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Abstract

This paper presents a novel sense in which theoretical structure has been preserved
across the transition from classical to quantum physics. I import mathematical tools
from category theory that have been used for structural comparisons in the context
of theoretical equivalence and apply these tools to new situations involving theory
change. The structural preservation takes the form of a categorical equivalence between
categories of models of classical and quantum physics. I situate the significance of
this structural preservation in terms of prospects for theory construction in quantum
physics.
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1 Introduction

This paper presents a novel sense in which theoretical structure is preserved from classical
to quantum physics, which makes three central contributions. First, while the traditional
motivation for analyzing structural continuity across scientific change comes from scientific
realism (e.g., Worrall, 1989; Ladyman, 1998), I argue for a distinct significance of the struc-
tural continuity established here in terms of its aid to theory construction. Second, while
advocates of structural realism use model-theoretic tools of partial structures (da Costa and
French, 1990) to analyze structural continuity across theory change, I propose a novel col-
lection of mathematical tools as apt for comparing mathematized theories like classical and
quantum mechanics. I show that category-theoretic tools can be imported from philosophi-
cal discussions of theoretical equivalence (e.g., Weatherall, 2019a,b) and employed in a way
that sidesteps existing controversies concerning the relationship between category theory and
structural realism (e.g., Lam and Wthrich, 2015). Third, the central results presented here
provide a precise sense in which structure is preserved through functorial relations between
categories of models of classical and quantum physics. This goes beyond existing state-
ments in the philosophical literature by Thébault (2016) and Yaghmaie (2020) concerning
structural preservation through quantization.

In §2, I place structural continuity across theory change in the context of the literature
on scientific realism. In §3, I introduce category-theoretic tools for comparing structure. In
§4, I describe the mathematical framework for quantization and the classical limit. In §5, I
present the central results: categorical equivalences between categories of models of classical
and quantum physics. In §6, I conclude with an interpretation of structural continuity.

2 Realism and Theory Change

Philosophical discussion of structural continuity across theory change arises in the context
of scientific realism, the view that our best scientific theories are (probably, approximately)
true. I briefly review structural continuity in the literature, although I ultimately argue for
a distinct significance of structural continuity in §6.

Structural continuity has been proposed as grounds to save scientific realism from attacks
based on discontinuities in the historical evolution of science. Major conceptual shifts during
scientific theory change have been understood as leading to problems for scientific realism.
The fact that once accepted scientific claims are now rejected as false casts some doubt that
our current best science will stand the test of time (See, e.g., Laudan, 1981; Stanford, 2006).

Worrall (1989) argues that while one should not believe in aspects of scientific theories
that change radically across revolutions, there are nevertheless stable aspects of theories
that remain continuous through conceptual shifts. Worrall identifies structure as what is
maintained across examples of theory change that involved shifts in even the kinds of objects
one takes to instantiate those structures. He proposes structural realism, advocating that
one should believe our best scientific theories accurately capture the structure of the world.
This suggestion has led to a burgeoning literature (Ladyman, 1998; Frigg and Votsis, 2011;
French, 2014; Ladyman, 2020; Wallace, 2021).

If one wants to reserve belief for structural aspects of scientific theories, one needs a
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precise and principled way of picking out the structure of a theory and determining whether
it is preserved across theory change (Psillos, 2001; Stanford, 2006). Otherwise, the structure
that should supposedly form the basis of our beliefs is vague or underdetermined. Since there
is more hope of making structural continuity precise in specific examples, I turn attention
to the particular case study in quantum physics that is my focus.

While the original motivating example Worrall (1989) used for his structural realism was
the transition from Fresnel’s theory of light to Maxwell’s, others have endeavored to ap-
ply structural realism to quantum mechanics1 and quantum field theory.2 Indeed, quantum
physics is a natural focus for studying structural preservation because quantum theories are
often constructed through quantization procedures that relate a model of a physical system
within the framework of classical physics to a model of the same system within the framework
of quantum physics. In analyzing quantization procedures, Thébault (2016) identifies the
Lie algebra structure defined by a Poisson bracket in classical physics as what is preserved
in the transition to quantum physics. However, Yaghmaie (2020) rightly notes that several
technical results (Gotay, 1999) imply that the Lie algebra structure cannot be preserved for
all observables when mapping from classical to quantum physics. Moreover, while Thébault
works in the context of what is known as geometric quantization (Woodhouse, 1997), Yagh-
maie argues that the methods employed in geometric quantization give rise to a problem of
underdetermination that undermines the structural realist’s goals. Instead, Yaghmaie favors
the methods of deformation quantization, which Feintzeig (2020, 2023) also argues are appro-
priate for making sense of the relation between classical and quantum physics. Deformation
quantization comes in two mathematical forms: Yaghmaie’s discussion employs the tools of
formal deformation quantization (Kontsevich, 2003), while Feintzeig (2020, 2023) provides
some reasons that strict deformation quantization (Rieffel, 1993; Landsman, 1998, 2007) is
better suited to capturing the approximative correspondence between classical and quantum
physics. I will proceed to use the framework of strict deformation quantization to compare
classical and quantum physics in this paper.

Before introducing the details of deformation quantization, I first argue that the math-
ematics of quantization procedures does not align with the methods for structural compar-
ison that have been proposed in the literature by da Costa and French (1990, 2003). This
motivates using new tools for comparing structure, which I introduce in §3 and apply to
deformation quantization in §4-5.

da Costa and French (1990, 2003) outline a framework of partial structures for the analysis
of scientific theories along structural lines, and Bueno (2008) argues that this framework
provides a way to analyze structural continuity across theory change. A partial structure
is a set—the domain—with a collection of partial relations, where each partial relation is
characterized by three extensions: (i) the objects in the domain that (we know) do satisfy
the relation, (ii) the objects in the domain that (we know) do not satisfy the relation, and
(iii) the objects that fall into neither of the previous two sets. A partial isomorphism is
then a bijection between domains of partial structures that preserves which objects (we
know) satisfy relations and which objects (we know) do not satisfy relations, but with no
requirements on the objects that do not fall into those two sets. According to Bueno (2008, p.

1See, e.g., French and Ladyman (2003); Roberts (2011).
2See, e.g., Cao (2019, 2003); Saunders (2003a,b); French (2012).
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229), one should model structural continuity with partial isomorphisms between particular
models of the older theory and the newer theory. Bueno argues that the existence of a partial
isomorphism shows that structure is preserved across theory change.

There are two issues with the tools of partial structures and partial isomorphisms for
analyzing structural continuity through quantization procedures. Neither provides definitive
reasons not to use the tools of partial structures for structural comparisons, but they point
towards possible improvements.

First, neither models of classical physics nor models of quantum physics are typically
given as partial structures. I will treat these models, as in the mathematical physics litera-
ture, as C*-algebras where the algebraic operations are everywhere defined and do not leave
room for relations that are uncertain or indeterminate on some part of their domain. This
consideration is, of course, defeasible because one could specify after the fact some subsets
of the domains on which the relations are uncertain or indeterminate, thus reconstructing
a partial structure from a C*-algebra. But this would be completely foreign to how the
models are used in physics. I worry that turning such mathematical structures into partial
structures is liable to be ad hoc and unfaithful to the use of the structures in physics.3

Second, while partial isomorphism is a criterion intended to compare individual models of
an old theory to individual models of a new theory, contemporary discussions of structural
comparison give reason to compare theories as a whole to one another (Barrett, 2020a,
p. 395). In other words, contemporary strategies for comparing structure achieve greater
generality by comparing the structure of all models of one theory to the structure of all
models of another theory. This consideration is defeasible if one does not agree that such
generality is needed, or if one wants to pursue this generality within the framework of partial
structures.4

Regardless of the status of these problems with using partial structures for structural
comparisons, I hope to demonstrate that one can do better on the two fronts specified. I
wish to emphasize that it is not my intention here to definitively argue against other methods
for analyzing structural continuity within philosophy. Rather, I hope to take the methods
native to mathematical physics and use them to present one form of structural continuity
that I take to be philosophically significant. Characterizing structure within the models
actually used by mathematical physics is at least in line with a recent understanding of
structural realism due to Wallace (2021). I will leave it to future discussions to determine
which accounts of structural continuity are most perspicuous. The task of the current paper
is to lay out a novel account of structural continuity across theory change that at least should
be considered.

