
taT

a
bc = (dt)bc, (6)

from which we see that, although the torsion need not vanish when dt = 0, it
is nonetheless constrained by this condition: in particular, the upper (vector)
index of T must lie in the kernel of t, and is thus ‘spacelike’.

All of the above is well-known. Thus, although Meskhidze and Weatherall
(2023) are correct that the implication (5) fails, they are not entirely fair in
imputing to the physics literature a widespread failure to recognise this.

3.2 Justifying the form of the connection considered in

the literature

In any case, moving on from the above, Meskhidze and Weatherall (2023) fur-
ther target the form of the connection used in the ‘TTNC’ literature (‘twist-
less torsionful Newton-Cartan theory’—i.e., most recent physics work on this
topic)—i.e., one with coefficients

Γλ
µν = vλ∂µtν +

1

2
hλρ (∂ρhνρ + ∂νhµρ − ∂ρhµν) (7)

(Geracie, Prabhu, et al. 2015, eq. 2.45)—claiming that the only reason the
torsion of their connection vanishes when the clock form ta is closed is because
“they have adopted such a strict definition for their connection” (p. 10, emphasis
in original).

Taken at face value, this claim is true—but it fails to give due credit to
the full reasons underlying why physicists who work on non-relativistic gravity
have used a connection of this form. Motivations for the particular form of the
connection used in non-relativistic gravity research include both exploring the
non-relativistic limits of relativistic theories and understanding the full spectrum
of non-relativistic structures that can emerge when one expands Lorentzian
geometries in powers of 1/c, as well as specific modelling concerns unique to
non-relativistic physics.

To focus first on the former: one can expand the standard Levi-Civita con-
nection of GR in powers of 1/c (Künzle 1972), which results in a similar, but
slightly different connection of the form (up to a choice of the Newton-Coriolis
two-form Ωab, defined in §4.2 below):

Γλ
µν = vλ∂(µtν) +

1

2
hλρ (∂ρhνρ + ∂νhµρ − ∂ρhµν) . (8)

One can immediately see that this connection does not have torsion as Γλ
[µν] =

vλ∂[(µtν)] = 0. This is due to a technical fact that it is only the zeroth order
in the expansion of the Levi-Civita connection that transforms as a connection.
One must then impose that dt = 0 so that the minus-first order vanishes; the
zeroth order of the expansion then becomes the leading order and can serve as
a proper connection for the Galilean theory (see e.g. (Künzle 1972; Van den
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Bleeken 2017) for discussion on this point). Indeed, historically much of the
non-relativistic literature has assumed this condition for this technical reason
and the choice of dt = 0 seems forced in the most straightforward way of taking
the non-relativistic limit of GR.

However, the choice of vanishing temporal torsion is in fact quite restrictive
in the context of modern non-relativistic physics. There are a few considerations:

• As explained by Hansen et al. (2019a) and Hartong, Obers, and Oling
(2022, Sect. 5.5), the presence of mass in non-relativistic theories neces-
sarily implies the non-vanishing of temporal torsion.

• Similarly, conservation of energy requires the introduction of non-zero tem-
poral torsion in non-relativistic gravity. As emphasized by Geracie, Son,
et al. (2015, Sect. II.C), relativistic physics has a single stress-energy ten-
sor that captures both energy current and stress. This does not hold in
non-relativistic physics as the energy current is independent of stress. One
in general finds that ta can be understood as a source for energy current
and that properly defining an energy current requires that dt 6= 0. This
has been exploited to great effect in condensed matter systems and non-
relativistic field theory (see e.g. Geracie, Son, et al. 2015; Gromov and
Abanov 2015; Jensen 2018).

• The vanishing temporal torsion condition is not conformally invariant, and
is thus unsuitable for non-relativistic holography studying the relationship
between non-relativistic gravitational theories and their dual conformal
field theories (Bergshoeff, Chatzistavrakidis, et al. 2017, §1).

The inclusion of non-vanishing temporal torsion (dt 6= 0) is not a purely
arbitrary choice—rather, it is essential if one is interested in investigating many
non-relativistic systems of physical interest. Furthermore, as explained by Har-
tong, Obers, and Oling (2022, Sect. 5.2.1), a connection of the form (7) is the
“closest analogue of the Levi-Civita connection for Newton–Cartan geometry”
that allows one to incorporate non-zero torsion. One then normally restricts to
the case that t∧ dt = 0 so as to maintain causality (Bekaert and Morand 2016),
resulting in the standard TTNC version of Newton-Cartan theory considered in
the literature.

