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Abstract

Philosophers and physicists often claim that the ‘privileged coordi-
nates’ of a physical theory provide a window into its structure. The pur-
pose of this paper is to examine whether this is the case. We show that
there are general relativistic spacetimes that admit the same privileged
coordinates but have different structure, and we infer from this that priv-
ileged coordinates do not provide a perfect guide to underlying structure.
We conclude by isolating the conditions under which privileged coordi-
nates do perfectly reflect structure.

1 Introduction

The structure of the Euclidean plane is usually presented using the tools of
differential geometry. One defines the smooth manifold R2 and then lays down
on it the Euclidean metric tensor. This method of presenting a geometric space
is considered standard by physicists and philosophers of physics, but it is not
the only way to go. A less familiar method proceeds as follows:

One begins with the set R2, but rather than directly defining mani-
fold structure and then laying down a metric, one instead singles out
a collection C of ‘privileged coordinate systems’ for the space. In the
case of the Euclidean plane, C contains the standard ‘x-y coordinate
system’, along with its rotations, translations, and reflections. One
then stipulates that the structure of the space will be given by those
features that are ‘agreed upon by’ the privileged coordinate sys-
tems in C. We often say that these features are ‘shared in common
by’ or ‘invariant under change of’ privileged coordinates. One can
show that in this case the privileged coordinates agree upon just the
smooth manifold structure of R2 and the standard Euclidean metric
(and metrics isometric to it).

We therefore have a second method of presenting the Euclidean plane. These
two methods go by various names. Norton (1993, 1999, 2002) occasionally
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calls the first “additive” and the second “subtractive”; Dewar (2019) has called
the first “internal” and the second “external”. In this paper, we will follow
Wallace (2019) in calling the first the “Riemannian method” and the second the
“Kleinian method”.

It is sometimes suggested that the Kleinian method has drawbacks. For
example, North (2021, p. 23) remarks that it is “less direct”, Maudlin (2012,
p. 31) suggests that it is “obscure”, and Arntzenius and Dorr (2012, p. 232) say
that it is “spectacularly unsatisfying from a foundational point of view”. But
the adequacy of the Kleinian method is rarely questioned further. In particular,
it is often implicitly assumed that the Kleinian method can be used to present
all of the same geometric spaces that are presentable using the Riemannian
method. North (2021, p. 23), for example, writes the following:

As we see in the case of the Euclidean plane, the kinds of coordi-
nates we can use for a space can indicate its structure. [. . . ] There
are simply two ways of characterizing a given structure, and two
corresponding routes to learning about it. A structure can be char-
acterized more directly, as in the case of the Euclidean plane and
the metric tensor. Or it can be characterized less directly, by means
of the coordinate systems we can use for the space and the features
that are invariant under transformations of them.

Wallace (2019, p. 135) has similarly remarked that, in addition to the Riemma-
nian presentation, “it is generally fine, and often actively useful, to characterize
mathematical spaces via classes of preferred coordinatizations of these spaces”.

The aim of this paper is to carefully investigate the generality of the Kleinian
method. Euclidean space can be presented using either the Riemannian or
Kleinian method, but one wonders which other geometric spaces can be de-
scribed in Kleinian terms. In particular, we will ask whether all of the space-
times of general relativity can be presented using the Kleinian method:

Question. Can every relativistic spacetime be presented using the Kleinian
method, i.e. by singling out a collection of privileged coordinates?

We will show that the answer is “no”. We do so by exhibiting non-isometric
relativistic spacetimes that nonetheless have the same privileged coordinates.
Despite their structural differences, these spacetimes ‘look the same’ from the
Kleinian perspective, and hence one loses expressive power if one opts for the
Kleinian method over the standard Riemannian method. The Kleinian method
‘washes out’ the structural differences between some spacetimes.

At issue is whether the ‘privileged coordinates’ of a geometric space provide
a guide to its structure. Many philosophers and physicists have claimed that
they do. North (2021, p. 26), for example, suggests that

the features or quantities that are agreed upon by all the differ-
ent coordinate systems we can use for the plane, the coordinate-
independent, invariant features, correspond to the intrinsic nature
of the plane, to aspects of the plane itself, apart from our descrip-
tions of it — that is, to what I have been calling its structure.
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Fock (1964, p. 374) expresses the same thought when he remarks that “the exis-
tence of a preferred set of coordinates [. . . ] reflects intrinsic properties of space-
time” and stresses the “fundamental significance” of such coordinates (Fock,
1964, p. 375). And even when it is not explicitly stated, the idea that privi-
leged coordinates reflect a theory’s structure is relied upon in common inferences
about structure. North (2021, p. 9) remarks that philosophers and physicists
often “take the mathematical form of the laws in different kinds of coordinate
systems [. . . ] to indicate the underlying nature of the world.” When we do so,
we are using a collection of privileged coordinates — in this case, often those in
which the laws ‘take a particularly nice form’ — as a guide to the structure that
the theory posits. In demonstrating that the answer to our question is “no”, we
will be showing that, at least in general relativity, privileged coordinates do not
provide a perfect guide to spacetime structure. There are relativistic spacetimes
that have different structure but the same privileged coordinates.

In order to carefully examine this question, we will employ a framework
that was recently introduced into philosophy of physics by Wallace (2019): the
framework of locally G-structured spaces. This framework provides one natural
way of precisely stating the Kleinian method. In brief, a locally G-structured
space is a set S with a collection C of maps from S to Rn, which can be thought
of as the collection of privileged coordinates of the space. Wallace (2019, p. 126)
remarks that this framework provides “a legitimate and informative way to
formulate” theories, and he offers evidence for this claim by working through a
number of illustrative examples showing how to use locally G-structured spaces
to present various geometric spaces. Our aim in what follows is to examine
where the limits of this framework lie, and consequently the extent to which
privileged coordinates provide a guide to structure.

2 How does the Kleinian method work?

We begin with some preliminaries about the Kleinian framework. In particular,
we need to define a locally G-structured space and show how one uses it to
present a geometric space. Our presentation in this section will follow that of
Wallace (2019), but we will include additional details that will be important for
our subsequent results.

It is worth making a few practical remarks at the outset. We assume famil-
iarity with basic differential geometry; the reader is invited to consult Malament
(2012) for details. We will divide our discussion throughout into the simpler case
of ‘global coordinates’ (and G-structured spaces) followed by the more techni-
cally complicated case of ‘local coordinates’ (and locally G-structured spaces).
The arguments provided in each case parallel one another. The global case
is worth discussing because it is technically less complex. To streamline our
presentation, we have placed lemmas and proofs of propositions in an appendix.
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2.1 Global coordinates

We begin by defining a G-structured space. A G-structured space presents a
geometric space by singling out a collection of privileged global coordinates for
the space. Recall that a transformation group on a set X is a group G of
bijections from X to itself. Let G be a transformation group on Rn that is
contained in the group of diffeomorphisms from Rn to Rn. A G-structured
space is then a pair (S,C), where S is a set and C is a non-empty set of
bijections from S to Rn that has the following property:

Compatibility condition. If f ∈ C, then f ′ ∈ C if and only if f ◦ f ′−1 ∈ G.

One can think of the maps in C as the ‘privileged global coordinates’ on the
space S.

One can recover a geometric space — in the form of a smooth manifold with
structure on it — from the data given by a G-structured space (S,C). We begin
by building smooth manifold structure on S using the maps in C. In order to do
so, one needs to define an atlas on S, i.e. a collection of coordinate charts that
endow S with its ‘smoothness structure’. This is easily done using the global
coordinates in C. We consider the collection

C0 = {(c−1[U ], c|c−1[U ]) : c ∈ C and U ⊂ Rn is open}

of n-charts on C. We let our atlas C+ be the collection of n-charts on S that
are compatible with all of the charts in C0. And we then have the following
result.

Proposition 2.1.1. (S,C+) is a smooth n-dimensional manifold.

Now that we have recovered manifold structure on S, we have a simple
guarantee about the maps in C.

Proposition 2.1.2. Every c ∈ C is a diffeomorphism from the smooth manifold
(S,C+) to Rn.

We have therefore recovered the structure of a smooth manifold from the
G-structured space (S,C). And moreover, Proposition 2.1.2 implies that the
recovered manifold (S,C+) has the same smoothness structure as Rn. Our next
step is to recover structure on the manifold (S,C+) in the form of tensor fields.

There is a particularly natural way to do this. In brief, we recover a transfor-
mation group Γ on S, and then use this transformation group to implicitly define
various tensor fields on the manifold. One first notices that the maps in C suffice
to determine the coordinate transformation group Γ = {c−1 ◦ d : c, d ∈ C}
of (S,C) on S. This transformation group is the group of bijections ‘generated
by’ the coordinate maps in C. Intuitively, it contains all of the bijections from
S to itself that ‘switch us’ from one of our privileged coordinate systems in C
to another one of them. One can easily verify that it is a transformation group
on S.
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Now that we have the coordinate transformation group Γ defined on S, we
can consider those tensor fields that are ‘implicitly defined’ by Γ, i.e. those
tensor fields that remain unchanged when pulled back via any of the maps
in Γ. One might say that the tensor fields implicitly defined by Γ are those
that are ‘invariant under coordinate transformations’. More precisely, if M is
a manifold with G a transformation group on M that is a subset of the group
of diffeomorphisms of M , we will say that a smooth tensor field α (of arbitrary
index structure) on M is implicitly defined by G just in case h∗(α) = α for
each h ∈ G. This is how to recover tensor fields from the data given by our
G-structured space. We equip (S,C+) with those smooth tensor fields that are
implicitly defined by the coordinate transformation group Γ.

We have therefore recovered from a G-structured space (S,C) a manifold
with tensor fields on it. This captures a strong sense in which one can use ‘priv-
ileged coordinates’ to present a geometric space. At heart, the idea behind this
Kleinian framework of G-structured spaces is simple. The privileged coordinates
in C immediately endow S with smooth manifold structure and a coordinate
transformation group Γ. Γ then gives rise to further structure on our geometric
space by implicitly defining tensor fields on the manifold (S,C+).

An example illustrates this method of recovering a manifold with structure
from (S,C). We show how one presents Minkowski spacetime using the appa-
ratus of G-structured spaces. Recall that a relativistic spacetime is a pair
(M, gab) where M is a smooth, n-dimensional (for n ≥ 2), connected, Haus-
dorff manifold without boundary and gab is a smooth Lorentzian metric on M .
Minkowski spacetime is the pair (R4, ηab), where ηab is flat and geodesically
complete.

Example 1. Minkowski spacetime (R4, ηab) can be presented as a G-structured
space in the following manner. Let S be the set R4, let C be the set of diffeo-
morphisms f : R4 → R4 such that f∗(ηab) = ηab, and let G = C. One can verify
that this defines a G-structured space (S,C). y

We can now straightforwardly see how to recover the structure of Minkowski
spacetime from (S,C). First, we begin with the manifold structure. Proposition
2.1.2 implies that the recovery procedure described above equips S with the
manifold structure of R4, the same as that of Minkowski spacetime. So we
have recovered from (S,C) exactly the manifold structure underlying Minkowski
spacetime. And second, we turn to the metric. We can easily see that h∗(ηab) =
ηab for each h ∈ Γ. Since h ∈ Γ, it must be that h = f−1 ◦ g for f, g ∈ C. We
then compute that

h∗(ηab) = (f−1 ◦ g)∗(ηab) = g∗ ◦ f∗(ηab) = ηab

The first equality follows since h = f−1◦g, the second follows from properties of
the pullback and pushforward, and the third follows from the defining condition
of the maps in C. So ηab is implicitly defined by Γ, and hence (S,C) recovers
the Minkowski metric.

One can therefore present the structure of Minkowski spacetime using the
Kleinian framework of G-structured spaces. We note, however, that nothing said
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here implies that ηab is the only metric recoverable on (S,C) using our recovery
procedure. There may, for example, be more than one metric implicitly defined
by Γ. We will return to this point later on.

2.2 Local coordinates

We now turn to the case of local coordinates. Proposition 2.1.2 implies that
the manifold structure recovered by a G-structured space is that of the smooth
manifold Rn. Since relativistic spacetimes can have underlying manifolds that
are not diffeomorphic to Rn, the framework of G-structured spaces clearly does
not have the expressive capabilities required to present all of general relativity.
It is for this reason that Wallace (2019) considers a more flexible formalism
in which spaces are given their structure by specifying their privileged local
coordinates. This is the framework of locally G-structured spaces. It will take
a bit more work to set up the results in this section, but the basic ideas are
exactly the same as in the case of G-structured spaces.

One begins with the definition of a pseudogroup (Kobayashi and Nomizu,
1996, p. 1). While a transformation group is collection of bijective structure-
preserving maps from a space to itself, a pseudogroup is a collection of bijective
structure-preserving maps between open subsets of a topological space. It is, in
essence, the ‘local analogue’ of a transformation group. A precise definition is
contained in the appendix (Definition 2.2.1), but examples serve well to illustrate
the core idea. The simplest example of a pseudogroup is the diffeomorphism
pseudogroup of a smooth manifold M , i.e. the class of diffeomorphisms f :
U → V between open sets U and V of M . If (M, gab) is a relativistic spacetime,
then the isometry pseudogroup of (M, gab) is the class of diffeomorphisms
f : U → V between open sets U and V of M such that f∗(gab) = gab. (These are
pseudeogroups by Lemma 2.2.1, which is stated and proved in the appendix.)