3In this case, one might want a guarantee that the partial structures that have been reconstructed actually
capture physically relevant information from the original complete mathematical models. One might even
be pushed to use category theoretic tools to establish that the reconstructed partial structures are somehow
equivalent to the original models, and so one might be led to the same conclusion as in this paper. I thank
an anonymous reviewer for this point.

4Indeed, one might imagine generalizing the search for partial isomorphisms between individual models
to a search for other global relationships between the collections of partial structures. Category theoretic
tools might also be useful here, and may lead to the same results. So it is not even clear that approaches
to analyzing structural continuity using partial structures would yield significantly different results than the
results of the current paper using C*-algebras and category theory. I thank an anonymous reviewer for this
point.
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While I have situated structural continuity within the existing literature on structural
realism, my aims in this paper ultimately diverge from most contemporary discussions. The
current literature splits along a divide between epistemic structural realism (roughly: all we
can know is structure) and ontic structural realism (roughly: all that exists is structure)
(Ladyman, 2020). I remain agnostic about the inference from structural continuity to either
position. Instead, I return in §6 to an older thread, going back at least to remarks of
Stein (1989) and Saunders (1993), who tie structural continuity to heuristics for theory
construction. I will argue that structural continuity bears on theory construction in physics,
while leaving implications for further aspects of realism open.

3 How to Compare Structure

The recent literature on theoretical equivalence discusses structural comparison between
theories (Weatherall, 2019a,b; Dewar, 2022). Barrett (2020a,b) compares structure by com-
paring structure-preserving maps between models. The basic intuition is that if a theory
has “the same” structure-preserving maps between models, then those models have “the
same” structure to preserve. Indeed, Halvorson (2012, 2016) argues one should understand
a scientific theory not as merely a collection of models (the semantic view of theories), but
rather as at least coming equipped with structure-preserving maps between models encoding
their interpretation and structure. On this approach, a scientific theory can be represented
by what is known as a category.

I pause to remark on the controversial association between structural realism and cate-
gory theory. While some discussions of category theory focus on using groups of structure-
preserving morphisms to make sense of the structure of scientific theories (e.g., Landry,
2007), others (Bain, 2013; Lam and Wthrich, 2015; Eva, 2016; Lal and Teh, 2017) focus
on a specific objection to ontic structural realism. These discussions focus on the claim
by ontic structural realists that (structural) relations are more “fundamental” than objects,
and a corresponding objection that one cannot make sense of relations without relata. Cat-
egory theory enters these discussions as a mathematical framework that some claim (and
others dispute) provides an understanding of relations as “fundamental”. I mention this
literature only to distinguish it from my goals in this paper. I will not touch upon any
of these metaphysical issues, and my use of category theory is not related to that of these
authors. Instead, I use category theory as a tool to make precise claims about structural
continuity. I ultimately use the results to inform heuristics for theory construction rather
than metaphysics.

A category C is a collection of objects and a collection of arrows or morphisms, each with
a source and target. I denote a morphism by f : A→ B for source A and target B. I denote
the collection of morphisms with source A and target B by HomC(A,B). A category comes
equipped with an operation of composition for morphisms, denoted ◦, which is total in the
sense that for each f : A → B and g : B → C, there is an h : A → C such that h = g ◦ f .
Composition is associative, and moreover, each object A has a unique identity morphism
1A whose composition with other morphisms leaves them unchanged. I use categories to
represent scientific theories by taking models of a theory to form the class of objects of a
category, with structure-preserving maps serving as the morphisms between models.
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Example 1. The category LCH has locally compact Hausdorff topological spaces as objects
and continuous proper5 maps between them as arrows.

Example 2. The category B∗Alg has Banach *-algebras with approximate identity as objects
and non-degenerate6 *-homomorphisms between them as arrows.

Example 3. The category C∗Alg has C*-algebras as objects and non-degenerate *-homomorphisms
between them as arrows.7

Example 4. The category AbC∗Alg has abelian C*-algebras as objects and non-degenerate
*-homomorphisms between them as arrows.

These examples provide tools to represent models of both classical and quantum physics.
Models of classical physics can be understood as commutative C*-algebras in the category
AbC∗Alg, while models of quantum physics can be understood as noncommutative C*-
algebras in C∗Alg.

A model of classical physics in Hamiltonian form has a phase space, a smooth even-
dimensional manifold M . The colllection C0(M) of continuous functions vanishing at infinity
is a commutative C*-algebra with the supremum norm.8 Moreover, C0(M) contains the dense
subalgebra C∞c (M) of smooth, compactly supported functions carrying a Poisson bracket.
Structure-preserving maps between models of classical physics in the categories I consider
will be *-homomorphisms between such commutative C*-algebras preserving the smooth and
Poisson structures.

A model of quantum physics has a Hilbert space H, on which any norm closed subalgebra
of the collection B(H) of bounded operators is a C*-algebra with the operator norm.9 Cor-
responding to the classical Poisson bracket is the quantum commutator [A,B] = AB − BA
for A,B ∈ B(H), which is defined from the operator multiplication. Structure-preserving
maps between models of quantum physics in the categories I consider will thus be *-
homomorphisms between noncommutative C*-algebras that are obtained through quanti-
zation. In §4, I make precise what it means to obtain a C*-algebra through quantization.

Now I establish methods to compare structure between theories by comparing their cat-
egories of models. A functor F : C→ D between categories C and D consists in two maps:
one map between the objects of C and the objects of D, and another map between the
morphisms of C and the morphisms of D. I will use the symbol F for both maps. A functor
preserves sources and targets in the sense that if f : A → B is a morphism in C, then
F (f) : F (A) → F (B) in D, i.e., if f ∈ HomC(A,B), then F (f) ∈ HomD(F (A), F (B)).

5Proper maps are one appropriate choice for encoding the structure of locally compact spaces. Proper
maps preserve the “point at infinity” in a non-compact, but locally compact Hausdorff space.

6A *-homomorphism α : A → B is non-degenerate just in case α[A]B is dense in B. Non-degenerate *-
homomorphisms are one appropriate choice for encoding the structure of normed *-algebras. Non-degeneracy
guarantees that *-homomorphisms preserve approximate identities in non-unital Banach *-algebras.

7For background, see Kadison and Ringrose (1997) and Landsman (2017, Appendix C).
8The Gelfand representation theorem (see Ex. 6) shows this situation is generic. Every commutative C*-

algebra is *-isomorphic to C0(M) for some locally compact Hausdorff topological space M . See Landsman
(2017, §C.2-3).

9The Gelfand-Naimark theorem shows this situation is generic. Every C*-algebra is *-isomorphic to some
closed subalgebra of B(H). See Kadison and Ringrose (1997, §4.5).
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Moreover, a functor preserves arrow composition in the sense that if f : A → B and
g : B → C are morphisms in C, then F (g ◦ f) = F (g) ◦ F (f).