Hansen et al. (2019a, 2020) then show that such a non-relativistic theory
can be obtained by taking the non-relativistic limit of GR. They do so by first
rewriting the metric and connection of standard GR in terms of what they
call ‘pre-non-relativistic’ variables (resulting in a slightly generalized ‘pre-non-
relativistic’ connection), which they argue are natural for the non-relativistic
limit. They then implement a 1/c expansion in order to find the non-relativistic
limit of GR in this parameterization and arrive at what the authors have dubbed
‘type II’ Newton-Cartan geometry.

One then has a connection of the form (7) and the freedom to consider a
number of choices regarding restrictions placed on ta. When one imposes the
condition that dt = 0 on this more general connection, one arrives at ‘type

6



I’ NCT (i.e., NCT à la Malament (2012)); when one relaxes this condition
in favour of the condition t ∧ dt = 0, one arrives at the type II NCT found
in Hansen et al. (2019a, 2020). Type II NCT particularly interesting as it is
a novel theory with both curvature and torsion which exhibits a remarkable
overlap with GR in terms of its empirical content, as it can also account for the
strong field gravitational physics of perihelion precession, gravitational redshift,
and the bending of light that was previously thought to be the exclusive purview
of relativistic physics. As was the case in the examples above, temporal torsion
plays a crucial role in encoding these strong gravitational effects (see e.g. Hansen
et al. 2019a,b; Van den Bleeken 2017; Wolf, Sanchioni, et al. 2023).

So yes: the particular form of the TTNC connection “ensures that the only
way to allow torsion is to sacrifice having a closed temporal metric” (Meskhidze
and Weatherall 2023, p. 10), but this choice is motivated by the fact that many
of the non-relativistic systems physicists are interested in investigating require
that we sacrifice having a closed temporal metric. That is, dt 6= 0 is a cru-
cial physical requirement for these systems! These physicists are aware that it
is possible to write down connections that are more general and manifest all
different kinds of geometric qualities (see e.g. Geracie, Prabhu, et al. (2015,
eq. 2.27)). Within the physics literature, however, the choices we have seen all
have particular physical motivations. When one works with a non-relativistic
connection with dt = 0, one thereby restricts oneself to traditionally understood
notions of Newtonian gravity and absolute time. When one works with a non-
relativistic connection with dt 6= 0, one can then explore a broader spectrum of
interesting non-relativistic systems for which the role of temporal torsion plays
a crucial role, including condensed matter systems, non-relativistic holography,
and non-relativistic (but non-Newtonian) gravity.

3.3 The meaning of ‘temporal torsion’ and ‘spatial tor-

sion’

Our next point pertains to a discrepancy between the use of the terms ‘temporal
torsion’ and ‘spatial torsion’ in the hands of Meskhidze and Weatherall (2023)
when compared with the rest of the existing literature. Typically in the contem-
porary physics literature, Newtonian theories are treated as gauge theories of
the Bargmann algebra, with generators {M,H,P,G, J}, and associated torsions
and curvatures given by the Cartan equations:

(f)µν := Tµν (M) = 2∂[µmν] − 2ω a

[µ eν]a, (9)

Tµν (H) = 2∂[µtν], (10)

T a

µν (P ) = 2∂[µe
a

ν] − 2ω ab

[µ eν]b − 2ω a

[µ tν], (11)

R a

µν (G) = 2∂[µω
a

ν] − 2ω ab

[µ ων]b, (12)

R ab

µν (J) = 2∂[µω
ab

ν] . (13)

(A thorough review of this material is given by Andringa et al. (2011).) One then
defines (now suppressing indices) T (H) (i.e., the torsion associated with time
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translations) as the ‘temporal torsion’, and T (P ) (i.e., the torsion associated
with spatial translations) as ‘spatial torsion’. Together with the ‘mass torsion’
f , one then defines the ‘extended torsion’ (T (H), T (P ),f).

This terminology is different from that of Meskhidze and Weatherall (2023),
who use ‘vanishing spatial torsion’ to refer to the condition T abc = 0 (Meskhidze
and Weatherall 2023, p. 6). This is not equivalent to the requirement that
T (P ) = 0, but rather that T (P )|S = 0 for any spacelike hypersurface S.
Meskhidze and Weatherall also assume that ta is closed, from which it follows
(along with metric compatibility) that T (H) = 0. So in the more usual Car-
tan terminology, (a) MWT has no temporal torsion, and (b) MWT has spatial
torsion, but such that it vanishes when restricted to any spacelike hypersurface.