We can now define a locally G-structured space. Let G be a pseudogroup
on Rn that is contained in the diffeomorphism pseudogroup of Rn. A locally
G-structured space is then a pair (S,C), where S is a set, C is a collection of
injective partial functions c : S → Rn, and the following three conditions hold:

Cover condition. For every point p ∈ S there is a map c ∈ C such that
p ∈ dom(c).

Range condition. For every map c ∈ C there is a map g ∈ G such that
ran(c) = dom(g).

Compatibility condition. For any partial function f : S → Rn whose range
is the domain of an element of G, f ∈ C if and only if for every f ′ ∈ C
such that dom(f) ∩ dom(f ′) is non-empty, f ◦ f ′−1 ∈ G.

We can think of the maps in C as the ‘privileged local coordinates’ on our space
S. The cover condition guarantees that every point in our space S lies in some
or other privileged coordinate chart. The range condition guarantees that the
ranges of elements of C are open subsets of Rn. And the compatibility condition
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is a generalization of the earlier compatibility condition for G-structured spaces;
it guarantees that the maps in C ‘play nicely’ with the maps in G.

Let (S,C) be a locallyG-structured space. We need to show how one recovers
a geometric space from (S,C). As in the global case, we begin by showing how
(S,C) inherits smooth manifold structure, and we then show how to recover the
structure of tensors on that manifold. We first need to build an atlas on S. This
is simpler in the local case because for each f ∈ C, (dom(f), f) is an n-chart on
S. Let C+ be the collection of all n-charts on S that are compatible with all
these n-charts in C. We then have the following result.

Proposition 2.2.1. (S,C+) is a smooth n-dimensional manifold.

We have therefore recovered smooth manifold structure from the data given
by the locally G-structured space (S,C). Unlike in the global case, the mani-
fold (S,C+) is not necessarily diffeomorphic to Rn. We do, however, have the
following analogue to Proposition 2.1.2.

Proposition 2.2.2. Every c ∈ C is a smooth map c : dom(c) → Rn. And
moreover, c : dom(c)→ ran(c) is a diffeomorphism.

We now show how to recover various levels of geometric structure on the
manifold (S,C+). As in the global case, one notices that the maps in C suffice
to induce a pseudogroup on S. Intuitively, this coordinate transformation
pseudogroup Γ again contains all of the maps between open subsets of (S,C+)
that ‘switch us’ from one of our privileged coordinate systems in C to another
one of them. One can picture Γ as containing those diffeomorphisms between
open sets of (S,C+) generated by functions of the form f−1 ◦ g, where f and g
are in C. See Definition 2.2.2 in the appendix for a precise account.

We have hence recovered a manifold (S,C+) with a coordinate transforma-
tion pseudogroup Γ defined on it. As in the global case, this provides us a way
to recover the geometric structures on (S,C+). We will say that a smooth ten-
sor field α (of arbitrary index structure) on a smooth manifold M is implicitly
defined by a pseudogroup G on M just in case h∗(α) = α|U for all h : U → V
in G. We now simply equip (S,C+) with those smooth tensor fields α that are
implicitly defined by the coordinate transformation pseudogroup Γ.

Overall, locally G-structured spaces operate in much the same manner as
G-structured spaces did. There are, however, two important differences. First,
there is an increase in expressive power that one buys when moving from G-
structured spaces to locally G-structured spaces. Because the latter do not
require the maps in C to be bijections from S to Rn, the underlying manifold
of the recovered geometric space is not necessarily diffeomorphic to Rn. Sec-
ond, the coordinate transformation pseudogroup contains ‘more maps’ than the
coordinate transformation group does. The latter requires its maps to be bi-
jections from the entirety of S to itself, while the former admits maps that are
bijections merely between open subsets of S. This means that the coordinate
transformation pseudogroup provides us with more data than the mere coor-
dinate transformation group, and therefore the former has a better chance of
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encoding the entire variety of geometric structures one needs for general rela-
tivity.

3 Does the Kleinian method always work?

We have so far shown how to use a (locally) G-structured space to present
a geometric space. One wonders whether all relativistic spacetimes can be
presented using (locally) G-structured space. We now turn to this question.

3.1 Global coordinates

We begin with the global case. Now that we have a clear method of recovering a
relativistic spacetime from a G-structured space, we can make our main question
from the introduction precise. We restrict attention to relativistic spacetimes
whose underlying manifold is diffeomorphic to Rn. Without this restriction, the
answer to our question would trivially be “no” because Proposition 2.1.2 implies
that the manifold (S,C+) recovered by a G-structured space is diffeomorphic
to Rn.

Question 1 (Global case). Can every relativistic spacetime whose underlying
manifold is diffeomorphic to Rn be recovered from a G-structured space?

We will begin by describing a sense in which the answer to Question 1 is
“yes”. We will then see that this answer is unsatisfactory, and the better answer
is “no”. We discuss the “yes” answer first to illustrate the best kind of answer
that one might give to the question on behalf of those who claim that privileged
coordinates do fully reflect to structure.

Answer 1: yes

In brief, we will show that every relativistic spacetime whose underlying mani-
fold is diffemorphic to Rn determines aG-structured space, and thisG-structured
space is capable of recovering, in the sense described in section 2.1, the smooth
manifold and the metric of the relativistic spacetime that we began with.

Suppose that we have a relativistic spacetime (M, gab) such that M is diffeo-
morphic to Rn. We need to say what the ‘privileged coordinates’ of (M, gab) are.
We do this by showing how one naturally builds a G-structured space (S,C)
from (M, gab); the maps in C will be the privileged coordinates on (M, gab). We
will then look to this G-structured space (S,C) to recover (M, gab).

We turn to our the definition now. There is, by assumption, a diffeomor-
phism φ : M → Rn. This means that the pushforward φ∗(gab) of gab to Rn is a
metric on Rn. We build a G-structured space (S,C) as follows.

• Let S = M .

• Let C be the collection of diffeomorphisms f : M → Rn such that
f∗(gab) = φ∗(gab).
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• LetG be the the set of diffeomorphisms s : Rn → Rn such that s∗(φ∗(gab)) =
φ∗(gab).

One shows (Lemma 3.1.1 in the appendix) that this (S,C) is indeed a G-
structured space. We will call (S,C) a G-structured space determined by
(M, gab). Note that for now we cannot call it the G-structured space determined
by (M, gab), since we had to arbitrarily pick a diffeomorphism φ : M → Rn to
complete our construction. We will show in a moment that this choice actually
makes no difference. We first state an important result.

Proposition 3.1.1. Let (S,C) be a G-structured space determined by (M, gab).
Then both of the following hold:

1. The identity map 1M is a diffeomorphism between the manifold (S,C+)
and M .

2. The coordinate transformation group Γ on S is the isometry group of
(M, gab), i.e. the collection of diffeomorphisms f : M → M such that
f∗(gab) = gab.

(Note that 1 and 2 make sense since S = M .)

This result captures the close relationship that (S,C) bears to the relativistic
spacetime that determines it. The first clause implies that (S,C) recovers the
manifold structure of M . And the second clause implies that the coordinate
transformation group Γ is closely related to the metric gab; it contains all and
only the diffeomorphisms that preserve gab.

Recall that we made an arbitrary choice of diffeomorphism φ : M → Rn
when defining (S,C). Fortunately, had we chosen a different diffeomorphism
ψ : M → Rn in our construction, the resulting G-structured space would be
isomorphic to (S,C). In order to demonstrate this, we need to first discuss the
conditions under which two G-structured spaces are isomorphic. Let (S,C) and
(S′, C ′) be G- and G′-structured spaces. A map f : S → S′ is an isomorphism
between them if the following two conditions obtain:

1. The map f : S → S′ is a diffeomorphism between the manifolds (S,C+)
and (S′, C ′+).

2. The map s 7→ f ◦ s ◦ f−1 is a bijection Γ → Γ′ between the coordinate
transformation groups on S and S′. (Note that this map is guaranteed to
be a group isomorphism if it is a bijection, since one can show trivially
that it preserves composition.)

It is worth taking a moment to discuss this notion of isomorphism. Isomorphic
G-structured spaces recover the same manifold structure. This is what clause
1 of the definition guarantees. Clause 2 guarantees that they recover the same
tensor fields in the following sense.

Proposition 3.1.2. Suppose that f : S → S′ is an isomorphism between (S,C)
and (S′, C ′) and α is a tensor field (of arbitrary index structure) on S. Then α
is implicitly defined by Γ if and only if f∗(α) is implicitly defined by Γ′.
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Suppose that (S,C) and (S′, C ′) are G- and G′-structured spaces and f :
S → S′ is an isomorphism between them. Now equip the manifolds (S,C+)
and (S′, C ′+) with the smooth tensor fields that are implicitly defined by their
coordinate transformation groups Γ and Γ′. Then f : S → S′ is an isomorphism
between these two geometric spaces in the sense that it is a diffeomorphism from
(S,C+) to (S′, C ′+) and for any smooth tensor field α on (S′, C ′+), α is one
of the smooth tensor fields that we have equipped S′ with if and only if f∗(α)
is one of the smooth tensor fields we have equipped S with. Proposition 3.1.2
thus provides us with a sanity check on our definition of isomorphism between
G-structured spaces. It shows us that isomorphisms do indeed preserve all of
the structure that we ‘care about’ on G-structured spaces.

We now have the following result.

Proposition 3.1.3. Let (S,C) and (S′, C ′) be G- and G′-structured spaces
determined by (M, gab). Then (S,C) and (S′, C ′) are isomorphic.

This proposition implies that it makes sense to talk about the G-structured
space determined by (M, gab). All G-structured spaces determined by a
particular relativistic spacetime are isomorphic. This means that we have a
method of recovering a unique (up to isomorphism) G-structured space (S,C)
from a relativistic spacetime (M, gab).

We finally have the resources to provide our affirmative answer to Question
1. Let (M, gab) be a relativistic spacetime with M diffeomorphic to Rn, and
consider the G-structured space (S,C) determined by (M, gab). Proposition
3.1.1 implies that (S,C+) has the same manifold structure as M , and moreover,
that the metric gab is implicitly defined by Γ, meaning that (S,C) recovers this
metric structure. This captures a sense in which the G-structured space (S,C)
determined by (M, gab) recovers all of the structures of (M, gab). It recovers its
manifold structure and it recovers its metric structure.

Answer 2: no

We now turn to the negative answer to Question 1. In order to present it,
we need some further preliminaries. Recall that the isometry group of a
relativistic spacetime (M, gab) is the group of diffeomorphisms f : M → M
such that f∗(gab) = gab. An object has a trivial isometry group if its only
isometry is the identity map.

We have the following two simple results.

Proposition 3.1.4. There are non-isometric relativistic spacetimes (R2, gab)
and (R2, g′ab) with trivial isometry groups.

Proposition 3.1.5. Suppose that (S,C) and (S′, C ′) are G- and G′-structured
space with trivial coordinate transformation groups Γ and Γ′ (i.e. both contain
only the identity map). Then (S,C) and (S′, C ′) are isomorphic.

The idea behind Proposition 3.1.4 is simple. It is similar to the existence
results proven by Barrett et al. (2023), and it follows directly from the results
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of Manchak and Barrett (2024). It guarantees that there are different metrics
gab and g′ab that one can lay down on R2 that are so asymmetric that the
only isometry they admit is the identity map. And the sense in which the
metrics gab and g′ab are ‘different’ is strong; they are not isometric. Proposition
3.1.5 provides a sufficient condition for two G- and G′-structured spaces to be
isomorphic. They are isomorphic if their their coordinate transformation groups
are trivial. Intuitively, this is because the two spaces agree in all the respects
that we care about; they recover the same manifold (namely, Rn), and since
they have the same trivial coordinate transformation group they recover the
same tensor fields too.

We now use these two propositions to prove the following result, which is
the key ingredient in our negative answer to Question 1.

Theorem 3.1.1. There are non-isometric relativistic spacetimes (R2, gab) and
(R2, g′ab) that determine isomorphic G-structured spaces.

Proof. Proposition 3.1.4 implies that there are non-isometric relativistic space-
times (R2, gab) and (R2, g′ab) with trivial isometry groups. Let (S,C) be the
G-structured space determined by (R2, gab) and (S′, C ′) be the G′-structured
space determined by (R2, g′ab). Since (R2, gab) and (R2, g′ab) have trivial isome-
try groups, clause 2 of Proposition 3.1.1 implies that both (S,C) and (S′, C ′)
have trivial coordinate transformation groups Γ and Γ′ (i.e. only contain the
identity map). Proposition 3.1.5 then implies that (S,C) and (S′, C ′) are iso-
morphic.

Theorem 3.1.1 implies that the answer to Question 1 is “no”. In brief, it
shows that the framework of G-structured spaces lacks the expressive resources
of the standard differential geometric framework (even when we restrict the un-
derlying manifolds to just Rn). One cannot use it to present both of the space-
times (R2, gab) and (R2, g′ab) from the theorem. Since they determine isomorphic
G-structured spaces, they ‘look the same’ from the perspective of the Kleinian
framework. The structural differences between some non-isometric spacetimes
are therefore ‘washed out’ when one moves to the framework of G-structured
spaces. This means the G-structured space that a relativistic spacetime deter-
mines does not provide a perfect guide to the structure that the spacetime has.
The information provided to us by a G-structured space — or in other words,
the collection of ‘privileged global coordinates’ on a spacetime — simply does
not tell us everything about the structure of the spacetime.