Example 5 (Enveloping C*-algebra). For any object A0 in B∗Alg with norm ‖·‖0, one can
define a corresponding C*-algebra. First, let P(A0) denote the set of pure states on A0, the
continuous positive linear functionals of unit norm. One can define a new norm ‖·‖ on A0

that satisfies the C* identity by

‖A‖ = sup
ω∈P(A0)

ω(A∗A)1/2 (1)

for any A ∈ A0. Then ‖·‖ satisfies the C* identity on A0 and the completion with respect to
‖·‖ is a C*-algebra A = A0 called the enveloping C*-algebra of A0.

Define a map E : B∗Alg → C∗Alg that takes each Banach *-algebra to its enveloping
C*-algebra and each *-homomorphism between Banach *-algebras to its unique continuous
extension. Then E is a functor (See Dixmier, 1977, §2.7).

Define also a map R : C∗Alg → B∗Alg that leaves every object and arrow the same.
Since each C*-algebra is already a Banach *-algebra, R is also a functor.

Example 6 (Gelfand duality). For any object A in AbC∗Alg, the set of pure states P(A)
with the weak* topology is a locally compact Hausdorff space. Moreover, for any non-
degenerate *-homomorphism α : A→ B, the function α̂ : P(B)→ P(A) defined by ω 7→ ω◦α
is a continuous proper map.

Define the opposite category LCHop as the category of locally compact Hausdorff topolog-
ical spaces with the direction of each arrow reversed. Define a map H : AbC∗Alg→ LCHop

that takes each C*-algebra A to its pure state space P(A) and each non-degenerate *-
homomorphism α to the (opposite of the) continuous proper map α̂ that is its dual. Then H
is a functor. (See Kadison and Ringrose (1997, §4.4) or Landsman (2017, §C.2-3).)

By mapping structure-preserving morphisms in one category to structure-preserving mor-
phisms in another category, a functor provides a standard according to which one can com-
pare the structure that is preserved by those morphisms. To do so, I will use the heuristic
that having “the same” morphisms implies having “the same” structure.

A functor must have the following special properties in order to identify morphisms in
one category as encoding “the same” structure as morphisms in another category. Consider
a functor F : C→ D.

• F is called faithful if for any f, g : A→ B in C, whenever F (f) = F (g), it is also the
case that f = g, i.e., F is injective from HomC(A,B)→ HomD(F (A), F (B)).

• F is called full if for every morphism g : F (A)→ F (B) in D, there is some morphism
f : A → B in C such that F (f) = g, i.e., F is surjective from HomC(A,B) →
HomD(F (A), F (B)).

• F is called essentially surjective if for every object B in D, there is some object A in
C such that F (A) is isomorphic to B in D.
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A functor is a categorical equivalence if it is full, faithful, and essentially surjective—in this
case, there is a functor G : D → C that is “almost inverse” to F (See, e.g., Awodey, 2010,
p. 172-3). The existence of a categorical equivalence indicates that C and D have “the
same” morphisms relative to the chosen functor: essential surjectivity allows one to match
all objects from C to all objects in D (up to isomorphism), whereas fullness and faithfullness
guarantee that the morphisms between those objects stand in one-to-one correspondence.

Example 7 (Enveloping C*-algebra, continued). The functor E : B∗Alg → C∗Alg is
faithful and essentially surjective, but not full. It is faithful because whenever the extensions
of two continuous maps between Banach *-algebras agree, their restrictions to the original
Banach *-algebra subspace also agree. It is essentially surjective because every C*-algebra is
a Banach *-algebra whose enveloping C*-algebra is itself. It is not full because there may
be *-homomorphisms between enveloping C*-algebras that do not preserve the initial Banach
*-algebra subspace and so cannot be obtained by extending a continuous map between those
original Banach *-algebras.

On the other hand, the functor R : C∗Alg → B∗Alg is full and faithful, but not es-
sentially surjective. It is full and faithful since it acts as the identity on arrows. It is not
essentially surjective because there are Banach *-algebras that are not C*-algebras.

The functor E “defines” the structure of a C*-algebra from a Banach *-algebra. It fails
to be a categorical equivalence because it “forgets” (Baez et al., 2004) the structure of the
norm of the original Banach *-algebra in favor of the new C*-norm. Similarly, the functor
R “defines” the structure of a Banach *-algebra from a C*-algebra. In this direction, the
Banach *-algebra has all the same structure as the original C*-algebra. But R “forgets” the
property captured in the C* identity by including C*-algebras in a category whose collection
of objects is bigger and thus more general.

Example 8 (Gelfand duality, continued). The functor H is full, faithful, and essentially
surjective. It is essentially surjective because for each each object X in LCHop, the abelian
C*-algebra C0(X) of continuous functions vanishing at infinity has P(C0(X)) isomorphic
to X. It is faithful because the duals of *-homomorphisms agree only when the original *-
homomorphisms agree. It is full because every continuous proper map α̂ : X → Y defines a
non-degenerate *-homomorphism α : C0(Y )→ C0(X) by f 7→ f ◦ α̂, and α̂ is the dual map
corresonding to this α.

It follows that H is a categorical equivalence, and hence there is an “almost inverse”
functor K : LCHop → AbC∗Alg, which takes each locally compact Hausdorff space X to
the C*-algebra C0(X). This functor K is also full, faithful, and essentially surjective.

The functors H and K provide a precise sense in which abelian C*-algebras and locally
compact Hausdorff spaces have the same structure. They establish that the structure of
each locally compact Hausdorff space, as encoded in the structure-preserving maps between
them, is “definable” from the structure of its C*-algebra of continuous functions vanishing at
infinity. Conversely, the structure of each abelian C*-algebra, as encoded in the structure-
preserving maps between them, is “definable” from the structure of its pure state space,
understood as a locally compact Hausdorff space with the weak* topology.

Note that these correspondences hold only relative to a choice of categories and a choice
of functor used for the comparison. I will not attempt to make any structural comparisons
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once and for all between physical theories; rather, I only make structural comparisons relative
to given categories and functors. The central results discussed here consist in the existence
of categorical equivalences between categories representing models of classical and quantum
physics. The interpretation of these results depends strongly on the choice of categories
and functors used to compare them, so in the next sections I include discussion of the
philosophical significance of the chosen categories.

4 Mathematical Framework

In this section, I introduce the processes of quantization and the classical limit, which I will
represent by functors.10 I present general definitions for each process here, and then in the
next section present the results that for certain classes of physical systems—corresponding
to particular categories of models of classical and quantum physics—these functors form a
categorical equivalence.

4.1 Quantization

To quantize a model of classical physics, one begins with a commutative C*-algebra of
functions on a phase space and continuously deforms the product operation to arrive at a
noncommutative C*-algebra of bounded operators on a Hilbert space. The resulting family
of C*-algebras indexed by the parameter ~ forms a structure called a continuous bundle (See
Dixmier (1977, Ch. 10) or Landsman (1998, §II.1.2)).

Definition 1 (continuous bundle of C*-algebras). A (uniformly)11 continuous bundle of
C*-algebras over a base space I ⊆ R, where I contains 0 as an accumulation point, is:

• a family of C*-algebras {A~}~∈I called fibers ;

• a C*-algebra A of continuous sections ; and

• a family of surjective *-homomorphisms {φ~ : A→ A~}~∈I called evaluation maps.