4 Analysing the Meskhidze-Weatherall theory

In this section, we explore the structure of MWT per se. Our focus here will
be twofold: (i) on clarifying the relationship between MWT and NCT, and (ii)
on the orbit structure of MWT, and the extent to which it can be viewed as
analogous to that of NGT.

4.1 Geometrisation and recovery

Meskhidze and Weatherall (2023) prove a ‘recovery’ theorem to the effect that
any (compatible, torsion-free) non-relativistic spacetime 〈M, ta, h

ab, ∇̃, ρ〉 which
satisfies R̃ab

cd = 0 and R̃ab = 4πρtatb (i.e., NCT without explict commitment

to the ‘Newtonian’ curvature condition R̃a c
b d = R̃c a

d b) gives rise, non-uniquely,
to a model of MWT (Meskhidze and Weatherall 2023, theorem 1). However,
they do not similarly prove a ‘geometrisation’ theorem linking models of MWT
to models of (this version of) NCT. In the absence of such a theorem, the
relationship between MWT and NCT remains somewhat unclear, so we begin
by filling in this gap on Meskhidze and Weatherall’s behalf:

Proposition 1. Let 〈M, ta, h
ab,∇, ρ〉 be a model of MWT such that Fn

mFm
n =

0. Then there exists a unique torsion-free derivative operator ∇̃ compatible with

the metrics such that R̃ab
cd = 0, R̃ab = 4πρtatb, and for all unit timelike vector

fields on M , ξn∇̃nξ
a = 0 ⇔ ξn∇nξ

a = −F a
nξ

n.

Proof. Let ∇̃ = (∇,−F a
btc). We claim that it satisfies the required con-

ditions. First, note that ∇̃ is compatible with the metrics since ∇̃ah
bc =

∇ah
bc + F b

atnh
nc + F c

atnh
bn = 0 and ∇̃atb = ∇atb − Fn

atbtn = 0, where
we have used that ∇ is compatible and F a

b is spacelike in the a index. ∇̃ is also
torsion-free since −2F a

[btc] = T̃ a
bc − T a

bc = T̃ a
bc − 2F a

[btc] ⇔ T̃ a
bc = 0. Fur-

thermore, if ξa is a unit timelike vector field on M such that ξn∇nξ
a = −F a

nξ
n

then ξn∇̃nξ
a = ξn∇nξ

a + F a
ntmξnξm = 0 (conversely, if ξa is geodesic with

respect to ∇̃ then ξn∇nξ
a = −F a

nξ
n). ∇̃ is clearly unique in this regard, since

an arbitrary derivative operator (∇, Ca
bc) will satisfy the above condition just
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in case Ca
nmξnξm = −F a

nξ
n for any unit timelike vector field ξa, from which

it follows that Ca
bc = −F a

btc.
It remains to verify that R̃ab

cd = 0 and R̃ab = 4πρtatb. First, using the
expression relating two Riemann tensors

R̃a
bcd = Ra

bcd − 2∇[cF
a
d]tb + 2tbF

n
[cF

a
d]tn + 2Fn

[ctd]F
a
ntb

= −2∇[cF
a
d]tb + 2Fn

[ctd]F
a
ntb,

where we have used that ∇ is flat and again that F a
b is spacelike in the a index.

It follows immediately that R̃ab
cd = 0 since ∇ is compatible. Meanwhile, using

(2) and that F a
b is spacelike in the a index we have

R̃ab = −2δnm∇[bF
m

n]ta + 2δnmF r
[btn]F

m
rta

= 2δnm∇[nF
m

b]ta − F r
nF

n
rtatb

= 4πρtatb − F r
nF

n
rtatb

= 4πρtatb,

where we have used that the last equality holds just in case Fn
mFm

n = 0.

So MWT, as presented by Meskhidze and Weatherall (2023), does not quite
admit a ‘geometrisation’ theorem analogous to Meshdiske and Weatherall’s ‘re-
covery’ result; however, this may straightforwardly be rectified with the ad-
ditional assumption that Fn

mFm
n = 0. Since this condition also holds with

respect to the recovered models of MWT considered in Meskhidze and Weather-
all’s theorem 1, we will assume it in what follows.