We can isolate exactly what went wrong with our initial affirmative answer.
We showed that there is a sense in which every relativistic spacetime is recov-
erable from the G-structured space that it determines. All of the structures
of (M, gab) — both the manifold and the metric — are recoverable from the
G-structured space (S,C) that it determines. But it may be that these are
not the only structures recoverable. Indeed, it may be that (S,C) is such that
many different metrics are implicitly defined by its coordinate transformation
group Γ. In cases where the relativistic spacetime has a trivial isometry group,
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(S,C) implicitly defines every metric on M . In such a case, clause 2 of Propo-
sition 3.1.1 implies that Γ only contains the identity map. And every metric
is invariant under the identity map. The sense in which (S,C) actually recov-
ers (M, gab) is therefore weak. If it recovers (M, gab), then in the same sense
it recovers many other non-isometric spacetimes. This is the exact issue that
Theorem 3.1.1 isolates. In essence, we are simply pointing out that the recov-
ery procedure described in section 2.1 — despite how natural it appears — is
not well-defined. There may be more than one metric implicitly defined by the
coordinate transformation pseudogroup Γ on a G-structured space (S,C), and
when that is the case, one does not recover a unique relativistic spacetime from
(S,C).

3.2 Local coordinates

The same exact arguments from the global case go through in the local case as
well. Our question now is whether all relativistic spacetimes, regardless of their
underlying manifold, can be recovered from a locally G-structured space.

Question 1 (Local case). Can every relativistic spacetime be recovered from a
locally G-structured space?

It is natural to think that one has a better chance of providing a compelling
affirmative answer to Question 1 in the local case than one did in the global case.
As we mentioned at the end of section 2.2, the coordinate transformation pseu-
dogroup contains more information than the coordinate transformation group
does. It admits many more maps, and therefore has greater potential to encode
all of the geometric structures that we might want to present.

We begin again with an affirmative answer to Question 1.

Answer 1: yes

We first need to define the locally G-structured space that a relativistic space-
time (M, gab) determines. As before, this is tantamount to saying what the
‘privileged coordinates’ of (M, gab) are. We will build a locally G-structured
space (S,C) from (M, gab), and the maps in C will then be the privileged coor-
dinates on (M, gab). We will then look to this locally G-structured space (S,C)
to recover (M, gab).

In order to build (S,C), we need to rely on one crucial fact. We will say that
a relativistic spacetime (Rn, g′ab) is a representation of (M, gab) if for every
point p ∈ M , there are open sets O ⊂ M and O′ ⊂ Rn such that p ∈ O and
(O, gab) is isometric to (O′, g′ab). Intuitively, a representation of (M, gab) is just
a spacetime with underlying manifold Rn that ‘reflects’ the structure of (M, gab)
in the following precise sense. Around each point p ∈ M , there is an open set
that is isometric to an open set in the representation. Note that if (M, gab) is
a flat spacetime, then Minkowski spacetime (Rn, ηab) is a representation of it
(O’Neill, 1983, p. 223). With some work, one can show (Lemma 3.2.2 in the
appendix) that every relativistic spacetime has a representation.
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This fact provides us with a method of constructing a locally G-structured
space from a relativistic spacetime (M, gab). We will simply let the ‘privileged
coordinates’ on (M, gab) be those partial functions from (M, gab) to some fixed
representation (Rn, g′ab) that preserve the metrics. In particular, let (M, gab) be
a relativistic spacetime with (Rn, g′ab) a representation of it. We then define the
following.

• Let S = M .

• Let G be the isometry pseudogroup of (Rn, g′ab).

• Let C be the collection of isometries between open subsets of (M, gab) and
open subsets of (Rn, g′ab), i.e. diffeomorphisms c : U → V where U ⊂ M
and V ⊂ Rn are open and c∗(g′ab) = gab|O.

One shows (Lemma 3.2.3 in the appendix) that this (S,C) is indeed a locally
G-structured space. We will call it a locally G-structured space determined
by (M, gab). We cannot yet call it the locally G-structured space determined
by (M, gab), since we had to arbitrarily pick a representation of (M, gab) to
complete our construction and we have no guarantee that this representation is
unique. We will show shortly that this choice makes no difference, but we first
need to catalogue how this space is related to the relativistic spacetime (M, gab)
that determined it.

Proposition 3.2.1. Let (M, gab) be a relativistic spacetime. If (S,C) is a locally
G-structured space determined by (M, gab), then

1. The identity map 1M is a diffeomorphism between (S,C+) and M .

2. The coordinate transformation pseudogroup Γ associated with (S,C) is the
isometry pseudogroup of (M, gab).

(Note that both 1 and 2 make sense since S = M .)

The content of Proposition 3.2.1 is precisely the same as its global analogue
3.1.1. The first clause guarantees that (S,C) recovers the manifold structure
of M ; the second clause guarantees that the coordinate transformation pseu-
dogroup on (S,C) bears a close relationship to the metric gab.

One wonders whether by picking different representations of (M, gab), one
might end up with different locally G-structured spaces (S,C). But while dif-
ferent representations can result in non-equal locally G-structured spaces, we
will here show that different choices of (Rn, g′ab) will always result in isomorphic
locally G-structured spaces. The definition of isomorphism between locally G-
structured spaces parallels the global case. Let (S,C) and (S′, C ′) be locally G-
and G′-structured spaces, respectively. An isomorphism f : (S,C)→ (S′, C ′)
is a bijection f : S → S′ such that

1. f is a diffeomorphism between (S,C+) and (S′, C ′+) and
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2. the map s 7→ f ◦ s◦f−1 is a bijection between Γ and Γ′, the pseudogroups
associated with (S,C) and (S′, C ′). (Note that this map is guaranteed
to preserve composition between the pseudogroups Γ and Γ′, in the sense
that the image of the composition of two elements of Γ is the composition
of their images.)

An isomorphism preserves the smooth manifold structure (clause 1) and the
pseudogroups (clause 2) that the spaces inherit, so that all structures invariant
under the one correspond to structures invariant under the other. We have an
exact analogue to Proposition 3.1.2.

Proposition 3.2.2. Suppose that f : S → S′ is an isomorphism between locally
G- and G′-structured spaces (S,C) and (S′, C ′) and let α be a tensor field (of
arbitrary index structure) on S. Then α is implicitly defined by Γ if and only if
f∗(α) is implicitly defined by Γ′.

This result again provides us with a ‘sanity check’ on our definition of iso-
morphism between locally G-structured spaces. It shows us that isomorphisms,
as we have defined them, do indeed preserve all of the structure that we ‘care
about’ on locally G-structured spaces. They preserve both the smooth manifold
structure and the tensors recovered on that manifold via implicit definability.

We can now show that our translation from relativistic spacetimes to the
underlying locally G-structured spaces they determine is well-defined. The fol-
lowing proposition guarantees that we will end up with the same (up to isomor-
phism) locally G-structured space, regardless of which representation of (M, gab)
we choose.

Proposition 3.2.3. Let (M, gab) be a relativistic spacetime. Suppose that (S,C)
and (S′, C ′) are locally G-structured spaces determined by (M, gab). Then (S,C)
and (S′, C ′) are isomorphic.

We can therefore call (S,C) the locally G-structured space determined
by (M, gab).

It is now easy to see our affirmative answer to Question 1. There is a sense in
which the locally G-structured space (S,C) determined by (M, gab) can recover
the relativistic spacetime (M, gab). The sense of recovery is captured by Propo-
sition 3.2.1, and is exactly analogous to the global case. The manifold structure
(S,C+) that (S,C) naturally inherits is the same as that of M ; we know this
since 1M is a diffeomorphism between the two manifolds. And moreover, (S,C)
naturally inherits the metric structure gab, in the sense its coordinate trans-
formation pseudogroup Γ implicitly defines gab, i.e. all of the maps in Γ are
isometries with respect to gab. This is because Proposition 3.2.1 guarantees Γ is
the isometry pseudogroup of (M, gab). Since we have defined this ‘translation’
for every relativistic spacetime (M, gab), this captures a sense in which every
relativistic spacetime can be recovered from the locally G-structured space that
it determines.
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Answer 2: no

As in the global case, however, there is a more compelling negative answer.
There are non-isometric relativistic spacetimes that determine the same locally
G-structured space. We show this exactly as before. We will say that a pseu-
dogroup on a manifoldM is trivial if it only contains identity maps. In addition,
we will say that a relativistic spacetime (M, gab) is Heraclitus if, for any open
subsets U, V ⊂ M and any isometry ψ : U → V , it follows that (i) U = V and
(ii) ψ is the identity map. Manchak and Barrett (2024) show that a Heraclitus
spacetime exists. Such a spacetime is maximally asymmetric; no two regions of
it look alike. One can easily verify that the isometry pseudogroup of (M, gab)
is trivial if and only if (M, gab) is Heraclitus. And hence there are spacetimes
with trivial isometry pseudogroups.

We have the following two simple results, both of which are exact analogues
to Propositions 3.1.4 and 3.1.5.

Proposition 3.2.4. There are non-isometric relativistic spacetimes (R2, gab)
and (R2, g′ab) with trivial isometry pseudogroups.

Proposition 3.2.5. Let (S,C) and (S′, C ′) be locally G- and G′-structured
spaces with trivial coordinate transformation pseudogroups Γ and Γ′. If the
manifolds (S,C+) and (S′, C ′+) are diffeomorphic, then (S,C) and (S′, C ′) are
isomorphic.

And we now have our main result.

Theorem 3.2.1. There are non-isometric relativistic spacetimes (R2, gab) and
(R2, g′ab) that determine isomorphic locally G-structured spaces.

Proof. Proposition 3.2.4 implies that there are non-isometric relativistic space-
times (R2, gab) and (R2, g′ab) with trivial isometry pseudogroups. Let (S,C) be
the locally G-structured space determined by (R2, gab) and (S′, C ′) be the lo-
cally G′-structured space determined by (R2, g′ab). Since (R2, gab) and (R2, g′ab)
have trivial isometry pseudogroups, clause 2 of Proposition 3.2.1 implies that
both (S,C) and (S′, C ′) have trivial coordinate transformation pseudogroups Γ
and Γ′. Proposition 3.2.1 also implies that (S,C+) and (S′, C ′+) are diffeomor-
phic, since they are both diffeomorphic to R2. So Proposition 3.2.5 implies that
(S,C) and (S′, C ′) are isomorphic.

This is exactly analogous to the global case, but it is worth briefly discussing.
Recall that our affirmative answer to Question 1 showed that there is a sense in
which every relativistic spacetime is recoverable from the locally G-structured
space that it determines. The problem with that argument was again that
the sense of ‘recovery’ at play was weak. As the results here demonstrate,
it still may be that (S,C) is such that many different metrics are implicitly
defined by its coordinate transformation pseudogroup Γ, even though now the
coordinate transformation pseudogroup Γ admits more maps than the mere
coordinate transformation group did. Indeed, in the examples we have been
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considering, where the relativistic spacetime has a trivial isometry pseudogroup,
the locally G-structured space (S,C) determined by the relativistic spacetime
(M, gab) implicitly defines every metric on M , since Γ only contains identity
maps, and so every metric on M is implicitly defined by Γ.

We have provided an example of two non-isometric spacetimes with (up to
isomorphism) the same underlying locally G-structured space. So the answer
to Question 1 is “no”. This means that the structural differences between non-
isomorphic spacetimes are sometimes lost when we move to the framework of
locally G-structured spaces. In showing this, we have shown that the ‘privileged
local coordinates’ of a relativistic spacetime do not fully capture its structure.
The information provided to us by a spacetime’s underlying locally G-structured
space — or in other words, its collection of ‘privileged local coordinates’ — does
not tell us everything about the structure of the spacetime.

4 When does the Kleinian method work?

We conclude by inquiring into the conditions under which privileged coordinates
do tell us everything about the structure of a relativistic spacetime. We will
show that for a certain class of (highly symmetric) spacetimes, their structure
can be perfectly presented using the Kleinian method.

4.1 Global coordinates

We consider the following question.

Question 2 (Global case). Under what conditions can one present a relativistic
spacetime (whose underlying manifold is diffeomorphic to Rn) by providing a G-
structured space?

We have seen that there are cases where one cannot do this. Theorem
3.1.1 shows that certain highly asymmetric spacetimes admit too few privileged
coordinates for their full structure to be encoded in a G-structured space. This
suggests, however, that if a spacetime admits ‘enough’ symmetries, in the sense
that its isometry group is sufficiently large, the G-structured space it determines
encodes its structure.