Together, these are required to satisfy for each a ∈ A,

(i) ‖a‖ = sup~∈I‖φ~(a)‖~, where ‖·‖~ denotes the norm on the fiber algebra A~;

(ii) for each uniformly continuous and bounded function f : I → C, there is a section
fa ∈ A such that φ~(fa) = f(~)φ~(a);

(iii) the map ~ 7→ ‖φ~(a)‖~ is uniformly continuous and bounded.

Continuous bundles can be constructed by deforming the product in the direction of the
Poisson bracket of a classical phase space with the following notion of a quantization map.

10See Landsman (2003) for an alternative quantization functor.
11See Steeger and Feintzeig (2021a, Appendix B) for details on different continuity conditions.
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Definition 2 (strict deformation quantization). A strict deformation quantization (over
I ⊆ R containing 0 as an accumulation point) of a manifold M with a *-algebra P ⊆ Cb(M)
of continuous, bounded functions carrying a Poisson bracket is:

• a family of C*-algebras {A~}~∈I and

• a family of linear quantization maps {Q~ : P → A~}~∈I , where Q0 is the identity.

Together, these objects must satisfy for each f, g ∈ P :

(i) (von Neumann’s condition) lim~→0‖Q~(f)Q~(g)−Q~(fg)‖~ = 0;

(ii) (Dirac’s condition) lim~→0‖ i~
[
Q~(f),Q~(g)

]
−Q~

(
{f, g}

)
‖~ = 0;

(iii) (Rieffel’s condition) the map ~ 7→ ‖Q~(f)‖~ is continuous;

(iv) (Deformation condition) for each ~ ∈ I, the map Q~ is injective, its image Q~[P ] is
closed under the product in A~, and Q~[P ] is dense in A~.

Every strict deformation quantization satisfying mild technical conditions defines a continu-
ous bundle of C*-algebras.12 The algebra of sections is generated by the maps [~ 7→ Q~(f)]
for each f ∈ P and the maps φ~ are given concretely as evaluation of the sections at a
particular value ~ ∈ I.

Strict deformation quantization differs from formal deformation quantization, the frame-
work Yaghmaie (2020) employs to discuss structural realism. Formal deformation quanti-
zation consists in the definition of an associative product on an algebra of formal power
series, treating ~ as a formal parameter rather than a physical parameter with a numerical
value. Formal deformation quantization has its own virtues, including existence and unique-
ness theorems established by Kontsevich (2003), which Yaghmaie argues have significance
for structural realism. However, in general, the formal power series employed by formal
deformation quantization may not converge to genuine operators or functions, and so their
interpretation as physical quantities is lacking. This also implies that we lack operator norm
estimates or bounds governing the rescaling of quantities as ~→ 0, which means that formal
deformation quantization lacks the crucial tools used by Feintzeig (2020) for making sense of
the approximation of the structure of classical physics by quantum physics via uniform error
bounds. Even Waldmann (2019), an expert working at the forefront of research on formal
deformation quantization, argues that one must face the issue of whether the formal power
series employed within that framework converge to genuine operators or functions in order
to understand their significance for physics. The strict deformation quantization approach
circumvents the convergence problem by directly defining those operators or functions and
proving their existence, thus fulfilling the necessary mathematical preconditions for their
physical interpretation.

In what follows, I consider only models of quantum physics obtained through deformation
quantization. In doing so, I restrict attention to quantum systems that correspond to models
of classical physics in the classical ~→ 0 limit.13 For present purposes, I restrict attention to

12See Landsman (1998, §II.1.2) or Steeger and Feintzeig (2021a, Appendix A).
13See also Feintzeig (2022, 2023) for discussion of the prospects of intertheoretic reduction and its role in

constructing quantum theories that correspond with classical physics.
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models of quantum physics that correspond to models of classical physics because I focus on
the question of whether the structure of those models is preserved in the quantum–classical
transition. I set aside the question of whether the models or objects of classical physics
are in one-to-one correspondence with the models or objects of quantum physics (essential
surjectivity) by restricting attention to what will be the range of our quantization functor. I
focus on the question of whether there is a one-to-one correspondence between the structure-
preserving maps in classical and quantum physics (faithfulness and fullness), which is most
relevant to structural comparisons.14

In taking models of quantum physics to consist in deformation quantizations, I include
what might be considered “more structure” than that of quantum physics alone. If one
thinks that the structure of quantum physics can be captured already by a single C*-algebra
encoding the canonical commutation relations of quantum physics, then one might see the
gluing together of many C*-algebras in a continuous bundle as “excess structure”. A quanti-
zation and its associated continuous bundle adds to the algebraic structure of the canonical
commutation relations further information about how physical quantities scale with changing
values of Planck’s constant ~, or in different systems of units (Feintzeig, 2020, 2023). I allow
this scaling information as part of a model of quantum physics because in my examples the
scaling information is determined by a substantive physical interpretation of the elements
of a C*-algebra as quantities measured in associated physical units. For example, Feintzeig
(2020, 2023) shows how one can extract this non-trivial scaling information from the physical
interpretation of elements of the Weyl algebra as physical quantities. Hence, the framework
of strict deformation quantization encodes physically relevant structure for quantum models,
even if that structure goes beyond the canonical commutation relations.

One might also worry that deformation quantization comes with the “extra structure”
of a particular quantization map because quantization maps are in general not unique for a
given classical theory. One might object to choosing any particular quantization map—as I
will—to represent models of quantum physics. In response, note that distinct quantization
maps can still bear a relation of equivalence (See Landsman, 1998, p. 109), according to which
equivalent quantizations generate the same continuous bundle of C*-algebras. This signifies
that equivalent quantizations have the same asymptotic behavior in the classical ~→ 0 limit.
Many of the results I present in what follows are invariant under changes between distinct,
but equivalent quantization maps. In practice, a number of known quantization maps are
equivalent in this sense, so non-uniqueness of quantization maps does not obviously stymie
the below results concerning structural equivalence.

One might further worry that deformation quantization cannot succeed in providing
a structural correspondence between classical and quantum physics, given the known ob-
structions to preservation of Lie algebra structure in quantization (Gotay, 1999; Yaghmaie,
2020). However, deformation quantization avoids the obstruction results by requiring that
the Poisson bracket of the classical theory only match the commutator of the quantum the-
ory asymptotically and not exactly. One cannot in general find a Lie algebra isomorphism

14I do not know of any examples of models of quantum systems for which it is known that they cannot
be obtained through deformation quantization. If there were a model of quantum physics that could not be
obtained through deformation quantization, this would imply that its classical limit did not exist. If there
are any such cases, I suspect there would be significant controversy over whether they could count as genuine
physical models of quantum systems.
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between collections of observables in classical physics and quantum physics. But it would
be too quick to infer that classical and quantum physics do not share structure; such an
inference relies on what Barrett (2020b) calls the model isomorphism criterion for structural
comparison, which he rightly criticizes as not being flexible enough to account for the theo-
retical equivalence of many agreed upon reformulations in physics. The obstruction results
for quantization of Lie algebra structure motivate both the use of deformation quantization—
for its more flexible approximative agreement of algebraic structures—as well as the use of
category theory for structural comparisons—which avoids known problems with the model
isomorphism criterion for structural comparison.

In this vein, it is worth noting that the categorical equivalence between classical and quan-
tum physics that I discuss in this paper has a different philosophical significance than some
other categorical equivalences considered by philosophers. Specifically, others (Weatherall,
2019a,b) have been interested in categorical equivalence as a standard to assess theoretical
equivalence of different formulations of the same theory. Although I will display a categor-
ical equivalence, it manifestly does not preserve empirical structure between classical and
quantum physics, which is necessary to establish a full theoretical equivalence. In particular,
classical and quantum physics make different empirical predictions, e.g., for observed energy
spectra. Instead, the categorical equivalence merely provides an asymptotic or approximative
correspondence between these empirical structures, as described by Feintzeig (2020).