4.2 Gauge orbits and torsion in the Meskhidze-Weatherall

theory

We turn now to the gauge orbit structure of MWT. We begin by recalling some
basic facts about the orbit structure of NGT. Recall that if ξa is a unit timelike
vector field on 〈M, ta, h

ab〉, then any spatiotemporally torsion-free compatible
connection ∇ can be represented by a pair (∇ξ, t(bh

anΩc)n) for some 2-form

Ωab = −2ĥn[a∇b]ξ
n, where ∇ξ is the special connection for ξa.4 This represen-

tation manifestly carries some redundancy, though, since it’s clear that there
are multiple pairs (∇ξ, t(bh

anΩc)n) which can be used to represent ∇. This is
encoded in the notion of Milne symmetry. Let σa be a spacelike vector field
on M . Then under the transformation ξa → ξa + σa, the 2-form Ωab in the
representation of ∇ transforms as

Ωab → Ωab + daΦb (14)

where Φa = ĥanσ
n − 1/2ĥnmσnσmta. We then have the following result (Teh

2018, Proposition 1):

4i.e. the unique spatiotemporally torsion-free connection such that ξa is twist-free and
geodesic with respect to ∇ξ.
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Proposition 2. The affine space of Milne orbits is canonically isomorphic to

the affine space of Newton-Cartan connections.

This orbit structure is not quite the orbit structure of NGT, however. As
articulated by Teh (2018), the orbit structure of NGT can be obtained by ‘gauge-
fixing’ this space of representations of ∇ so that the reference connections ∇ξ

are the special connections for unit timelike vector fields which are all twist-
free and rigid with respect to ∇ξ (we are guaranteed that such exist by the

condition Rab
cd = 0). In this case, we have Ωab = −2ĥn[atb]ξ

m∇mξn. The
Milne symmetry action on representations of ∇ becomes

ξa → ξa + σa (∇aσb = 0),

Ωab → Ωab + daΦb.
(15)

Note that the reference connections∇ξ in this restricted space of representations
are all flat, since ξa is constant with respect to ∇ξ.

How does this change when we move to the torsionful case? Here, we
can begin as before: any unit timelike vector field ξa has a unique compati-
ble special connection ∇ξ. Crucially for our purposes, when ta is closed, this
special connection is torsion-free (Bekaert and Morand 2014). The first dis-
analogy comes when we look at the form of the difference tensor, which now
depends on both the 2-form Ωab and the spatiotemporal torsion tensor trans-
verse to ξa, Ua

bc = T a
bc − ξadbtc. In particular, ∇ is now represented by a pair

(∇ξ, t(bh
anΩc)n+Ua

bc +2hanUm
n(b )ĥc)m). Specialising to the MWT case where

∇ has no spatial or temporal torsion, Ua
bc = F a

[b tc], where F a
b is spacelike in

the upper index and F ab 6= 0. Once again, under a Milne boost with parameter
σa, we have

Ωab → Ωab + 2∇[aΦb],

Ua
bc → Ua

bc − 1/2σadbtc,
(16)

so that again specialising to the MWT case with no spatial or temporal torsion

F a
[b tc] → F a

[b tc]. (17)

This allows us to clarify the extent to which the orbit structure of MWT can
be viewed as analogous to that of NGT. Unlike the connections of NGT, the con-
nections of MWT cannot in general by constructed by considering Milne boosts
between different representations of the same Newton-Cartan connection (since
the temporal torsion vanishes, so that any special connection is spatiotempo-
rally torsion-free). The MWT orbits do have the NGT orbits as a substructure,
though: as can be seen by noting that once we have constructed an NGT orbit,
we are always free to replace each reference connection ∇ξ in the orbit with
(∇ξ, F

a
[b tc]).

We now move on to consider a second point of disanalogy between the orbit
structure of MWT and NGT, which is that the connections of MWT do not
form an affine space. Indeed, this can be seen straightforwardly by noting the
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extra condition Fn
mFm

n = 0 which the recovered models of MWT must satisfy,
as established in Proposition 1: since this constraint is non-linear, it will not be
preserved under arbitrary affine transformations. Again though, the orbits of
MWT do have affine subspaces—which are just the substructures corresponding
to the NGT orbits, as explained above.

The final point of disanalogy between MWT and NGT concerns the status
of mass torsion in MWT. On this, contrasting their theory with other theories
of torsional Newtonian gravity considered in the literature (in particular those
by Read and Teh (2018) and Schwartz (2023)), Meskhidze and Weatherall write
that

[MWT], insofar as it features spacetime torsion instead of mass
torsion, is a stronger analog to a classical TPG. (Meskhidze and
Weatherall 2023, p. 10, emphasis in original)