We will now show that a spacetime is presentable using this Kleinian appa-
ratus just in case its symmetries ‘determine’ its structure. We need two defini-
tions. First, we will say that a relativistic spacetime (M, gab) is determined by
isometry if all relativistic spacetimes (M, g′ab) with the same isometry group
as (M, gab) are isometric to (M, gab). It only takes a moment to unravel the
idea behind this definition. If a spacetime (M, gab) is determined by isometry,
then its isometry group uniquely determines the spacetime. This is because if
some spacetime admits the same isometries as (M, gab), then it must be isomet-
ric to (M, gab). We might say that if one knows the isometry group of such a
spacetime, one can know the structure of the spacetime.
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The second definition that we require is slightly more subtle. Let (M, gab)
be a relativistic spacetime that determines the G-structured space (S,C). We
will say that (M, gab) is globally presentable if for all relativistic spacetimes
(M ′, g′ab) (that determine the G-structured space (S′, C ′)), if (S,C) and (S′, C ′)
are isomorphic, then (M, gab) and (M ′, g′ab) are isometric. A spacetime (M, gab)
that is globally presentable is one that can be genuinely recovered from its
underlying G-structured space (S,C). If some relativistic spacetime has the
same underlying G-structured space (up to isomorphism) as (M, gab), then that
spacetime is guaranteed to be isometric to (M, gab). This means that the struc-
ture of (S,C) determines the structure of (M, gab) (up to isometry). One can
also put this basic idea in the following manner. If one knows (S,C), one will
know (M, gab) too, since it’s the only relativistic spacetime that determines
a G-structured space isomorphic to (S,C). Theorem 3.1.1 provides an exam-
ple of a spacetime (R2, gab) that is not globally presentable, since there is a
non-isometric (R2, g′ab) that nonetheless determines an isomorphic G-structured
space. Globally presentable spacetimes are thus those whose privileged global
coordinates fully reflect their structure.

We now have the following result. G-structured spaces can be used present
all and only those relativistic spacetimes that are determined by isometry. Since
the proof of Theorem 4.2.1 is perfectly analogous, we skip the proof here.

Theorem 4.1.1. Let (M, gab) be a relativistic spacetime whose underlying man-
ifold M is diffeomorphic to Rn. Then (M, gab) is globally presentable if and only
if it is determined by isometry.

One naturally wonders which spacetimes are determined by isometry. One
can show that at least Minkowski spacetime is.

Proposition 4.1.1. Minkowski spacetime is determined by isometry.

In conjunction with Theorem 4.1.1 and Example 1, this result implies that
Minkowski spacetime can be presented using the apparatus of G-structured
spaces. In Example 1 we saw that there is a G-structured space (S,C) that
recovers Minkowski spacetime (R4, ηab). Proposition 4.1.1 and Theorem 4.1.1
imply that ηab is (up to isometry) the only metric on (S,C+) is implicitly defined
by the coordinate transformation group Γ. For suppose that Γ implicitly defines
some metric gab. One can easily verify that the G-structured space determined
by (R4, gab) is isomorphic to (S,C). Since Minkowski spacetime is globally
presentable, this implies that (R4, gab) is isometric to Minkowski spacetime.

It is also easy to see that an analogue of Proposition 4.1.1 holds for Euclidean
space, and this substantiates the story that we told at the outset. Euclidean
space can indeed be presented by singling out a collection of privileged coor-
dinates. But Minkowski spacetime and Euclidean space have incredibly rich
isometry groups, and one conjectures that there are few other geometric spaces
that are determined by isometry, and hence few relativistic spacetimes — even
with underlying manifold Rn — that can be presented in the framework of
G-structured spaces.
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4.2 Local coordinates

An analogous result holds in the local case. We begin with the local analogue
of Question 2.

Question 2 (Local case). Under what conditions can one present a relativistic
spacetime by providing a locally G-structured space?

Theorem 3.1.1 implies that there are cases where one cannot do this. We
now demonstrate that one can do this just in case the local symmetries of the
relativistic spacetime ‘determine’ its structure. We need the following two defi-
nitions. First, we will say that a relativistic spacetime (M, gab) is determined
by local isometry if all relativistic spacetimes (M, g′ab) with the same isome-
try pseudogroup as (M, gab) are isometric to (M, gab). Second, let (M, gab) be a
relativistic spacetime that determines the locally G-structured space (S,C). We
will say that (M, gab) is locally presentable if for any relativistic spacetimes
(M ′, g′ab) (that determines the locally G′-structured space (S′, C ′)), if (S,C)
and (S′, C ′) are isomorphic, then (M, gab) and (M ′, g′ab) are isometric.

The idea behind these two definitions is exactly the same as in the global
case. If a spacetime (M, gab) is determined by local isometry, it is possible to
‘know what the spacetime is’ just by looking at its isometry pseudogroup. And
a spacetime (M, gab) that is locally presentable is one that can be genuinely ‘re-
covered’ from its underlying locally G-structured space (S,C). Since Minkowski
spacetime is determined by isometry, it is also determined by local isometry. But
our two Heraclitus spacetimes from the proof of Theorem 3.2.1 are not. They
are non-isometric but have the same trivial isometry pseudogroup.

We now have the following analogue of Theorem 4.1.1. Locally G-structured
spaces can be used present all and only those relativistic spacetimes that are
determined by local isometry. We provide the proof in full.

Theorem 4.2.1. Let (M, gab) be a relativistic spacetime. Then (M, gab) is
locally presentable if and only if it is determined by local isometry.

Proof. Suppose first that (M, gab) is locally presentable. Let (M, g′ab) be a
relativistic spacetime that has the same isometry pseudogroup as (M, gab). Let
(S′, C ′) be the locally G′-structured space determined by (M, g′ab) and (S,C)
the locally G-structured space determined by (M, gab). Proposition 3.2.1 implies
that the identity maps 1M : S′ →M and 1M : S →M (which make sense since
S = M = S′) are diffeomorphisms from (S′, C ′+) to M and from (S,C+) to M ,
and that Γ′ and Γ are the isometry pseudogroups of (M, g′ab) and (M, gab). This
means first that 1M : S → S′ is a diffeomorphism, and hence satisfies clause 1 of
the definition of isomorphism. And it means second that Γ = Γ′, since (M, g′ab)
and (M, gab) have the same isometry pseudogroup. Hence 1M : S → S′ satisfies
clause 2 of the definition of isomorphism too, and therefore 1M is an isomorphism
between (S,C) and (S′, C ′). Since (M, gab) is locally presentable, (M, gab) and
(M, g′ab) are isometric, and hence (M, gab) is determined by isometry.

Now suppose that (M, gab) is determined by isometry and let (M ′, g′ab) be a
relativistic spacetime. Suppose that f : S → S′ is an isomorphism between
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(S,C) and (S′, C ′), the locally G- and G′-structured spaces determined by
(M, gab) and (M, g′ab), respectively. We need to show that (M, gab) and (M ′, g′ab)
are isometric. We first show that f : M →M ′ is a diffeomorphism. (Note that
f is a function M → M ′ since S = M and S′ = M ′.) Since f is an isomor-
phism, we know that it is a diffeomorphism between the manifolds (S,C+) and
(S′, C ′+). Proposition 3.2.1 implies that 1M : M → S is a diffeomorphism be-
tween M and (S,C+) and 1M ′ : S′ →M ′ is a diffeomorphism between (S′, C ′+)
and M ′, so the composition f = 1M ′ ◦ f ◦ 1M : M →M ′ is a diffeomorphism.

Consider the metric f∗(g′ab) on M . We show that (M, gab) and (M,f∗(g′ab))
have the same isometry pseudogroup. First, suppose that h : U → V is in
the isometry pseudogroup of (M,f∗(g′ab)), so h∗(f∗(g′ab)) = f∗(g′ab)|U . This
immediately implies that f∗ ◦ h∗ ◦ f∗(g′ab) = g′ab, so (f ◦ h ◦ f−1)∗(g′ab) = g′ab.
Since Γ′ is by Proposition 3.2.1 the isometry pseudogroup of (M ′, g′ab), this
means that f ◦ h ◦ f−1 ∈ Γ′. Clause 2 of the definition of isomorphism implies
that f−1 ◦ f ◦ h ◦ f−1 ◦ f ∈ Γ, so h ∈ Γ. Proposition 3.2.1 then implies
that h : U → V is in the isometry pseudogroup of (M, gab). Second, suppose
that h : U → V is in the isometry pseudogroup of (M, gab), so h∗(gab) =
gab|U . Proposition 3.2.1 implies that h ∈ Γ. Clause 2 of the definition of
isomorphism implies that f ◦ h ◦ f−1 ∈ Γ′. Proposition 3.2.1 then implies that
(f ◦h◦f−1)∗(g′ab) = g′ab, which means that h∗(f∗(g′ab)) = f∗(g′ab), so h is in the
isometry pseudogroup of (M,f∗(gab)). Since (M, gab) and (M,f∗(g′ab)) have the
same isometry pseudogroup, the fact that (M, gab) is determined by isometry
implies that (M, gab) and (M,f∗(g′ab)) are isometric. Since f : M → M ′ is
an isometry between (M,f∗(g′ab)) and (M ′, g′ab), this means that (M, gab) and
(M ′, g′ab) are isometric, and hence (M, gab) is locally presentable.

This Kleinian framework can therefore present all and only those relativistic
spacetimes whose collection of symmetries are sufficiently rich. There will be
many relativistic spacetimes that can be presented in the framework of locally
G-structured spaces if and only if there are many relativistic spacetimes that are
determined by local isometry. There are certainly more spacetimes determined
by local isometry than there are determined by isometry, but our results here
imply that not all are. And indeed, one conjectures that spacetimes determined
by local isometry are much more the exception than the rule. (See, for example,
Proposition 1 of Sunada (1985).) We leave a careful investigation of this issue
to further work.

5 Conclusion

In sum, our results demonstrate that the Kleinian method — when made pre-
cise using the framework of (locally) G-structured spaces — does not allow one
to present all relativistic spacetimes. There is no Kleinian formulation of gen-
eral relativity. And moreover, we have shown that the spacetimes that can be
presented in this framework are those that are highly symmetric, in the precise
sense that they are determined by (local) isometry. We conjecture that such
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spacetimes are rare. At the very least, our results imply that it is not always
the case that privileged coordinates provide a perfect guide to structure.

We will conclude with two final movements. We will first look to the past
and draw two connections between our results and the surrounding philosophy
of physics literature. And second, we will look to the future and make some
suggestions about potential routes forward for the proponent of Kleinian meth-
ods.

5.1 The Past

There are two important connections between our discussion of coordinates and
the existing philosophy of physics literature. First, our results allow one to
appreciate the close relationship between recent discussions of coordinates and
longstanding debates about symmetry. It is common for philosophers and physi-
cists to use a theory’s symmetries as a guide to its underlying structure. (See, for
example, Barrett (2018), Earman (1989), Dasgupta (2016, 2015), North (2009,
2021) and the references therein.) Weyl (1952, 144–45) famously remarked that
“whenever you have to do with a structure-endowed entity X, try to determine
its group of [symmetries], the group of those element-wise transformations which
leave all structural relations undisturbed. You can expect to gain a deep insight
into the constitution of X in this way.”

Our results here imply that one can present a relativistic spacetime by sin-
gling out a collection of privileged coordinates (i.e. it is (locally) presentable)
if and only if that spacetime’s structure can be read off from its collection of
symmetries (i.e. it is determined by (local) isometry). This is the content of
Theorems 4.1.1 and 4.2.1. This means that a relativistic spacetime’s privileged
coordinates provide a perfect guide to its structure if and only if its symmetries
provide a perfect guide to its structure. The question that we have been inves-
tigating — the extent to which a theory’s privileged coordinates are a guide to
its structure — is therefore closely related to the question investigated in much
of the literature on symmetry — the extent to which a theory’s symmetries are
a guide to its structure.

The second connection we would like to draw concerns a precedent for our
results. In particular, it has been remarked before that the move to general rela-
tivity represents a move to a Riemannian conception of geometry and away from
a Kleinian conception. Norton (1999, p. 129) suggests that “Klein’s strategy was
entirely appropriate within the context of special relativity” and that “special
relativity provided a beautiful illustration of the power of Klein’s approach.”
Norton attributes to Cartan (1927) the thought that moving to general rela-
tivity “threw into physics and philosophy the antagonism that existed between
the two principle directors of geometry, Riemann and Klein. The spacetimes
of classical mechanics and special relativity are of the type of Klein, those of
general relativity are of the type of Riemann” (Norton, 1999, p. 128). Norton
and Cartan’s basic idea is echoed by Wallace (2019), who writes the following:

Norton regards the Kleinian approach to geometry as essentially su-
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perseded in contemporary spacetime physics. Specifically, he draws
a contrast between two rival programs for the characterisation of
geometry: Klein’s, in which geometry is characterised via the invari-
ance groups of the geometry under transformations, and Riemann’s,
in which geometry is characterised via metric tensors and similar dif-
ferential geometric spaces. As Norton sees it, the move from special
to general relativity is really a move from a Kleinian to a Riemannian
conception of spacetime geometry.

Our results here sharpen and substantiate these thoughts. All and only those
spacetimes determined by (local) isometry are presentable in our Kleinian frame-
work. This is what Theorems 4.1.1 and 4.2.1 tell us. Minkowski spacetime, the
setting for special relativity, is one such spacetime (by Proposition 4.1.1). This
makes precise the idea that the Kleinian method is appropriate within the con-
text of special relativity. But not every relativistic spacetime is determined by
(local) isometry, which concretely shows that the Kleinian method breaks down
when confronted with general relativistic geometric structure.

More importantly, we can clearly see exactly why the Kleinian method does
not work in general relativity. One might have suspected that it is because of
the flexibility one gains in general relativity to formulate a spacetime on an
arbitrary manifold. But this is not the problem. For suppose that (M, gab)
is a relativistic spacetime that determines a locally G-structured space (S,C).
Proposition 3.2.1 guarantees that the manifold (S,C+) that (S,C) recovers is
diffeomorphic to M . This means that the manifold M is presentable using
the Kleinian method. Presenting arbitrary manifolds is not the issue. Rather,
the Kleinian approach fails because arbitrary metrics are not presentable using
this the Kleinian apparatus. They are too flexible, and some admit too few
symmetries to be characterized in a Kleinian manner.