4.2 The Classical Limit

In the opposite direction of quantization, the classical limit can be understood as the process
of restricting a continuous bundle of C*-algebras obtained from quantization back to the
commutative C*-algebra at ~ = 0. Steeger and Feintzeig (2021a) show that the fiber algebra
A0 at ~ = 0 can be reconstructed from a given bundle of C*-algebras ((A~, φ~)~∈I ,A) over
I = (0, 1] containing only information about the quantum theory for ~ > 0. To do so,
consider the closed two-sided ideal K0 = {a ∈ A | lim~→0‖φ~(a)‖~ = 0} of sections vanishing
at ~ = 0. Steeger and Feintzeig (2021a, §4) show that the quotient

A0 = A/K0 (2)

is the unique limit point C*-algebra at ~ → 0 of the bundle up to *-isomorphism and that
the quotient map φ0 : A→ A/K0 defines the unique evaluation map at the fiber over ~ = 0.
This procedure allows one to reconstruct the fiber algebra A0 of the classical theory at ~ = 0
from the bundle of quantum algebras for ~ > 0.

Deformation quantizations and their associated bundles of C*-algebras provide a frame-
work for analysis of the classical limit. I do not, however, claim that this is the only mathe-
matical framework for analyzing the classical limit. The reason I employ these mathematical
tools is that they are perspicuous for philosophical engagement with the classical limit. For
example, Feintzeig (2020) argues that deformation quantization helps provide an interpreta-
tion of scaling behavior in the classical limit as explanatory, and in doing so resolves philo-
sophical puzzles around varying values of Planck’s constant. Further, Steeger and Feintzeig
(2021b) show that employing continuous bundles for analyzing the classical limit aids philo-
sophical discussions of structural determination by defining a classical limit functor, which
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I employ in what follows. I take this as sufficient justification for using this mathematical
framework in the remainder of the paper.

I now have enough tools to define the action of quantization and the classical limit on ob-
jects. Quantization associates to a Poisson algebra P of functions on M a non-commutative
C*-algebra A~ obtained by strict deformation quantization. On the other hand, the classical
limit associates to a non-commutative C*-algebra A~ the unique commutative algebra A0

functions on the phase space obtained as the ~→ 0 limit of a bundle. In order to draw struc-
tural comparisons, I further need a way to associate morphisms of classical and quantum
models with one another.

One can take the classical limit of a morphism as follows. Consider two continuous
bundles of C*-algebras ((A~, φ~)~∈I ,A) and ((B~, ψ~)~∈I ,B) over I = (0, 1] representing
quantum systems for ~ > 0. Suppose one has a family of morphisms α~ : A~ → B~ of
the fibers for ~ > 0 that lift to a *-homomorphism α : A → B of the algebras of sections
commuting with the evaluation maps in the sense that

α~ ◦ φ~ = ψ~ ◦ α (3)

for each ~ > 0. Steeger and Feintzeig (2021a, §5) show that in this situation the morphism
is appropriately continuous in ~ so that there is a unique limit morphism α0 : A0 → B0

obtained by factoring through the quotient A/K0 and thus satisfying

α0 ◦ φ0 = ψ0 ◦ α. (4)

This provides a direct way to associate morphisms of a model of quantum physics with
morphisms of a model of classical physics through the classical limit.

Now I present the conditions under which one can take the classical limit of a morphism
in the following definition. I associate with each family of quantization maps {Q~}~∈I a
collection of rescaling maps {RQ~→~′ : Q~[P ]→ Q~′ [P ]}~,~′∈I defined by

RQ~→~′ = Q~′ ◦ (Q~)
−1 (5)

for any ~, ~′ ∈ I.

Definition 3 (morphisms). Suppose one has two strict deformation quantizations (A~,Q~)~∈I
and (B~,Q′~)~∈I over I = (0, 1] of P and P ′, respectively. A *-homomorphism α~ : A~ → B~
between the fiber algebras at a fixed value ~ ∈ I is called

(i) smooth if α~
[
Q~[P ]

]
⊆ Q′~[P ′];

(ii) scaling if for every ~′ > 0, the map

α~′ = RQ
′

~→~′ ◦ α~ ◦RQ~′→~ (6)

extends continuously to a *-homomorphism A~′ → B~′ .

The smoothness condition says that a morphism preserves the additional structure of the
collection of quantized smooth functions on which the Poisson bracket is defined. Insofar as
the information that certain quantities are smooth, in addition to being merely continuous,
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is part of the physical theory, structure-preserving maps between quantum models should
encode this structure. The scaling condition says that a morphism preserves the algebraic
structure regardless of the numerical value of ~, where the rescaling maps are used to shift
the morphism to different values of ~′ > 0 in order to make the comparison. Insofar as the
numerical value of Planck’s constant ~ in a strict deformation quantization depends on a
system of units (See Feintzeig, 2020, 2023), it is merely a conventional choice, which the status
of a map as preserving the structure of the model should not depend on. Indeed, since it is
typical in deformation quantization—and it holds true in all cases considered in this paper—
that all of the algebras A~ for ~ > 0 are *-isomorphic, one can understand the algebras for
the quantum theory in different systems of units (different values of ~ > 0) as having the
same structure. By understanding morphisms of a quantum theory as *-homomorphisms
satisfying the scaling condition, I am only requiring that these structure-preserving maps
respect this structural sameness in different systems of units.15

If a *-homomorphism α~ : A~ → B~ is scaling, then the construction surrounding Eq. (3)
provides a lift of the family (α~)~∈I to a morphism of the algebra of sections of the bundle
and produces a unique limit morphism α0 satisfying Eq. (4). If α~ is smooth, then it follows
that α0 preserves the privileged Poisson subalgebra and the Poisson bracket (Steeger and
Feintzeig, 2021a, Prop. 5.5).

I will restrict attention to smooth, scaling morphisms of deformation quantizations. I
emphasize that such morphisms preserve more than the algebraic structure of a model of
quantum physics. The scaling condition ensures that a morphism preserves the algebraic
structure for any value of Planck’s constant ~ > 0. So with the interpretation given by
Feintzeig (2020) of different values of ~ corresponding to different systems of units, this
means that one can understand such a morphism to preserve the algebraic structure of a
model of quantum physics in any system of units. In other words, scaling morphisms preserve
the extra scaling structure described above that is encoded in deformation quantizations and
their attendant bundles. Since this scaling structure represents physically relevant informa-
tion governed by the interpretations of elements of a C*-algebra as physical quantities, this
justifies a restriction to morphisms that preserve this structure. Moreover, since scaling
morphisms are just those that do not depend on the system of units employed for the formu-
lation of quantum physics they should appear as morphisms even in an “intrinsic” or unitless
formulation of quantum theory (Dewar, 2021). I take these reasons to justify the restriction
to scaling morphisms in the results of this paper.

With these tools for understanding quantization and the classical limit, I will proceed to
characterize two categories of models of classical physics that can be quantized functorially,
and whose quantization provides a categorical equivalence.

5 Categorical Equivalences

Here, I present categorical equivalences for two classes of quantum models constructed
through strict deformation quantization (Feintzeig, 2024). In §5.1, I analyze quantization

15I leave it as an open question whether there even exist morphisms between fiber C*-algebras of a strict
deformation quantization that do not satisfy the scaling condition in cases of interest. I have not been able
to find morphisms between the fiber C*-algebras used in §5.1-5.2 that fail the scaling condition.
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via the C*-Weyl algebra, and in §5.2, I analyze Rieffel’s quantization for actions of Rd. This
vindicates the central claim of this paper by witnessing the structural continuity of these
particular quantization procedures on these models.

