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Abstract
Phenomena in gauge theory are often described in the physics liter-

ature via a specific choice of gauge. In foundational and philosophical
discussions this is often criticized as introducing gauge dependence, and
contrasted against (often aspirational) “gauge-invariant” descriptions of
the physics. I argue, largely in the context of scalar electrodynamics, that
this is misguided, and that descriptions of a physical process within a
specific gauge are in fact gauge-invariant descriptions. However, most of
them are non-local descriptions of that physics, and I suggest that this
ought to be the real objection to such descriptions. I explore the unitary
gauge as the exception to this nonlocality and consider its strengths and
limitations, as well as (more briefly) its extension beyond scalar electro-
dynamics.

1 Introduction: who’s afraid of gauge fixing?

Consider the theory of a complex scalar field interacting electromagnetically
(‘scalar electrodynamics’, as particle theorists call it). In this theory, the fields
are represented by ordered pairs (ψ,A), where ψ is a complex scalar field on
Minkowski spacetime on M and A is a covariant vector field (i. e. , one-form
field). We normally also include some boundary condition: asymptotically at
spatial infinity, A tends to zero and ψ tends to some constant value.1 Theories
like this are varyingly used to describe classical field theories, the theory of a
quantum particle moving in a background classical electromagnetic field, and
(normally through the mechanism of the path integral, and/or using the for-
malism of the quantum effective action) scalar electrodynamics, the theory of a
complex quantum scalar field interacting with a quantum electromagnetic field.
I write F for the space of all such fields satisfying the boundary conditions and
whatever smoothness requirements a particular theory leads us to impose.

It is key to theories of this kind that their dynamics (however formulated)
is gauge-invariant : invariant, that is, under transformations of the form

ψ(x) → U(x)ψ(x), Aµ(x) → Aµ(x)−
1

e
U−1(x)∂µU(x) (1)

1In some applications of gauge theory — such as SU(2) gauge theory in three spatial
dimensions — it is possible to have a spatially varying boundary condition (see, e. g. , (Cheng
and Li 1984, section 15.3); I set this aside for simplicity.
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where U is a smooth complex function on spacetime satisfying |u(x)| = 1, or
equivalently (since Minkowski spacetime is simply connected),

ψ(x) → eieθ(x)ψ(x), Aµ(x) → Aµ(x)− ∂µθ(x) (2)

where θ is a smooth real function on spacetime. (In either case, e is a nonzero
real number representing the strength of the electromagnetic coupling.) These
transformations are called local U(1) transformations, since U can also be
thought of as a function from spacetime to the group U(1); the group of all
such transformations is G.

This framework readily generalizes to non-Abelian gauge theory, where now
ψ is not just a complex field but takes values in some space V, and where A is a
one-form taking values in a Lie algebra of operators on V; it also generalizes to
theories where ψ is a spinor or vector field. In each case there is a generalization
of the notion of a gauge group, with U taking values in a group larger than U(1)
and applying a somewhat more complicated transformation rule to A. In this
general framework, if G is the group in which U takes values, the gauge group
G is the group of all such U , i. e. all smooth maps from spacetime to G. The
technical details are well known (see, e. g. , (Weinberg 1995, ch.15)) but will not
be needed here. (It is also common in the philosophical literature — see, e.g.,
(Healey 2007; Weatherall 2016) — to use the more elegant, but more abstract,
framework of fiber bundles, so that ψ becomes a section of a V-bundle over
spacetime, A becomes a connection on that bundle, and G becomes a group of
automorphisms of that bundle but for my purposes this is unnecessary.)

Gauge symmetry in physics is normally taken as a sign of representational re-
dundancy : the pair (ψ,A) overdescribes the physical goings on, so that distinct
such pairs actually describe the same physics. To be more precise: let’s say that
a gauge transformation is small if its defining function U tends to the identity
at infinity and if it can be smoothly deformed to the identity while preserving
this boundary condition. (For U(1) gauge theory on Minkowksi spacetime, this
second condition is actually redundant, but for some gauge theories, and some
background topologies, there are gauge transformations that equal the identity
at the boundary but cannot be deformed to the identity everywhere while re-
specting the boundary condition.) And a transformation is boundary-preserving
if it leaves the spatial boundary condition invariant. Any small gauge transfor-
mation is boundary-preserving, but the converse need not be true. Small and
boundary-preserving transformations each form a group, which I write respec-
tively as GS and GBP .

Then the normal interpretation of gauge transformations in the physics lit-
erature is:

� Small gauge transformations simply encode representational redundancy:
fields related by a small gauge transformation are the same field differ-
ently described. The group GS ⊂ G of small gauge transformations is
not a physical symmetry group at all, but just a representation of that
redundancy.
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� Large gauge transformations, insofar as they are boundary-preserving
(that is, insofar as they are defined at all as transformations on the space
of fields) are physically-meaningful symmetry transformations in the same
way as (say) the global U(1) symmetries of the Klein-Gordon field, or the
translation and rotation symmetries of Euclidean space. The quotient
group GBP /GS (whose action on a classical field is defined up to a small
gauge transformation) is the physical (internal) symmetry group of the
theory.