Moreover, we can also see that the failure of Kleinian methods is robust.
One might not be surprised that Kleinian methods fail when one only considers
privileged global coordinates, as in the case of G-structured spaces. It is natural
to think that the prospects are better when one also takes into account the
privileged local coordinates of our geometric space. We have seen here that
even this ‘local’ Kleinian method does not succeed.

5.2 The Future

We conclude with three possible routes forward for the proponent of the Kleinian
method and (locally) G-structured spaces: restriction, revision, and reservation.
Along the way, we will catalogue some questions for future work.

Restriction

First, a proponent of Kleinian methods might first argue that (locally) G-
structured spaces suffice to present geometric spaces within some restricted do-
main. We have shown that the Kleinian method works just in case a relativistic
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spacetime is determined by (local) isometry. One potential route forward is to
investigate which spacetimes are determined by (local) isometry. After doing so,
one might argue that all ‘physically reasonable’ spacetimes have this property
or that all spacetimes are (in some sense) sufficiently ‘close’ to spacetimes that
are determined by (local) isometry.

Restriction 1. Are all ‘physically reasonable’ spacetimes determined by (local)
isometry?

Restriction 2. Are all spacetimes sufficiently ‘close’ to spacetimes that are
determined by (local) isometry?

If either question were answered in the affirmative then one might say that
Kleinian methods come close to successfully presenting general relativity. It
would be surprising were the answer to Restriction 1 “yes” since, as we men-
tioned above, we conjecture that spacetimes determined by (local) isometry
are rare. Restriction 2 is more interesting, and it is closely related to recent de-
bates about ‘approximate symmetries’ in general relativity. (See Fletcher (2020,
2021), Linnemann et al. (2024), and Fletcher and Weatherall (2023a,b)).

Relatedly, one might argue that (locally) G-structured spaces can be used
to capture the content of some physical theories other than general relativity.
Perhaps the symplectic manifolds of Hamiltonian mechanics or the flat classi-
cal spacetimes of standard Newtonian gravitation theory, for example, can be
presented using Kleinian methods.

Restriction 3. Can other physical theories be presented using (locally) G-
structured spaces?

This suggestion is promising. Other geometric spaces do not have the same
kind of flexibility admitted by relativistic spacetimes. It would be difficult for
one to design, for example, a flat classical spacetime or symplectic manifold
that admits a small enough collection of symmetries to generate problems for
the Kleinian approach, so we conjecture that Kleinian methods will work in
other contexts.

Revision

The second potential route forward for the proponent of the Kleinian method
involves revising the recovery procedure that one utilizes to build a relativistic
spacetime from a (locally) G-structured space. We have shown that one particu-
larly natural way to recover a relativistic spacetime from a locally G-structured
space — described in section 2 — does not work. In brief, the problem is that
this recovery procedure is not well-defined. It can be that more than one metric
is invariant under the coordinate transformation (pseudo)group of a (locally)
G-structured space, so equipping the manifold (S,C+) with the tensors invari-
ant under this (pseudo)group does not always result in a well-defined relativistic
spacetime. One might be equipping the manifold with more than one Lorentzian
metric. This is nevertheless the most natural recovery procedure one can come
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up with. Indeed, it is standard in the literature; the idea of using the ‘privileged
coordinates’ to induce a collection of symmetries, and then looking to the ‘in-
variants’ under these symmetries is, for example, pointed to by Norton (2002)
and Wallace (2019).

One might nonetheless try to find a better method. Instead of looking to
the (locally) G-structured space determined by a spacetime (M, gab), one might
think that another (locally) G-structured space offers a better chance of recov-
ering the structure of (M, gab).

Revision 1. Is there a better candidate than the (locally) G-structured space
determined by (M, gab) for recovering the structure of (M, gab)?

Revision 1 is asking whether there is a better account of the ‘privileged co-
ordinates’ of (M, gab) than the one we gave in sections 3.1 and 3.2. There are
certainly other possible accounts. For example, given a relativistic spacetime
(M, gab) with underlying manifold diffeomorphic to Rn, one can consider a dif-
feomorphism φ : M → Rn, and let S = M , C = {φ, φ−1}, and G = {1S}.
It is easy to verify that this defines a G-structured space. The problem with
this trivial recipe is that one will not be able to use this G-structured space to
recover the structure of (M, gab). This is because applying this recipe to any
two relativistic spacetimes will yield the same (up to isomorphism) G-structured
space. And hence this answer to Revision 1 makes it so that one cannot recover
the structure of (M, gab) from (S,C).

Alternatively, one might consider the Lorentz normal coordinates of the
spacetime (M, gab). Lorentz normal coordinates about a point p ∈ M are co-
ordinates (U, φ) with p ∈ U such that φ(p) = (0, . . . , 0) ∈ Rn and both the
metric gab and its associated derivative operator ‘take a simple form’ at p in
(U, φ) coordinates, in the sense that the ‘Christoffel symbols’ vanish at p and
the metric gab takes Minkowskian form at p in (U, φ) coordinates. If one takes
the privileged coordinates of (M, gab) to be its Lorentz normal coordinates, then
one is forced to dramatically change the procedure with which one recovers the
structure of (M, gab) from these privileged coordinates. This is because the re-
sulting coordinate transformation pseudogroup Γ will not in general implicitly
define gab. Consider, for example, the case when (M, gab) is Heraclitus. Let
p, q ∈ M be distinct points and suppose that we have Lorentz normal coor-
dinates (U, φ) about p and (V, ψ) about q. We can consider the ‘coordinate
transformation’ map ψ−1 ◦ φ, which maps a neighborhood of p to a neighbor-
hood of q. It will be in Γ, but since (M, gab) is Heraclitus, ψ−1 ◦ φ will only
preserve gab if it is the identity map. And it cannot be the identity map since
ψ−1 ◦ φ(p) = ψ−1(0, . . . , 0) = q. It may be possible to answer Revision 1 and
give a different account of privileged coordinates than we have given above.
But when doing so, one has to make sure that the spacetime is recoverable from
those privileged coordinates.

This brings us to our second variety of revision. Instead of revising our ac-
count of privileged coordinates, one might revise our method of recovery. In par-
ticular, one might notice that the problem with the recovery procedure at heart
has to do with implicit definability. The property of ‘being invariant under’ a

23



collection of maps — like those in the coordinate transformation (pseudo)group
— is known to be a particularly weak kind of ‘definability’ (Winnie, 1986; Bar-
rett, 2018). So one might instead try to recover a metric on (S,C+) by using
some other kind of ‘explicit’ definability. This would involve somehow using the
maps in C to explicitly ‘build’ or ‘construct’ a metric on (S,C+), rather than
simply looking to the metrics remain unchanged under coordinate transforma-
tions.

Revision 2. Is there a variety of ‘explicit definability’ that allows one to recover
(M, gab) from the (locally) G-structured space that it determines?

Implementing this idea would require a substantial change in spirit. When
philosophers of physics discuss the significance of privileged coordinates, it is
most common to speak of those structures ‘invariant under changes of coordi-
nates’. And this suggests that some kind of implicit definability is the operant
method of recovering structure, rather than explicit definability. For example,
Norton (2002, p. 259) writes that under the Kleinian method a “geometric the-
ory would be associated with a class of admissible coordinate systems and a
group of transformations that would carry us between them. The cardinal rule
was that physical significance can be assigned just to those features that were
invariants of this group”. Similarly, North (2021, p. 48) writes that “Klein sug-
gested that any geometry can be identified by means of the transformations
that preserve the structure, likewise by the quantities that are invariant under
the group of those transformations”. Wallace (2019, p. 135) remarks that the
Kleinian method involves characterizing spaces “via the invariance groups of the
geometry under transformations”.

Of course, one might comfortable with a substantial revision of the Kleinian
method. But two other challenges are worth mentioning. First, it is difficult
to talk about explicit definability when one is not working within the confines
of a formal language. Our best physical theories, like general relativity, are not
formulated within such confines. Steps have been taken both in the direction
of formulating these theories within frameworks where we can easily talk about
explicit definability (see, for example, the work of Andréka and Németi (2014))
and in the direction of generalizing concepts like explicit definability — see for
example the ‘maximally structured’ spacetimes of Manchak (2024), the concept
of ‘covariant definability’ of Glymour (1977), and the category theoretic methods
discussed by Halvorson (2019), Barrett (2021), and Weatherall (2019). The
second more general challenge is that when revising the method of recovery
one must take care to ensure that it does not collapse back into the standard
Riemannian method. We will turn to this issue shortly.

Reservation

Finally, a proponent of Kleinian methods might argue for a more reserved con-
clusion. One might think that although the privileged coordinates of a rela-
tivistic spacetime do not tell us everything about its structure, they still tell us
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something. In particular, it might be that some information about a relativistic
spacetime can be recovered from the (locally) G-structured space it determines.

One possibility is that the privileged coordinates of a relativistic spacetime
capture the ‘amount of structure’ that the spacetime has.

Reservation 1. Does the (locally) G-structured space determined by a geo-
metric space encode the ‘amount of structure’ that the geometric space has?

An affirmative answer is suggested, for example, when (North, 2021, Ch. 4)
argues that standard Newtonian mechanics posits more structure than La-
grangian mechanics. Her idea is that since the former privileges a ‘smaller’
collection of coordinates than the latter, it will posit more structure, since there
will be more features that are agreed upon by all of the coordinate systems in
this smaller class. And these “coordinate-independent, invariant features, cor-
respond to the intrinsic nature” of the space described by the theory (North,
2021, p. 26). North’s argument has been questioned (Barrett, 2022), but the
basic idea that privileged coordinates provide a window into amounts of struc-
ture is worth investigating carefully. We conjecture, however, that there can be
spacetimes that posit different amounts of structure but nonetheless determine
the same (locally) G-structured space. If so, then privileged coordinates would
also not be a perfect guide to amounts of structure.

There is another variety of reservation that one might pursue.

Reservation 2. Can some of the structure of a geometric space be recovered
from the (locally) G-structured space it determines?

Wallace (2019, p. 135) has noted a sense in which the answer to Reserva-
tion 2 is “yes”. Part of every relativistic spacetime (M, gab) can be presented
using a locally G-structured space. Indeed, the manifold M just is a locally
G-structured space (M,C), where C is the standard atlas on M and G is the
diffeomorphism pseudogroup of Rn. So the underlying manifold structure of
(M, gab) can trivially be presented using this Kleinian apparatus.

There are two points worth making about this affirmative answer to Reser-
vation 2. First, one wonders whether this gives rise to a genuinely Kleinian
presentation of general relativity. One might be tempted to say that we can
take a kind of ‘hybrid’ approach to presenting the theory. In effect, one is
changing the method of recovering the structure of (M, gab) from (S,C). One
first uses Kleinian methods and the apparatus of locally G-structured spaces
to present M , and one then defines the metric gab on M in the standard Rie-
mannian manner (Wallace, 2019, p. 134–135). The issue here is that this is not
a genuinely hybrid approach. Or at the very least, it is at heart no different
from the standard differential geometric presentation of of relativistic spacetime
(M, gab). As we have seen, a smooth manifold M in the standard differential
geometric presentation is just a locally G-structured space. So while this ap-
proach does represent a legitimate and informative way of formulating general
relativity, it does not represent one that is any different from the standard way
of formulating general relativity.
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One might be inclined to say that this means that geometry in modern
physics is partially Kleinian in character (Wallace, 2019, p. 135). It does seem
that there is an echo of these Kleinian methods lurking below the surface in
general relativity. But bolder claims about coordinates and structure have been
made, and this affirmative answer to Reservation 2 — the mere claim that
the manifold structure of (M, gab) can be presented by appeal to privileged
coordinates — does not suffice to substantiate them. For example, North (2021,
p. 26) writes that “the coordinate-independent, invariant features, correspond
to the intrinsic nature” of the space. If one includes as privileged coordinates the
entire atlas C of M , as this variety of reservation suggests we do, then we will
have ‘too many’ privileged coordinates. Indeed, the metric gab will not count
as part of the ‘intrinsic nature’ of the spacetime because the resulting maps
in Γ will not necessarily preserve gab. This variety of reservation is therefore
too modest for proponents of the idea that privileged coordinates determine the
structure of a geometric space.
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Appendix

The purpose of this appendix is to provide proofs of the propositions that appear
in the paper. We organize the proofs by which section of the paper they appear
in.

Proofs in section 2.1

Lemma 2.1.1. Let M be a non-empty set with (M, c) an n-chart. If (U, φ) and
(V, ψ) are n-charts on M that are both compatible with (M, c), then they are
compatible with each other.