5.1 The C*-Weyl Algebra for Linear Phase Spaces

One standard method for quantizing classical theories using the C*-Weyl algebra applies
to systems whose phase space is the dual space V ′ (i.e., the collection of continuous linear
functionals) of a topological vector space V with a symplectic form σ (i.e., a non-degenerate,
bilinear, antisymmetric map V × V → R). In this case, the Poisson *-algebra ∆(V, 0) ⊆
Cb(V

′) is generated by the functions W0(f) : V ′ → C for each fixed f ∈ V defined by

W0(f)(F ) = eiF (f) (7)

for all F ∈ V ′. The Poisson bracket on ∆(V, 0) is defined by the linear extension of

{W0(f),W0(g)} = σ(f, g)W0(f + g) (8)

for all f, g ∈ V . This algebra ∆(V, 0) is norm dense in the C*-algebra AP (V ′) of continuous
almost periodic functions on the phase space V ′. This structure specifies the classical model.

The corresponding quantum model is obtained through the exponentiated Weyl form of
the canonical commutation relations, which define for each ~ > 0 a C*-algebra W(V, ~σ).
A dense subalgebra ∆(V, ~) is generated freely by linearly independent elements of the form
W~(f) for f ∈ V with multiplication and involution operations specified by

W~(f)W~(g) = e−
i
2
~σ(f,g)W~(f + g) (9)

W~(f)∗ = W~(−f) (10)

for all f, g ∈ V . There is a unique maximal C*-norm on ∆(V, ~) and the C*-Weyl algebra
W(V, ~σ) = ∆(V, ~) is defined as the completion of this dense subalgebra with respect to
the C*-norm (See Petz, 1990).

In the special case where V = R2n, one can understand W(V, ~σ) through the standard
Schrödinger representation πS on HS = L2(Rn). In this case, let Q~

j and P ~
j denote the

position and momentum operators

(Q~
jψ)(x) = xj · ψ(x) (11)

(P ~
j ψ)(x) = i~

∂

∂xj
ψ(x) (12)

for all ψ ∈ L2(R). Then πS is the continuous linear extension of the representation

πS(W~(a, b)) = ei
∑n

j=1 aj ·P ~
j +bj ·Q~

j (13)

so that W(V, ~σ) can be understood as the C*-algebra generated by exponentials of config-
uration and momentum quantities.
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The quantization maps Q~ : ∆(V, 0) → W(V, ~σ) are given for ~ ∈ [0, 1] by the linear
extension of

Q~(W0(f)) = W~(f) (14)

for all f ∈ V . These quantization maps define a strict deformation quantization on M = V ′

for the Poisson algebra P = ∆(V, 0) ⊆ A0 = AP (V ′) and fiber algebras A~ = W(V, ~σ) for
~ > 0 (Binz et al., 2004).

One can define a category of classical models with linear phase spaces, as follows. This
category will form the domain of a quantization functor.

Definition 4. Denote the following category by LinClass:

• Objects are pairs
(
AP (V ′),∆(V, 0)

)
, where AP (V ′) is the C*-algebra of almost periodic

functions on the dual to a topological vector space V , and ∆(V, 0) is the dense Poisson
subalgebra with Poisson bracket defined by a symplectic form σV .

• Arrows are *-homomorphisms α0 : AP (V ′)→ AP (U ′) for symplectic topological vector
spaces (V, σV ) and (U, σU) that are smooth in the sense that

α0

[
∆(V, 0)

]
⊆ ∆(U, 0) (15)

and Poisson in the sense that

α0

(
{A,B}V

)
=
{
α0(A), α0(B)

}
U

(16)

for all A,B ∈ ∆(V, 0).

Note that this category is general enough to include infinite-dimensional phase spaces repre-
senting linear classical field theories. The morphisms in this category preserve the structure
of classical models at ~ = 0 as symplectic phase spaces.

Similarly, one can define a category of quantum models corresponding to these linear
phase spaces.

Definition 5. Denote the following category by LinQuant:

• Objects are deformation quantizations
(
W(V, ~σ),∆(V, ~),Q~

)
~∈(0,1] of P = ∆(V, 0).

• Arrows are smooth, scaling *-homomorphisms α1 : A1 → B1, where A1 = W(V, σV )
and B1 = W(U, σU) are the C*-Weyl algebras at ~ = 1 for symplectic topological
vector spaces V and U , respectively.

The morphisms in this category thus preserve the structure of the fully quantized models as
non-commutative C*-algebras of operators at ~ = 1.

The following result holds:

Theorem 1 (Feintzeig (2024)). There are functors

QW : LinClass � LinQuant : LW (17)

providing a categorical equivalence.

The functors QW and LW provide a one-to-one correspondence between the structure-
preserving maps of each model in LinClass and LinQuant. Hence, this shows a sense
in which, relative to the structure encoded in these choices of categories, classical and quan-
tum models have shared structure, when compared with these choices of functors.
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5.2 Rieffel’s Quantization for Actions of Rd

While quantization via the Weyl algebra is prominent among philosophers, it has limited
applications and technical issues. Next, I consider a quantization prescription for a different
algebra. To do so, I restrict to finite-dimensional phase spaces, thus losing the generality of
the Weyl algebra for representing field theories. But this allows us to consider phase spaces
that are manifolds and not necessarily linear spaces.

The method of quantization due to Rieffel (Rieffel, 1993) applies to classical systems
whose phase space is a manifold M with a diffeomorphic action β of the Lie group Rd. In
what follows, I will assume the group Rd acts freely on M . In this case, I also assume the
Lie group carries a symplectic form σ on Rd, which corresponds to an antisymmetric matrix
Jjk on the vector space Rd, understood as the Lie algebra of the Lie group Rd. In this case
the Poisson *-algebra C∞c (M) ⊆ Cb(M) is the collection of smooth, compactly supported
functions on the phase space. This algebra C∞c (M) is norm dense in the C*-algebra C0(M)
of continuous functions vanishing at infinity on the phase space. The action of Rd on M
defines an automorphic action τ of Rd on C0(M) by

τx(f) = f ◦ βx. (18)

The subalgebra C∞c (M) carries a corresponding infinitesimal action of the Lie algebra Rd by
smooth vector fields ξX for X ∈ Rd given by

ξX(f) =
∂

∂t |t=0
τtX(f) (19)

for all f ∈ C∞c (M). The Poisson bracket on C∞c (M) is then defined from the infinitesimal
action of the Lie algebra and the symplectic form σ for all f, g ∈ C∞c (M) by

{f, g} =
∑
j,k

JjkξXj
(f)ξXk

(g), (20)

where the vectors {Xk}dk=1 form a basis for the Lie algebra Rd. This structure specifies the
classical model.16

The corresponding quantum model is obtained by deforming the product on C∞c (M).
Define P~(M) to be the vector space with involution C∞c (M) with the new multiplication
operation ?~, sometimes called the Moyal product, defined by

f~ ?~ g~ =

∫
Rd

∫
Rd

τx(f)τy(g)ei~σ(x,y) (21)

where I use the notation f~, g~ ∈ P~(M) to distinguish these from the identical elements
f, g ∈ C∞c (M). Rieffel (1993) shows that this expression can be made well-defined in terms
of oscillatory integrals, and that one can define a C*-norm on P~(M) so that the completion

A~(M) = P~(M)

16The methods developed by Rieffel (1993) for quantization apply more broadly, even to deforming prod-
ucts on non-commutative C*-algebras carrying actions of Rd. The methods have been further generalized by
Landsman (1998, 1999) to cases where the construction is employed locally, including Riemannian manifolds,
principal bundles, and Lie groupoids. Bieliavsky and Gayral (2015) have provided a generalization of the
quantization prescription for a much wider class of group actions.
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with respect to this norm is a C*-algebra. Note that each C*-algebra A~(M) also carries
a strongly continuous group action of Rd, which I denote by τ ~, picked out as the unique
continuous extension of the group action τ on P~ (Rieffel, 1993, Thm. 5.11, p. 44). Likewise,
there is an infinitesimal action of the Lie algebra, which I denote by ξ~ on the subalgebra
P~(M).