(I defend this physics orthodoxy in extenso in Wallace (2022c, 2022a, 2022b);
see also (Belot 2018). Here I just assume it.)

At a somewhat abstract level, the true space of classical fields is not F
but the quotient space F/GS , whose elements are equivalence classes under the
equivalence relation (ψ,A) ∼ (ψ′, A′), which holds between two field pairs iff
they are related by a small gauge transformation. But this space is hard either
to calculate with concretely, or to interpret physically. In mainstream physics,
the normal route to address this problem is gauge fixing : we come up with some
condition on field pairs (ψ,A) such as to pick out exactly one element of each
equivalence class. It will be helpful to have some specific examples2 (in each
case from scalar electrodynamics):

Coulomb gauge: Choose a space/time separation on Minkowski spacetime,

write A = (V,
#»

A), and impose the condition that
#»∇· #»

A = 0. To see that this

does successfully define a gauge fixing, consider an arbitrary field (ψ, V,
#»

A)

and look for the gauge transformation (ψ, V,
#»

A) → (eieθψ, V − θ̇,
#»

A− #»∇θ)
that puts it into Coulomb gauge. We can easily see that θ solves

∇2θ =
#»∇ · #»

A (3)

which has a guaranteed solution that is unique given the boundary con-
ditions. So the gauge fixing condition picks out at least one element of
each equivalence class (because some such θ can always be found) but also
at most one element (because θ is unique). Note that Coulomb gauge is
purely a condition on the vector-field part of the field pair and does not
constrain the matter field.

Lorenz gauge: require ∂µA
µ = 0. By essentially the same argument as for

Coulomb gauge, any field is related to a field in Lorenz gauge by a gauge
transformation unique up to some function χ satisfying ∂µ∂

µχ = 0. Given
some boundary conditions at infinity, this makes Lorenz gauge a valid
gauge transformation provided that it is supplemented by some additional
gauge-fixing term on the initial (or final) data (e.g. that it satisfies ∂iA

i =
0 at the time). Lorenz gauge is again a condition purely on the vector field.

Unitary gauge: require that ψ is real and positive. Since we can write ψ =
ρeiϕ, it is immediate for nonzero ρ that the gauge transformation θ = ϕ/e

2For details, see any modern quantum field theory textbook, e. g. (Weinberg 1995; Peskin
and Schroeder 1995).
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uniquely transforms a field into unitary gauge. Unitary gauge, unlike our
first two examples, is a condition purely on the scalar field, leaving the
vector field unconstrained. (Unitary gauge has some subtleties, especially
in the case where ρ = 0, which I consider in more detail later.)

Rξ gauge: Writing ψ(x) = (ρ0 + v + ib) for some nonnegative real number ρ0
(usually whatever the boundary condition is) we impose

∂µA
µ = eξvb (4)

for arbitrary ξ. Rξ gauge is a hybrid of unitary and Lorenz gauge, and
places a joint constraint on scalar and vector fields. (I leave it to the
reader to demonstrate that it successfully fixes a gauge, given appropriate
initial and boundary conditions.)

The normal assumption in physics is that gauge fixing is necessary to remove
the descriptive redundancy, but that the specific choice of gauge fixing is a
situation-dependent matter of convenience and pragmatics. The Coulomb gauge
is excellently suited to reveal the degrees of freedom of the electromagnetic field,
but is awkward calculationally because it breaks Lorentz invariance; Lorenz
gauge is much more convenient in that respect. Unitary gauge is conceptually
helpful in understanding the Higgs mechanism, but Rξ gauge is better suited to
addressing renormalization in Higgs calculations.3 A choice of gauge, just like
a choice of coordinate system, is a necessary preliminary to doing physics.

In the foundational literature, and in philosophy of physics, the mainstream
physics approach has been met with suspicion. The general concern is that
since only the gauge-invariant features of the field are physically meaningful,
any gauge-fixed description mixes up genuinely gauge-invariant (and so, real)
features of the physical problem with gauge-dependent (and so, illusory) features
that just reflect our conventional choice of one gauge-fixing over another. The
main foci of this literature are the Higgs mechanism and the Aharonov-Bohm (A-
B) effect. In the former case, the definitive statement of the objection remains
John Earman’s ((Earman 2003, 189-190)):

The popular presentations use the slogan that the vector field has
acquired its mass by “eating” the Higgs field. But, as the authors of
the standard treatises well know but rarely bother to warn the un-
wary reader, talk of the Higgs field has to be carefully qualified since
by itself, the value of [ψ] does not have gauge invariant significance.
The popular slogan can be counterbalanced by the cautionary slogan
that neither mass nor any other genuine attribute can be gained by
eating descriptive fluff.. . . it is dereliction of duty for philosophers to
repeat the physicists’ slogans rather than asking what is the content
of the reality that lies behind the veil of gauge.