Proof. Suppose that U ∩ V is non-empty. Since both of the charts (U, φ) and
(V, ψ) are compatible with (M, c), we know that c[U ], c[V ], φ[U ], and ψ[V ] are
all open, and c ◦φ−1,φ ◦ c−1, c ◦ψ−1, and ψ ◦ c−1 are all smooth. First, we need
to show that φ[U∩V ] and ψ[U∩V ] are open. Since c[U ] and c[V ] are both open,
c[U ]∩ c[V ] = c[U ∩ V ] is open. Both φ ◦ c−1 and its inverse c ◦ φ−1 are smooth,
which implies that φ◦c−1 : c[U ]→ φ[U ] is a homeomorphism and hence an open
map. So since c[U∩V ] ⊂ c[U ] is open, φ◦c−1[c[U∩V ]] = φ◦1M [U∩V ] = φ[U∩V ]
is open. The second equality follows since U and V are subsets of M . One
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reasons in precisely the same manner to show that ψ[U ∩V ] is open. Second, we
need to show that both φ ◦ ψ−1 : ψ[U ∩ V ]→ Rn and ψ ◦ φ−1 : φ[U ∩ V ]→ Rn
are smooth. This follows since each is equal to the composition of two smooth
functions. For example, in the former case, the fact that U and V are subsets
of M implies that φ ◦ ψ−1 = φ ◦ 1M ◦ ψ−1 = (φ ◦ c−1) ◦ (c ◦ ψ−1). Hence (U, φ)
and (V, ψ) are compatible.

Proposition 2.1.1. (S,C+) is a smooth n-dimensional manifold.

Proof. Each member (c−1[U ], c|c−1[U ]) of C0 is indeed an n-chart since c|c−1[U ] :
c−1[U ]→ U is injective and U is open. Now by Proposition 1.1.1 of Malament
(2012), it will suffice to show that C0 satisfies conditions M1, M2, and M3. We
take them in order.

(M1) Let c ∈ C and consider the chart (S, c). We know that this chart
is in C0 since S = c−1[Rn] and Rn is an open subset of itself. If we can
show that every chart in C0 is compatible with (S, c), then Lemma 2.1.1 will
imply that any two charts in C0 are compatible. So let (d−1[U ], d|d−1[U ]) be a
chart in C0. First, we need to show that d[d−1[U ] ∩ S] and c[d−1[U ] ∩ S] are
open subsets of Rn. The former is just U , which we know to be open because
(d−1[U ], d|d−1[U ]) is in C0. Since d ∈ C, the compatibility condition implies
that both c ◦ d−1 and d ◦ c−1 are in G and hence diffeomorphisms, since G is a
subset of the group of diffeomorphisms from Rn to Rn. So c ◦ d−1 and d ◦ c−1
are homeomorphisms and thus open maps from Rn to Rn. We know that U is
open, so c ◦ d−1[U ] = c[d−1[U ] ∩ S] is open too. Second, we need to show that
both c ◦ d−1 and d ◦ c−1 are smooth. But we have already shown that they are
diffeomorphisms, which immediately implies that they are smooth.

(M2) The domains of the charts in C0 trivially cover S since (S, c) is a chart
in C0 for any c ∈ C.

(M3) Let p and q be distinct points in S and let c ∈ C. Since c is injective,
c(p) and c(q) are distinct points in Rn, and hence there are disjoint open sets
U and V such that c(p) ∈ U and c(q) ∈ V . Then the n-charts (c−1[U ], c|c−1[U ])
and (c−1[V ], c|c−1[V ]) are in C0, they have disjoint domains, and p ∈ c−1[U ] and
q ∈ c−1[V ].

Proposition 2.1.2. Every c ∈ C is a diffeomorphism from the smooth manifold
(S,C+) to Rn.

Proof. We know that c is a bijection. Since (S, c) is a global chart on (S,C+)
and (Rn, 1Rn) is a global chart on Rn, the fact that 1Rn ◦ c ◦ c−1 = 1Rn is
smooth implies (via (Lee, 2012, Prop 2.5)) that c is smooth. Similarly, since
c ◦ c−1 ◦ 1Rn = 1Rn is smooth, (Lee, 2012, Prop. 2.5) implies that c−1 is smooth.
And hence c : S → Rn is a diffeomorphism.

Lemma 2.1.2. Γ = {c−1 ◦ s ◦ c : c ∈ C, s ∈ G}.

Proof. (⊂) Let c−1 ◦ d ∈ Γ. We know that d ◦ c−1 ∈ G by the compatibility
condition. And since c−1 ◦ d = d−1 ◦ (d ◦ c−1) ◦ d, c−1 ◦ d ∈ {c−1 ◦ s ◦ c : c ∈
C, s ∈ G}. (⊃) Consider c−1 ◦ s ◦ c, where s ∈ G and c ∈ C. Since c ∈ C
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and s ∈ G, the compatibility condition implies that s ◦ c ∈ C. This means that
c−1 ◦ s ◦ c ∈ Γ.

Proofs in Section 2.2

Definition 2.2.1. Let (X, τ) be a topological space. A pseudogroup on (X, τ)
is a class G of transformations that satisfies the following conditions:

PG1. Each f ∈ G is a homeomorphism from an open set dom(f) ⊂ X onto
another open set ran(f) ⊂ X.

PG2. If f ∈ G, then f |U ∈ G for every open set U ⊂ dom(f).

PG3. Let U =
⋃
i Ui where each Ui is an open set of X. A homeomorphism f

of U onto an open set of X belongs to G if f |Ui
∈ G for every i.

PG4. For every open set U of X, the identity map 1U : U → U is in G.

PG5. If f ∈ G, then f−1 ∈ G.

PG6. If f ∈ G is a homemorphism of U onto V and f ′ ∈ G is a homeomorphism
of U ′ onto V ′ and if V ∩U ′ is non-empty, then the homeomorphism f ′ ◦ f
of f−1[V ∩ U ′] onto f ′[V ∩ U ′] is in G.

Lemma 2.2.1. Let M be a manifold with {αi}i∈I a collection of smooth tensor
fields (of arbitrary index structure) on M . Then the collection G of diffeomor-
phisms f : U → V between open subsets U and V of M such that for all i ∈ I
f∗(αi) = (αi)|U forms a pseudogroup.

Proof. One needs to show that PG1–PG6 hold of G. PG1, PG4, and PG5 are
straightfoward, so we show the others.

(PG2) Suppose that f : U → V is in G and let O be an open subset of U .
We know that f |O : O → f [O] is a diffeomorphism since f is a diffeomorphism.
We see that at each point p ∈ O and for each i ∈ I,

f |∗O(αi)|p = f∗(αi)|p = αi|p

The first equality holds since f |O and f agree on the open set O, and the second
follows since f ∈ G and thus f∗(αi) = αi|U . Hence f |∗O(αi) = αi|U and it must
be that f |O ∈ G.

(PG3) Let U =
⋃
i Ui where each Ui is an open set of M , and suppose that

f : U → V is a homeomorphism such that f |Ui
is in G for every i. Since

each f |Ui is a diffeomorphism, (Lee, 2012, Corollary 2.8) implies that f is a
diffeomorphism. Let p ∈ U . Since p ∈ Ui for some i, we see that

f∗(αj)|p = f |∗Ui
(αj)|p = αj |p

The first equality follows since f |Ui
and f agree on the open set Ui, and the

second since f |Ui
∈ G. So it must be that f∗(αj) = αj |U for every j, and hence

f ∈ G.
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(PG6) Suppose that f : U → V is in G and f ′ : U ′ → V ′ is in G and V ∩U ′
is non-empty. Since U, V, U ′, V ′ are all open and f and f ′ are diffeomorphisms,
it must be that the domain f−1[V ∩ U ′] and range f ′[V ∩ U ′] of f ′ ◦ f are
both open and f ′ ◦ f is a diffeomorphism. It is also easy to see that for each
p ∈ f−1[V ∩ U ′],

(f ′ ◦ f)∗(αi)|p = f∗ ◦ f ′∗(αi|f ′◦f(p)) = f∗(αi|f(p))|p = αi|p

where the first equality follows from properties of the pullback, and the second
and third follow since f and f ′ are both in G. Hence f ′ ◦ f is in G.

Proposition 2.2.1. (S,C+) is a smooth n-dimensional manifold.

Proof. We first remark that the pair (dom(f), f) is an n-chart on S for each
f ∈ C. The map f : dom(f) → Rn is injective and f [dom(f)] is an open
subset of Rn, since the range condition guarantees that it is the domain of one
of the partial functions in G, all of which have open sets as their domains. By
Proposition 1.1.1 in Malament (2012), it will suffice to show that C satisfies
conditions M1, M2, and M3 listed there.

(M1) Let (dom(f), f) and (dom(g), g) be two n-charts in C. We show that
they are compatible. Suppose that U = dom(f) ∩ dom(g) is non-empty. The
compatibility condition implies that f ◦ g−1 : g[U ]→ f [U ] and g ◦ f−1 : f [U ]→
g[U ] are in G. Since G is contained in the pseudogroup of local diffeomorphisms
between open sets of Rn, both f and g are smooth. Since f ◦ g−1 : g[U ]→ f [U ]
is in G, PG1 implies that both f [U ] and g[U ] are open, and hence the two charts
are compatible.

(M2) It follows immediately from the cover condition that the domains of
the charts in C cover S.

(M3) Let p and q be distinct points in S. Suppose that these two points
cannot be separated by charts in C with disjoint domains. The cover condition
then implies that there must be a chart (dom(f), f) such that both p and q are
in dom(f). Consider the points f(p) and f(q) in Rn. Since Rn is Hausdorff,
there are open subsets U and V of ran(f) that separate f(p) and f(q). By
PG4, we know that the identity maps 1U and 1V are in G. This implies that
1U ◦ f ∈ C and 1V ◦ f ∈ C. The domain of 1U ◦ f is f−1[U ] and the domain of
1V ◦ f is f−1[V ]. One easily sees that f−1[U ] and f−1[V ] separate p and q in
S.

Proposition 2.2.2. Every c ∈ C is a smooth map c : dom(c) → Rn. And
moreover, c : dom(c)→ ran(c) is a diffeomorphism.

Proof. This follows immediately from the fact that (dom(c), c) is a chart in C+

for every c ∈ C.

Definition 2.2.2. The set of domains of the charts in C+ form a basis for a
topology on the manifold (S,C+). We define the coordinate transformation
pseudogroup on this topological space. We begin with the following definition.

Γ0 = {f−1 ◦ g : g−1[ran(f) ∩ ran(g)]→ f−1[ran(f) ∩ ran(g)]
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such that f, g ∈ C and ran(f) ∩ ran(g) is non-empty}

We can think of the maps in Γ0 as the ‘coordinate transformations’ on S that
are determined by the coordinate charts in C. We now define the pseudogroup
Γ by ‘closing’ Γ0 under unions of functions. A bijection h : U → V between
open subsets U and V of S is in Γ if either of the following conditions hold:

(i) h ∈ Γ0 or

(ii) there is a family of open sets Ui of S such that U =
⋃
i Ui and h|Ui

∈ Γ0

for every i.

We will call Γ the coordinate transformation pseudogroup on (S,C). We
note for future reference that each h : U → V in Γ is a diffeomorphism from its
domain to its range.

Lemma 2.2.2. The coordinate transformation pseudogroup Γ is a pseudogroup
on the topology inherited by (S,C+).

Proof. One shows that PG1–PG6 hold of Γ. We here show PG2, PG3, and PG6
and leave the others to the reader.

(PG2) Suppose first that h ∈ Γ0, so h = f−1 ◦ g for maps f, g ∈ C. Let
O ⊂ dom(h) be open. Since dom(h) ⊂ dom(g) and g is a diffeomorphism, it
must be that g[O] is open. PG4 implies that 1g[O] is in G, and this means
that 1g[O] ◦ g = g|O is in C. Since f−1 ◦ g|O = (f−1 ◦ g)|O, this means that
(f−1 ◦ g)|O ∈ Γ0, and hence h|O ∈ Γ. Now suppose that h ∈ Γ − Γ0, so
h : ∪Ui → V is a diffeomorphism and each h|Ui is in Γ0. Let O ⊂ ∪Ui be
open. We know that each (h|Ui

)|O = h|Ui∩O is in Γ0 by the result earlier in
this paragraph. And h|O : O → h[O] is such that O ∩ Ui is open for each i,
O = ∪i(O ∩ Ui), and (h|O)|O∩Ui

= h|O∩Ui
is in Γ0, which implies that h|O ∈ Γ

by clause (ii) of our definition of Γ.
(PG3) Let U = ∪iUi where each Ui is an open subset of S. Suppose that

h : U → V is a homeomorphism and h|Ui
∈ Γ for each i. Since h|Ui

: Ui → h[Ui]
is in Γ, there is a family of open sets Oij such that Ui = ∪jOij and (h|Ui

)|Oij
=

h|Oij
is in Γ0 for every j. (Note that if h|Ui

is itself in Γ0, then this is trivial.)
So ∪iUi = ∪i,jOij , each Oij is open, and h : ∪i,jOij → V is such that h|Oij

is
in Γ0 for each pair i, j. This means that h ∈ Γ by clause (ii) of the definition of
Γ.