For example, in the case where M = R2n with the group action τ for d = 2n by trans-
lations, one has A~(R2n) ∼= K(L2(Rn)). One can also understand this algebra through the
standard Schrödinger representation of A~(R2n) on L2(Rn), which I now denote π̃S, given by
the continuous extension of

π̃S(f~) =

∫
R2n

dnadnb

(2π)n
(Ff)(a, b)πS(W~(a, b)) (22)

for f~ ∈ P~(R2n). Here, Ff denotes the Fourier transform of the function f ∈ C∞c (R2n) and
πS(W~(a, b)) is the Schrödinger representation of the element W~(a, b) in the Weyl algebra
W(R2n, σ) as given by Eq. (13).

The quantization maps Q~ : C∞c (M)→ A~(M) are given for ~ ∈ [0, 1] by

Q~(f) = f~ (23)

for all f ∈ C∞c (M). These quantization maps define a strict deformation quantization on M
with P = C∞c (M) and fiber algebras A~(M) for ~ > 0.

To define the categories of classical and quantum models suitable for Rieffel quantization,
I will need to specify when a morphism of a C*-algebra (either C0(M) or A~(M)) is com-
patible with a group action. Suppose one has a *-homomorphism α : A → B between two
C*-algebras A and B carrying group actions by Rd and Rd′ , respectively. I now denote the
infinitesimal action of the Lie algebra by ξ (corresponding to the action ξ or ξ~, as above.)
I will call α compatible with the group actions if for each X ∈ Rd′ , there is a Y ∈ Rd such
that ξX ◦ α = α ◦ ξY on the domain of ξX and ξY (i.e., on C∞c (M) or P~).

Now I define a category of classical models suitable for Rieffel quantization.

Definition 6. Denote the following category by RClass:

• Objects are triples (C0(M), C∞c (M), τ), where C0(M) is the C*-algebra of continuous
functions vanishing at infinity on a manifold M carrying a strongly continuous, free
action τ of Rd on C0(M) arising from a diffeomorphic action on M by Eq. (18).
C∞c (M) is a dense Poisson subalgebra with Poisson bracket defined by the symplectic
form σ on Rd by Eq. (20).

• Arrows are *-homomorphisms α0 : C0(M) → C0(N) for manifolds M and N that are
(i) compatible with the group actions, (ii) smooth in the sense that

α0

[
C∞c (M)

]
⊆ C∞c (N) (24)

and (iii) Poisson in the sense that

α0

(
{A,B}M

)
=
{
α0(A), α0(B)

}
N

(25)

for all A,B ∈ C∞c (M).
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This category is general enough to include non-linear phase spaces. The morphisms in this
category preserve the structure of classical models at ~ = 0 as phase spaces.

Likewise, I define a category of quantum models corresponding to Rieffel’s quantization.

Definition 7. Denote the following category by RQuant:

• Objects are deformation quantizations
(
A~(M),P~(M),Q~, τ

~
)
~∈(0,1] of P = C∞c (M),

as given by the discussion around Eq. (21) and (23).

• Arrows are *-homomorphisms α1 : A1(M) → A1(N) between the C*-algebras A1(M)
and A1(N) at ~ = 1 obtained as the Rieffel quantizations of C∞c (M) and C∞c (N), re-
spectively, where the morphisms are (i) compatible with the group actions, (ii) smooth,
and (iii) scaling.

The morphisms in this category preserve the structure of the fully quantized models as
non-commutative C*-algebras of operators at ~ = 1.

The following result holds:

Theorem 2 (Feintzeig (2024)). There are functors

QR : RClass � RQuant : LR (26)

providing a categorical equivalence.

The functorsQR and LR provide a one-to-one correpsondence between the structure-preserving
maps of each model in RClass and RQuant. Hence, this shows a sense in which, relative
to the structure encoded in these choices of categories, classical and quantum models share
structure, when compared with these choices of functors.

6 Significance for Theory Construction

Now that I have presented Thms. 1 and 2, I conclude by discussing their significance. By
presenting a structural correspondence between classical and quantum theories (relative to
the choices of categories and functors used to compare them), I have in some sense vindicated
the claims of structural preservation across theory change that structural realists draw upon
as evidence for their position. However, I believe that these structural comparisons have a
philosophical significance beyond structural realism. I argue here that structural comparison
is a worthy pursuit even for one who is skeptical about or uninterested in the realism debates.

Stein (1989) provides motivation for skepticism about the realism debates by arguing
that one cannot coherently distinguish between sufficiently sophisticated forms of realism
and antirealism. However, Stein ultimately endorses the idea that there is a significance
to finding structure that is maintained across instances of theory change. Some of Stein’s
remarks fit in with those of structural realists, including the following excerpt, which I quote
at length (Stein, 1989, p. 58):
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[I]n the development of physics in [...] our own century—an [...] astonishing dis-
covery has emerged; more astonishing because it involves our understanding of
ordinary, familiar things, and because the key to this understanding turns out to
lie in mathematical structures, and improved understanding in structural “deep-
ening”, of just such kind as characteristically occur in pure mathematics itself.
And, I should add, more astonishing not least because of the circumstance I am
concerned to emphasize, that in this structural deepening what tends to persist—
to remain, as it were, quasi-invariant through the transformation of theories—is
on the whole (and especially in what we think of as the “deepest”—or most
“revolutionary”—transformations) not the features most conspicuous in referen-
tial semantics: the substances or “entities” and their own “basic” properties and
relations, but the more abstract mathematical forms.

These claims of structural continuity echo those of Worrall (1989). But whereas Worrall
and other structural realists takes structural continuity as evidence for realism, Stein takes
a different tack. He finds significance for structural continuity in theory construction (Stein,
1989, p. 57):

I agree wholeheartedly [...] that we have learned—that is to say, scientists have
indeed learned, in their practice; and in our philosophical reflections upon science,
we should by now have learned explicitly—that successful scientific theories are
to be taken very seriously as clues to the deeper understanding of phenomena,
i.e. in the search for better and more fundamental theories.

The claim is that one should use the structure of our current physical theories as a guide in
the search for new physics. I take up this suggestion and argue that structural continuity
from classical to quantum physics has significance for the construction of new models.

First, notice that the quotes presented from Stein are slightly ambiguous. The term
“scientific theory” might refer to two different kinds of things, which I will distinguish by
calling them a theoretical framework and a model. On my usage, classical Hamiltonian
mechanics is a theoretical framework, while quantum mechanics is a different theoretical
framework. On the other hand, different dynamical equations define different models in
each framework. So for example, there is a model in the framework of quantum mechanics
for a single charged particle under a central Coulomb force as in the hydrogen atom, while
there is a distinct model for electromagnetically charged Fermionic matter fields governed by
the Dirac equation, and a distinct model for bosonic matter governed by the Klein-Gordon
equation, and so on. One of my claims is that it is worth thinking philosophically not only
about transitions between different theoretical frameworks (as is more common in the realism
literature), but also about the construction of new models.