So Meskhidze and Weatherall claim inter alia that MWT has no mass torsion.
To assess this claim, let’s remind ourselves how mass torsion arises in NGT.
As noted in §3.3, NGT and NCT can be understood as gauge theories of the
Bargmann algebra. In this approach, one begins by fixing a Bargmann struc-
ture, which is locally represented by a one-form mµ on M which encodes the
U(1) connection of a Bargmann spacetime. Under a Milne boost, this one-form
transforms as

mµ → mµ + σae
a
µ − 1/2σ2tµ (18)

and the associated mass torsion as

fµν → fµν + σaT
a

µν − 1/2σ2dµtν . (19)

In the gauge-theoretic approach to NCT, one then notes that given a choice
of Bargmann structure the two-form Ωab is uniquely determined by the mass
torsion via Ωµν = fµν − dµaν and vice versa. In particular, for each Bargmann
structure, there exists a unique extended torsion-free connection, which is New-
tonian and is identified with the Newton-Cartan connection. The connections
of NGT (for this Bargmann structure) then have an associated mass torsion, as
follows from the discussion of orbits in NGT above (where we note that with the
Newtonian condition in place, we now have that the 2-form Ωab is closed—see
Malament 2012, prop. 4.3.5).

How does the situation differ in MWT? We can see immediately from (19)
that for models of MWT with non-vanishing spatial torsion, vanishing of the
mass torsion is not preserved under arbitrary Milne boosts. So Meskhidze and
Weatherall cannot insist that (a) the mass torsion always vanishes, and (b)
their theory is Milne invariant. Moreover, since the orbits of MWT are not
Milne orbits, and unlike the situation in (non-Newtonian) NGT, one cannot
then restore Milne invariance by identifying the Newton-Cartan connection with
its orbit of recovered models. Note also that in standard Newtonian NGT, the
connections and 2-forms in the orbits are built from Milne invariant objects,
and so are Milne-invariant by construction; however, this construction no longer
works when one does not impose the Newtonian condition as in MWT.
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How might Meskidze and Weatherall respond to these disanalogies? We can
see at least three (not all mutually exclusive) options:

• They could relax the condition that ta is closed. This would mean that
models of MWT have a non-trivial Milne orbit for the spatial torsion,
though there would still remain substructures of the MWT orbits which
are not Milne orbits.

• They could drop the demand that the mass torsion always vanishes. Then
Milne boosts would generate an orbit for the mass torsion, as in NGT.
Again though, this Milne orbit structure still wouldn’t encompass the full
orbit structure of MWT.

• They could resist the language of mass torsion and the gauge-theoretic
approach to NGT/NCT. However, it remains the case that for those
models of NCT which satisfy the Newtonian condition, the two-form Ωab

(which is related to the antisymmetric part of MW’s torsional force via
Ωa

b = hanF[nb]) is coextensive with the mass torsion. In this sense, it is
debatable the extent to which MWT can be said to eliminate mass torsion,
since their theory generically contains terms which can always consistently
be reinterpreted as such.

To end this section, we will explore one analogy between MWT and other
torsional non-relativistic theories considered in the literature, such as those from
Read and Teh (2018) and Schwartz (2023). In their discussion, Meskhidze
and Weatherall appear to suggest that these theories do not feature spacetime
torsion. However, as Meskhidze and Weatherall (2023, theorem 1) show, we are
always free to ‘gauge fix’ F a

b so that the spatiotemporal torsion vanishes in the
recovered models of MWT. In this respect, MWT is precisely analogous to the
theories considered by Read and Teh (2018) and Schwartz (2023), in which the
spatiotemporal torsion is generically non-vanishing, but nevertheless can always
consistently be chosen to vanish via a suitable fixing of the torsion and frame.
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dynamical Newton-Cartan geometry”. JHEP 07, p. 155. doi:
10.1007/JHEP07(2015)155. arXiv: 1504.07461 [hep-th].

Hartong, Jelle, Obers, Niels A., and Oling, Gerben (Dec. 2022). “Review on
Non-Relativistic Gravity”. doi: 10.3389/fphy.2023.1116888. arXiv:
2212.11309 [gr-qc].

Havas, Peter (Oct. 1964). “Four-Dimensional Formulations of Newtonian
Mechanics and Their Relation to the Special and the General Theory of
Relativity”. Rev. Mod. Phys. 36 (4), pp. 938–965. doi:
10.1103/RevModPhys.36.938. url:
https://link.aps.org/doi/10.1103/RevModPhys.36.938.

Jensen, Kristan (2018). “On the coupling of Galilean-invariant field theories to
curved spacetime”. SciPost Phys. 5.1, p. 011. doi:
10.21468/SciPostPhys.5.1.011. arXiv: 1408.6855 [hep-th].
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