(PG6) Let f : U → V and f ′ : U ′ → V ′ be homeomorphisms in Γ. Suppose
that V ∩ U ′ is non-empty. We aim to show that f ′ ◦ f is in Γ. First suppose
that both f and f ′ are in Γ0. So f = g−1 ◦ h and f ′ = g′−1 ◦ h′, so f ′ ◦
f = g′−1 ◦ h′ ◦ g−1 ◦ h. We know that h′ ◦ g−1 is an element of G by the
compatibility condition, so h′ ◦ g−1 ◦ h ∈ C. This immediately implies that
g′−1 ◦ (h′ ◦g−1 ◦h) = f ′ ◦f ∈ Γ0. Now we proceed to the general case. We know
that f : ∪iUi → V is a bijection, where each Ui is open and f |Ui

is in Γ0 for each
i. And f ′ : ∪jU ′j → V ′ is a bijection, where each U ′j is open and f ′|U ′j is in Γ0

for each j. (Note that this is trivially the case if f or f ′ is itself in Γ0.) We know
that f−1[V ∩U ′j ]∩Ui is open, since f is a homeomorphism and V , U ′j and Ui are
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all open. Now one can compute that (f ′ ◦ f)|f−1[V ∩U ′j ]∩Ui
= f ′|U ′j ◦ f |Ui . Since

f ′|U ′j and f |Ui are in Γ0 by assumption, we have that (f ′ ◦ f)|f−1[V ∩U ′j ]∩Ui
is in

Γ0 by the result earlier in this paragraph. Now f ′ ◦f : f−1[V ∩U ′]→ f ′[V ∩U ′]
is such that f−1[V ∩ U ′] = ∪i,jf−1[V ∩ U ′j ] ∩ Ui, a union of open sets, and
each (f ′ ◦ f)|f−1[V ∩U ′j ]∩Ui

is in Γ0, and therefore clause (ii) of the definition of

Γ implies that f ′ ◦ f ∈ Γ.

Proofs in Section 3.1

Lemma 3.1.1. Let (S,C) be a G-structured space determined by (M, gab). Then
(S,C) is a G-structured space.

Proof. We immediately see that G is a transformation group that is a subset
of the group of diffeomorphisms of Rn. So all that needs to be shown is that
the compatibility condition is satisfied. Let f ∈ C. Suppose that f ′ ∈ C. We
know that f ◦ f ′−1 : Rn → Rn is a diffeomorphism since both f and f ′−1 are
diffeomorphisms. We also see that

φ∗(gab) = f ′∗ ◦ f∗(φ∗(gab)) = (f ◦ f ′−1)∗(φ∗(gab))

The first equality follows since f and f ′ are in C, and the second follows from
basic facts about pullbacks. This implies that f ◦f ′−1 ∈ G. The other direction
of the compatibility condition follows in an analogous manner.

Proposition 3.1.1. Let (S,C) be a G-structured space determined by (M, gab).
Then both of the following hold:

1. The identity map 1M is a diffeomorphism between the manifold (S,C+)
and M .

2. The coordinate transformation group Γ on S is the isometry group of
(M, gab), i.e. the collection of diffeomorphisms f : M → M such that
f∗(gab) = gab.

Proof. We start with 1. Let φ : M → Rn be the diffeomorphism that we chose
in the above construction of (S,C). We know that φ ∈ C, so φ : S → Rn is a
diffeomorphism from (S,C+) to Rn by Proposition 2.1.2. Hence φ−1 ◦ φ = 1M
is the composition of two diffeomorphisms — one from (S,C+) to Rn, the other
from Rn to M — and thus itself a diffeomorphism from (S,C+) to M .

For 2, Let h ∈ Γ. This means that h = c−1 ◦ d for c, d ∈ C. Since c and d
are diffeomorphisms from (S,C+) to Rn, h is a diffeomorphism from (S,C+) to
itself. The result in 1 above then implies that h = 1M ◦h◦1M is a diffeomorphism
from M to itself. We compute that

h∗(gab) = d∗ ◦ c−1∗(gab) = d∗(φ∗(gab)) = gab

The first equality follows from properties of the pullback, the second and third
by the definition of C and since c, d ∈ C. So h is in the group of isometries of
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(M, gab). Now let f : M → M be a diffeomorphism with f∗(gab) = gab. And
let c ∈ C. We see that (c ◦ f)∗(gab) = φ∗(gab) since f is an isometry and c ∈ C.
Hence c ◦ f ∈ C. This means that f ∈ Γ since c−1 ◦ (c ◦ f) = f and both c and
c ◦ f are in C.

Proposition 3.1.2. Suppose that f : S → S′ is an isomorphism between (S,C)
and (S′, C ′) and α is a tensor field (of arbitrary index structure) on S. Then α
is implicitly defined by Γ if and only if f∗(α) is implicitly defined by Γ′.

Proof. We show the ‘left-to-right’ implication. The other follows similarly. Let
h′ ∈ Γ′. We know then that f−1 ◦ h′ ◦ f ∈ Γ by clause 2 of the definition of
isomorphism. Since α is implicitly defined by Γ we see that (f−1◦h′◦f)∗(α) = α.
Simplifying implies that

α = (f−1 ◦ h′ ◦ f)∗(α) = f∗ ◦ h′∗ ◦ f−1∗(α)

And this means that f∗(α) = h′∗(f∗(α)). Since h′ ∈ Γ′ was arbitrary, Γ′ implic-
itly defines f∗(α).

Proposition 3.1.3. Let (S,C) and (S′, C ′) be G- and G′-structured spaces
determined by (M, gab). Then (S,C) and (S′, C ′) are isomorphic.

Proof. Consider the identity map 1M : S → S′. (Note that it is well-defined
since S = M = S′.) By Proposition 3.1.1, it is a diffeomorphism. That same
proposition implies that Γ = Γ′, and hence 1M also satisfies condition 2 of the
definition of isomorphism.

Proposition 3.1.4. There are non-isometric relativistic spacetimes (R2, gab)
and (R2, g′ab) with trivial isometry groups.

Proof. Let (M, gab) be a 2-dimensional Heraclitus spacetime, the existence of
which is guaranteed by Manchak and Barrett (2024). Let (U, φ) be a coordi-
nate chart on M with O ⊂ φ[U ] be an open ball, and consider the open set
φ−1[O] ⊂ M . Since φ−1[O] is a manifold in its own right, we can consider
the relativistic spacetime (φ−1[O], gab|φ−1[O]). It immediately follows from the
fact that (M, gab) is Heraclitus that (φ−1[O], gab|φ−1[O]) has a trivial isometry
group. And moreover, φ−1[O] is diffeomorphic to Rn since O is diffeomor-
phic to Rn (see Lee, Example 2.14a) and φ : φ−1[O] → O is a diffeomor-
phism. We have therefore built one relativistic spacetime with trivial isometry
group whose underlying manifold is diffeomorphic to Rn. Now let O′ ⊂ φ[U ]
be an open ball not equal to O. The exact same argument as above demon-
strates that the spacetime (φ−1[O′], gab|φ−1[O′]) has a trivial isometry group and
has an underlying manifold diffeomorphic to Rn. And (φ−1[O], gab|φ−1[O]) and
(φ−1[O′], gab|φ−1[O′]) are not isometric. For if they were, there would be an
isometry ψ : φ−1[O]→ φ−1[O′] where φ−1[O] 6= φ−1[O′], contradicting the fact
that (M, gab) is Heraclitus.

Proposition 3.1.5. Suppose that (S,C) and (S′, C ′) are G- and G′-structured
space with trivial coordinate transformation groups Γ and Γ′ (i.e. both contain
only the identity map). Then (S,C) and (S′, C ′) are isomorphic.
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Proof. We already know that the manifolds (S,C+) and (S′, C ′+) are diffeo-
morphic, since they are both diffeomorphic to Rn. So let f : S → S′ be a
diffeomorphism. Then we immediately see that f also satisfies clause 2 of the
definition of isomorphism, since f ◦ 1S ◦ f−1 = 1S′ .

Proofs in Section 3.2

Lemma 3.2.1. Let (M, gab) be an n-dimensional spacetime and let p ∈M . Let
(Rn, ηab) be n-dimensional Minkowski spacetime. Let B ⊂ Rn be an open unit
ball. There is a neighborhood U of p, a spacetime (Rn, g′ab), and an open set
U ′ ⊂ B such that (i) g′ab = ηab outside of B and (ii) (U, gab) is isometric to
(U ′, g′ab).

Proof. We work in two dimensions to simplify the presentation; one generalizes
in a straightforward way. Let (M, gab) be any two-dimensional spacetime and
let p ∈ M . Let (R2, η′ab) be Minkowski spacetime given in standard (t′, x′)
coordinates: η′ab = ∇at′∇bt′ − ∇ax′∇bx′. Let B ⊂ R2 be an open unit ball.
Without loss of generality, we take B to be centered at the origin o = (0, 0) ∈ R2.

Consider a chart (O,ϕ) containing p ∈ M such that ϕ(p) = o and the
coordinate maps t : O → R2 and x : O → R2 associated with (O,ϕ) are such
that ϕ∗(t′) = t, ϕ∗(x′) = x, and gab at the point p is ∇at∇bt − ∇ax∇bx. We
can now express gab on O as ftt∇at∇bt+ fxx∇ax∇bx+ 2ftx∇(at∇b)x for some
smooth scalar fields ftt : O → R, fxx : O → R, and ftx : O → R. Since
−1 = fxx(p) < 0 < ftt(p) = 1, we can find an open ball Bε(o) ⊂ ϕ[O] centered
at o with radius 0 < ε < 1 small enough that fxx < 0 < ftt on all of ϕ−1[Bε(o)].
Let N ′ = Bε(o) ⊂ B and let N = ϕ−1[N ′]. We divide N into three disjoint
regions: U, V,W . For convenience, let r be the scalar function on N defined by
r =
√
t2 + x2. Let U be the region where r < ε/3; let V be the region where

ε/3 ≤ r < 2ε/3; let W be the region where 2ε/3 ≤ r < ε.
We now define a smooth tensor field γab on N . First, we use ϕ to pull back

the the metric η′ab on R2 to the define the metric ηab = ϕ∗(η′ab) on N . Since
ϕ∗(t′) = t and ϕ∗(x′) = x we know that that ηab = ∇at∇bt − ∇ax∇bx. On
the region W , let γab = ηab. On the region U , let γab = gab. In order to
define γab on V , consider any smooth bump function θ : N → R such that
θ = 1 on U , 0 < θ < 1 on V , and θ = 0 on W . On the region V , let
γab = htt∇at∇bt+ hxx∇ax∇bx+ 2htx∇(at∇b)x where htt = θftt− θ+ 1, hxx =
θfxx + θ − 1, and htx = θftx. By construction, γab is smooth on N .

We now show that γab is a Lorentzian metric on N . Clearly, it is symmetric
on N and is nondegenerate on U and W . We claim it is nondegenerate on V as
well. Note first that since fxx < 0 < ftt and 0 < θ < 1 on V , we have hxx < 0 <
htt on V as well. Let q be any point in V and let ξa be any vector at q. We can
express ξa as α(∂/∂t)a + β(∂/∂x)a for some α, β ∈ R. Consider γabξ

a. It must
come out as [αhtt(q)+βhtx(q)]∇bt+[αhtx(q)+βhxx(q)]∇bx. Now suppose that
γabξ

a = 0. This implies that αhtt(q) + βhtx(q) = 0 and αhtx(q) + βhxx(q) = 0.
It follows that α[htt(q)hxx(q)− htx(q)2] = 0 and β[htt(q)hxx(q)− htx(q)2] = 0.
So either α = β = 0 or htt(q)hxx(q) = htx(q)2. But the latter case cannot obtain
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since hxx < 0 < htt. So α = β = 0 and thus ξa = 0. So γab is non-degenerate
and hence a metric on V . So, γab is a smooth metric on all of N . Since γab is
Lorentzian at p and N is connected, γab is Lorentztian on all of N .

Now let (R2, g′ab) be such that g′ab = ϕ∗(γab) on N ′ and g′ab = η′ab on R2−N ′.
By construction, ϕ∗(γab) = ϕ∗(ηab) = η′ab on the region ϕ[W ]. It follows that g′ab
is smooth on the boundary of N ′ and hence smooth everywhere. If we let U ′ =
ϕ[U ] and recall that γab = gab on U , we see that that g′ab = ϕ∗(γab) = ϕ∗(gab)
on U ′. So ϕ|U is an isometry between the spacetimes (U, gab) and (U ′, g′ab).
Since U is a neighborhood of p and U ′ ⊂ N ′ ⊂ B, we have our result.

Lemma 3.2.2. Every n-dimensional relativistic spacetime (M, gab) has a rep-
resentation.

Proof. We show that there is a relativistic spacetime (Rn, g′ab) such that for
every point p ∈ M , there is an open neighborhood U of p such that (U, gab) is
isometric to (U ′, g′ab) for some U ′ ⊂ Rn. We work in two dimensions to simplify
the presentation; one generalizes in a straightforward way. Let (M, gab) be any
two-dimensional spacetime. Let (R2, ηab) be Minkowski spacetime in standard
(t, x) coordinates where ηab = ∇at∇bt − ∇ax∇bx. Let B ⊂ R2 be an open
unit ball. We know from Lemma 3.2.1 that for each p ∈ M , there is an open
neighborhood Up of p, a spacetime (R2, ĝab), and an open set Û ⊂ B such that

(i) ĝab = ηab outside of B and (ii) (Up, gab) is isometric to (Û , ĝab). Let {Up} be
the collection of all such open neighborhoods of all p ∈ M . Since M is second
countable and {Up} is an open cover of M , we know from Lindelöf’s lemma that
there is a countable open subcover {Upi} of M where {pi} is some countable
collection of points in M indexed by i ∈ N.