In the construction of quantum theories, guidance is needed both at the level of frame-
works and models. Theoretical physicists do not have agreement about how to construct
new quantum theories, as evidenced by the proliferation of different approaches to quantum
gravity.17 In fact, some approaches seem to attempt to fit quantum gravity into the existing
theoretical framework of quantum mechanics, while other approaches seem to seek a new

17See, e.g., Callender and Huggett (2001).
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theoretical framework entirely. So guidance is needed for applying the theoretical framework
of quantum physics to construct models of phenomena that are currently outside its purview.
Further, guidance is needed in constructing mathematical models in the theoretical frame-
work of quantum physics that represent phenomena that already fall under the purview of
quantum field theory and the standard model of particle physics. There is not yet a mathe-
matically rigorous model capturing quantum Yang-Mills theory, the model of quantum field
theory underlying all inter-particle forces in the standard model. Although the predictions of
the standard model are well enough understood to be highly confirmed by empirical evidence,
the Clay Institute for Mathematics lists as one of the Millenium Prize Problems the task of
providing a rigorous mathematical formulation of quantum Yang-Mills theory reproducing a
basic property called the “mass gap” (Jaffe and Witten, 2000; Douglas, 2004). Similarly, the
profileration of different methods for constructing models in the framework of quantum field
theory (Summers, 2016) shows that scientists have not yet learned precisely how to take
successful quantum theories as clues for the construction of new models. My suggestion,
then, is that we should construct new models of quantum physics by extending quantization
procedures that are known to preserve structure. In this way, bringing structural continuity
to bear on the construction of models of quantum theory can have an impact on important
and outstanding questions in the foundations of physics.

My vision for how philosophical work in the tradition of the realism debates might make
a difference for scientific methodology in practice aligns closely with that of Stanford (2018).
Stanford translates anti-realism into a liberal stance concerning ongoing science in which one
should expect new theories to look very different from previous theories. In contrast, my con-
clusion in this paper is conservative in its recommendation to construct new physical theories
that do look like those of the past and present. I do not see this as a disagreement because
unlike in Stanford’s discussion, the task at hand in theoretical physics I am drawing attention
to is not to determine how one might project “forward” from methods for constructing quan-
tum theories to methods for constructing future theoretical frameworks. Rather, the task I
see is to determine how to project “sideways” by applying existing methods for constructing
models within the already known theoretical framework of quantum physics to construct new
models within the same theoretical framework. The quantization prescriptions analyzed in
this paper provide examples of how certain models in the framework of quantum physics
are already constructed from corresponding models in the framework of classical physics
in a way that is guided by and preserves theoretical structure. My suggestion is that the
results of this paper establishing structural preservation from classical to quantum physics
give us reason to conservatively employ essentially these same procedures at least as a first
attempt in the construction of new models. Stanford may be correct that drastic changes
are needed to construct new theoretical frameworks, but this conclusion need not apply to
the construction of new models within the known framework of quantum physics.

I am proposing two different positions for consideration, both of which I understand as
analogues of structural realism that move away from questions about metaphysics and even
what we ought to believe. Instead, these analogues of structural realism concern the more
pragmatic question of what methodology we ought to take going forward in science, thus
paralleling Stanford’s methodological position. The two different analogues of structural
realism that I propose advocate for, respectively, seeking out structural continuity in either
(i) the construction of new models of an existing framework (projecting sideways), or (ii)
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the construction of an entirely new theoretical framework (projecting forwards). I myself
believe both positions are plausible enough to be worth further discussion, but in this paper
I have only provided arguments bearing on the first position concerning the construction
of new models. So in this paper, I maintain agnosticism twice over—first, I am agnostic
about the traditional realist’s questions concerning what exists and what to believe (so
that my conclusions are orthogonal to the majority of the structural realism literature) and
second, I am agnostic about the appropriate methodology for constructing new theoretical
frameworks, although I think the methodology of aiming for structural continuity warrants
further investigation. Ultimately, the modest position I advocate for is that we should aim
for structural continuity when projecting sideways to construct new models in the existing
framework of quantum physics.

Note that aiming for structural continuity from classical to quantum models involves
more than merely agreeing to formulate new physics in a broadly quantum mechanical frame-
work. In contemporary formulations, constructing models of quantum field theory involves
defining a non-commutative product on a relevant algebra of field quantities, which in turn
corresponds to a choice of quantization map (Fredenhagen and Rejzner, 2015; Hawkins and
Rejzner, 2020). The methodological force of aiming for structural continuity as I advocate
in this paper involves using the structure of classical physics to guide the construction of
such algebraic structures. Indeed, I believe such considerations from correspondence with
classical physics already play a role in mathematical physics. The detailed ways in which
mathematical physicists use information from classical physics to inform the construction of
models of quantum field theory deserves systematic philosphical attention.

The construction of new models of quantum physics by these means will not necessarily
ensure the desired outcome (e.g., an accurate representation of the phenomena), but it
would provide at least a conservative understanding of the mathematical formulation of
such models of quantum field theory—or more generally, new models of quantum physics—
that aligns with our current understanding of the mathematical formulation of models of
quantum theory. I believe that this is a good place to start, and I hold out hope that this
will clarify issues faced in generating new physics.

One might be skeptical that quantization and structural continuity will play a role in the
construction of models of quantum Yang-Mills theory. Physicists often emphasize instead the
importance of the renormalization group in resolving divergence issues in the construction of
quantum theories. One might object that renormalization group methods seem independent
of quantization. However, contemporary mathematical approaches to quantum field theory
reveal that the framework of deformation quantization applies to many field theory models
including Yang-Mills gauge theory models (Fredenhagen and Rejzner, 2013, 2015). The
process of renormalization can be understood in causal perturbation theory as resolving
ambiguities in the products of operators at the same spacetime point. The definition of the
non-commutative product that resolves these renormalization ambiguities also corresponds
to a choice of quantization map (Hawkins and Rejzner, 2020), which is thus informed by the
corresponding model of classical physics. Recent work even shows promise for resolving large
order divergences in perturbation theory by defining the non-commutative product in a way
that allows the coupling constant in an interacting field theory to take on a numerical, rather
than formal value (Hawkins and Rejzner, 2020). These last mentioned results take place in
the framework of formal, rather than strict deformation quantization, so they treat ~ as a
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formal parameter. Further work remains in the transition from formal to strict quantization,
which would allow us to understand the quantum model in terms of genuine operators. Still,
the recent literature in mathematical physics shows that the correspondence of classical and
quantum structure has a role to play in quantum field theory.

What, specifically, does one learn from the central results of this paper—that quantiza-
tion can be understood as a categorical equivalence—for the construction of quantum theo-
ries? First, by understanding what structures are preserved from classical physics through
quantization in known models, one gains insight into the structures one needs to specify in
classical theories in order to quantize them in the same manner. Second, by understanding
quantization as a functor, there is a sense in which one employs the same prescription for
theory construction across a variety of model systems, rather than ad hoc methods that vary
from case to case. Third, by establishing a categorical equivalence one is assured that the
known quantization prescriptions preserve the structure of classical models, which provides
motivation for generalizing these methods for theory construction to a class of models wide
enough to encompass cases of interest, e.g., classical field theories with infinite dimensional
phase spaces and non-linear dynamics. I hope to have shown that structural preservation
between classical and quantum physics, as established in this paper, is significant for the
construction of quantum theories.
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