For each pi, let (R2, g′ab(i)) be the spacetime constructed using Lemma 3.2.1
where B ⊂ R2 is taken to be the open unit ball B(qi) centered at the point
qi = (2i, 0). So we have (i) g′ab(i) = ηab outside of B(qi) and (ii) (Upi , gab) is
isometric to (U ′i , g

′
ab(i)) for some U ′i ⊂ B(qi). Now let (R2, g′ab) be the spacetime

defined by setting g′ab = ηab in the region outside of
⋃
B(qi) and let g′ab = g′ab(i)

in the region B(qi) for each i ∈ N. By construction, each Upi is such that
(Upi , gab) is isometric to (U ′i , g

′
ab) for some U ′i ⊂ B(qi). But since {Upi} is an

open cover of M , we know that each r ∈ M is contained some Upi . So for
each r ∈ M , there is some open neighborhood Upi of r such that (Upi , gab) is
isometric to (U ′i , g

′
ab) for some U ′i ⊂ B(qi).

Lemma 3.2.3. Let (S,C) be a locally G-structured space determined by (M, gab).
Then (S,C) is a locally G-structured space.

Proof. The cover condition holds of (S,C) because of Lemma 3.2.2. Each point
in M is contained in the domain of some map in C. The range condition holds
since the maps in C are maps from open sets of M to open sets of Rn, and each
open set in Rn is the domain of the identity function on that open set, which
is contained in G. We show that the compatibility condition is satisfied. Let
f : O → Rn have an open set as its range (or in other words, its range is the
domain of some element of G).
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Suppose first that f ∈ C, and let f ′ ∈ C be such that dom(f) ∩ dom(f ′) is
non-empty. Then f ◦ f ′−1 is a diffeomorphism, as it is the composition of two
diffeomorphisms, and it preserves g′ab since

(f ◦ f ′−1)∗(g′ab) = f ′−1∗ ◦ f∗(g′ab) = f ′−1∗(gab) = g′ab

The first equality follows from properties of the pullback, while the second and
third follow from the fact that f and f ′ are in C. This gives us the left-to-right
direction of the compatibility condition.

Now suppose that for every f ′ : O′ → Rn that is in C with dom(f)∩dom(f ′)
non-empty, f ◦f ′−1 ∈ G. Note that this means that f ◦f ′−1 is a diffeomorphism.
In order to show that f ∈ C, we first need to show that f is a diffeomorphism
between an open O ⊂ M and open f [O] ⊂ Rn. Since f |O∩O′ = (f ◦ f ′−1) ◦ f ′,
f |O∩O′ : O ∩ O′ → f [O ∩ O′] is the composition of two diffeomorphisms and is
therefore one itself. The cover condition then implies that for each point p ∈ O
there is some f ′i : O′i → Rn in C with p ∈ O′i. And the preceding argument
guarantees that f |O∩O′i is a diffeomorphism for each i. Since f : O → Rn is such
that O = ∪iO ∩O′i where each O ∩O′i is open and f |O∩O′i is a diffeomorphism,
the gluing lemma for smooth maps (Lee, 2012, Corollary 2.8) implies that f :
O → f [O] is a diffeomorphism. Since by assumption f [O] is open, it then must
be that O is open too. We now show that f∗(g′ab) = gab|O. Let p ∈ O. We
know that there is some f ′ ∈ C with p ∈ dom(f ′). So we compute that:

g′ab|f ′(p) = (f ◦ f ′−1)∗(g′ab)|f ′(p) = f ′−1∗ ◦ f∗(g′ab)|f ′(p)

The first equality follows since f ◦ f ′−1 ∈ G, and the second from properties
of the pullback. This implies that f ′∗(g′ab)|p = f∗(g′ab)|p. Since f ′ ∈ C and
therefore f ′∗(g′ab) = gab|O′ , this means that f∗(g′ab)|p = gab|p. Since p ∈ O
was arbitrary it must be that f∗(g′ab) = gab|O, and so f ∈ C. This gives us
the right-to-left direction of the compatibility condition, and we have therefore
shown that (S,C) is a locally G-structured space.

Proposition 3.2.1. Let (M, gab) be a relativistic spacetime. If (S,C) is a locally
G-structured space determined by (M, gab), then

1. The identity map 1M is a diffeomorphism between (S,C+) and M .

2. The coordinate transformation pseudogroup Γ associated with (S,C) is the
isometry pseudogroup of (M, gab).

Proof. Let (Rn, g′ab) be the representation of (M, gab) used in the construction
of (S,C). We begin with 1. Consider a collection {ci : Ui → Rn} of elements
of C such that the sets Ui cover S. Note that such a subset of C exists by the
cover condition and that {Ui} is an open cover both of the manifold M and
of the manifold (S,C+). Now for each i we consider the map 1Ui = c−1i ◦ ci,
the composition of the map ci : Ui → Rn from an open subset of M to Rn
and c−1i : ci[Ui] → S. We know that the former is a diffeomorphism by the
definition of C, and the latter is a diffeomorphism by Proposition 2.2.2. So
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1Ui is a diffeomorphism between Ui (conceived of as a submanifold of M) and
Ui (conceived of as a submanifold of (S,C+)). Hence the gluing lemma for
smooth maps (Lee, 2012, Corollary 2.8) implies that 1M : M → (S,C+) is a
diffeomorphism.

We now turn to 2. Suppose that f : U → V is a diffeomorphism between
open sets U and V of M such that f∗(gab) = gab. We show that f ∈ Γ. Let
c : dom(c) → Rn be a map in C such that dom(c) ∩ V is non-empty (we know
such a c exists by the cover condition) and consider the map c◦f : f−1[dom(c)∩
V ] → Rn, which we know is a diffeomorphism between its domain and range
since both c and f are. Since (c ◦ f)∗(gab) = c∗(gab) = g′ab, it must be that
c◦f ∈ C. And hence it must be that c−1◦(c◦f) = f |f−1[dom(c)∩V ] is in Γ0. Since
f : U → V is a diffeomorphism, we know that f−1[dom(c)∩ V ] is open because
both dom(c) and V are. By the cover condition V = ∪c∈Cdom(c) ∩ V , and
hence U = ∪c∈Cf−1[dom(c) ∩ V ]. The argument above implies that f : U → V
is such that each f |f−1[dom(c)∩V ] ∈ Γ0. And hence f ∈ Γ by clause (ii) of the
definition of Γ.

Now on the other hand suppose that h : U → V is in Γ. We know that
U and V are open in the topology on (S,C+) by PG1. Since we have already
shown that 1M : M → (S,C+) is a diffeomorphism, it must be that U and V are
open in the topology on M . And moreover, we know that h is a diffeomorphism
between these open sets of M , since it is a diffeomorphism between open subsets
of (S,C+) and 1M : M → (S,C+) is a diffeomorphism. It only remains to
show that h∗(gab) = gab. Let p ∈ U . We know that U = ∪iUi for open
sets Ui and h|Ui ∈ Γ0 for each i. Since p ∈ Ui for some i, we have that
h|∗Ui

(gab)|p = h∗(gab)|p. Because it is in Γ0, h|Ui
= c−1 ◦ d for some pair

c, d ∈ C. This immediately implies that

h∗(gab)|p = h|∗Ui
(gab)|p = (c−1 ◦ d)∗(gab)|p = d∗ ◦ c∗(gab)|p = d∗(g′ab)|p = gab|p

The first and second equalities follow from the immediately preceding discussion.
The third follows from properties of the pullback and pushforward. The fourth
and fifth follow by the definition of C. So h∗(gab) = gab and therefore h is an
isometry between open subsets of (M, gab), and hence an element of the isometry
pseudogroup.

Proposition 3.2.2. Suppose that f : S → S′ is an isomorphism between locally
G- and G′-structured spaces (S,C) and (S′, C ′) and let α be a tensor field (of
arbitrary index structure) on S. Then α is implicitly defined by Γ if and only if
f∗(α) is implicitly defined by Γ′.

Proof. We show the right-to-left direction. The other direction follows analo-
gously. Let h ∈ Γ and p ∈ dom(h). Then since f is an isomorphism we know
that f ◦ h ◦ f−1 ∈ Γ′ and hence (f ◦ h ◦ f−1)∗(f∗(α))|f(p) = f∗(α)|f(p) since Γ′

implicitly defines f∗(α). We now compute the following:

f∗(α)|f(p) = (f ◦h◦ f−1)∗(f∗(α))|f(p) = f∗ ◦h∗ ◦f∗(f∗(α))|f(p) = f∗ ◦h∗(α)|f(p)
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The second and third equalities follow from properties of the pullback. Applying
f∗ to both sides of the equation then implies that h∗(α)|p = α|p, so Γ implicitly
defines α.

Proposition 3.2.3. Let (M, gab) be a relativistic spacetime. Suppose that (S,C)
and (S′, C ′) are locally G-structured spaces determined by (M, gab). Then (S,C)
and (S′, C ′) are isomorphic.

Proof. This follows from Proposition 3.2.1 in the same way that Proposition
3.1.3 followed from Proposition 3.1.1.

Proposition 3.2.4. There are non-isometric relativistic spacetimes (R2, gab)
and (R2, g′ab) with trivial isometry pseudogroups.

Proof. Consider the spacetimes (φ−1[O], gab|φ−1[O]) and (φ−1[O′], gab|φ−1[O′])
defined in the proof of Proposition 3.1.4. We have already shown that they are
not isometric and that both φ−1[O] and φ−1[O′] are diffeomorphic to Rn. It im-
mediately follows from the fact that (M, gab) is Heraclitus that (φ−1[O], gab|φ−1[O])
and (φ−1[O′], gab|φ−1[O′]) are too; since they are Heraclitus, they have trivial
isometry pseudogroups.

Proposition 3.2.5. Let (S,C) and (S′, C ′) be locally G- and G′-structured
spaces with trivial coordinate transformation pseudogroups Γ and Γ′. If the
manifolds (S,C+) and (S′, C ′+) are diffeomorphic, then (S,C) and (S′, C ′) are
isomorphic.

Proof. We know that there is a diffeomorphism f : S → S′ and hence f satisfies
condition 1 of the definition of an isomorphism. We show that f also satisfies
condition 2. We need to show that the map s 7→ f ◦s◦f−1 is a bijection from Γ
to Γ′. Let s, s′ ∈ Γ and suppose that f ◦ s ◦ f−1 = f ◦ s′ ◦ f−1. Since f : S → S′

is a bijection, it must be that s = s′. Hence our map s 7→ f ◦s◦f−1 is injective.
Now let s′ ∈ Γ′, so s′ is the identity map 1O on some open set O ⊂ S′. We see
that f−1 ◦ 1O ◦ f = 1f−1[O]. Since f is a diffeomorphism, f−1[O] is an open
subset of S, and hence 1f−1[O] is in Γ. Since f ◦ 1f−1[O] ◦ f−1 = 1O, our map is
bijective, f satisfies condition 2, and hence f is an isomorphism between (S,C)
and (S′, C ′).

Proofs in Section 4.1

Proposition 4.1.1. Minkowski spacetime is determined by isometry.

Proof. Let (R4, gab) be a relativistic spacetime with the same isometry group as
Minkowski spacetime. It follows from (O’Neill, 1983, Proposition 23) that all flat
and geodesically complete spacetimes with underlying manifold R4 are isometric.
We will show that (R4, gab) has the same Levi-Civita derivative operator as
(R4, ηab). Since (R4, ηab) is flat and geodesically complete, this will imply that
(R4, gab) is too, which will in turn imply that the two spacetimes are isometric.
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Let x1, x2, x3, x4 be the standard coordinates on R4. We write

gab =

4∑
i,j=1

ij
gdax

idbx
j

in these coordinates and consider the vector fields ( ∂
∂xi )a. We know that these

are Killing fields for (R4, ηab), and moreover, that the flow maps Γt that they
determine are diffeomorphisms R4 → R4. Since (R4, gab) has the same isometry
group as Minkowski spacetime, the Γt maps are isometries of (R4, gab), and
hence Proposition 1.6.6 of Malament (2012) implies that the ( ∂

∂xi )a are Killing
fields on (R4, gab) too. We compute that for each k = 1, . . . , 4,

0 = L( ∂

∂xk )gab = L( ∂

∂xk )

4∑
i,j=1

ij
gdax

idbx
j =

4∑
i,j=1

(L( ∂

∂xk )

ij
g)dax

idbx
j

The first equality follows since ( ∂
∂xk )a is a Killing field on (R4, gab), the second

from how we are writing gab in coordinates, and the third since L( ∂

∂xk )dax
i = 0.

This implies that L( ∂

∂xk )

ij
g = 0, which in turn implies via Proposition 1.6.2 of

Malament (2012) that ( ∂
∂xk )a(

ij
g) = 0, and hence each scalar field

ij
g is constant.

We can now show that the Levi-Civita derivative operator for gab is just the
coordinate derivative operator ∇ (see (Malament, 2012, Proposition 1.7.11)) for
the standard coordinates x1, x2, x3, x4 on R4. We compute that

∇ngab = ∇n(

4∑
i,j=1

ij
gdax

idbx
j) =

4∑
i,j=1

∇n(
ij
g)dax

idbx
j = 0

The first equality follows from writing gab out in x1, . . . , x4 coordinates, the
second since ∇ is the coordinate derivative operator (and therefore ∇ndaxi = 0

for all i), and the third since
ij
g is constant and hence ∇n

ij
g = 0. One can easily

show that ∇ is the Levi-Civita derivative operator for ηab, so ηab and gab have
the same derivative operator.
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