In the latter, one of the early influential statements is Healey’s (1997, p.22):

3See, e. g. , (Weinberg 1995, section 21.2) for a discussion of this point.

4



[T]he A-B effect is local only if [the vector potential] is a physically
real field, capable of acting on the electrons directly. But there is
reason to doubt that the magnetic vector potential is a physically
real field, since [it] is not gauge-invariant, unlike the magnetic field
#»

B and the phase-shift. . .

The search for gauge-invariant accounts of the A-B effect is worth reviewing
in more detail, as a reference point for later considerations. The usual argument
goes: in classical electromagnetism the field strength

Fµν = ∂νAµ − ∂µAν (5)

(or its electric and magnetic components

#»

E =
#̇»

A− #»∇V ;
#»

B =
#»∇× #»

A (6)

in any given inertial frame) are gauge-invariant and provide a complete descrip-
tion of the gauge-invariant features of the theory, but this ceases to be true
when we consider the interaction of an electric field with a complex charged
field, whether understood classically or through quantum particle mechanics or
QFT. For consider a static magnetic field defined on a space coordinatized with
Lorentz-frame coordinates (t, x, y, z) from which the z-axis has been removed
from space at each instant in time (this ‘solenoid spacetime’ might be used to

model an idealized solenoid). We take the electromagnetic field A = (V,
#»

A), in
Coulomb gauge, to be

V (t, z, y, z) = 0;
#»

A(x, y, z) =
Φ

2π(x2 + y2)
(y,−x, 0) (7)

We can readily calculate that
#»

E =
#»

B = 0, but the quantity

∆ =

∮
C

#»

A · d #»x = Φ (8)

(where C is any path enclosing the missing z-axis) is equally readily demon-
strated to be gauge-invariant.4 And this quantity is physically significant: ∆e
is exactly the induced phase shift for interference between beams of charged
particles that pass to either side of the solenoid. So we have gauge-inequivalent
A-fields, but that inequivalence is invisible as long as we have only the field
strengths. If we de-idealize the problem by restoring a physical solenoid along
the z-axis, we need to thread a magnetic field of total flux Φ (strictly speaking,
Φ+n/e) through a narrow tube around the axis, but the magnetic field remains
zero in the region through which the charged particles actually pass. So we
seem to be left with a trilemma (explored in detail by Healey (2007)):

4More accurately, it is invariant under small gauge transformations; large gauge transfor-
mations can modify it by integer quantities.
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1. We could take the field to be characterized by the field strengths alone
— but then that characterization is inadequate for spacetimes of cer-
tain topology, and commits us to a form of action at a distance even
in Minkowski spacetime.

2. We could take it to be characterized by the holonomies

H[C] =

∮
C

Aµ · dxµ (9)

where now C is any closed path in spacetime — but now our characteriza-
tion (as well as being extremely awkward calculationally) is non-separable,
since the separate holonomies in regions A and B will underdetermine the
holonomies in A ∪B.

3. Or we could just take it to be characterized by the field A — but now
that characterization is gauge-dependent, and (so long as we hold on to
the idea that gauge-related fields are just different representations of the
same physical goings-on) our description obscures matters by mixing up
genuine physics and descriptive fluff.

I pause to notice an oddity about this (widely used) approach to the A-
B effect. It assumes vacuum electrodynamics, or else electrodynamics against
a background of externally-imposed charge and current densities, so that we
have to characterize only the electromagnetic field, and can neglect the charged
matter field. But the equations of classical electrodynamics are

∂νF
µν = 4πJµ (10)

where the current Jµ is either stipulated as background or dynamically gener-
ated from some gauge-invariant phenomenological model, such as charged dust.
And the (internal) dynamical symmetry group of this theory is not just local
U(1) symmetries, but the wider group of symmetries

A→ A+ χ (11)

where χ is any closed one-form field: that is, any one-form field satisfying ∂µχν+
∂νχµ. (On a simply-connected manifold a one-form is closed if and only if it
is exact (can be expressed as the derivative of a function) but this is not the
case on multiply-connected manifolds, like our idealized-solenoid spacetime.)
Holonomies are not invariant under these transformations; indeed, it is easy to
show that the A-field on a region is fully characterized, up to transformations
of form (11), by the field strength F on that same region, so that after all the
field strength provides a local, gauge-invariant characterization. It is exactly
because electromagnetism is invariant under this wider symmetry group that
the Aharonov-Bohm effect requires quantum mechanics (or at any rate coupling
to a complex field that also transforms under local U(1)). But in that context,
we should be looking for a gauge-invariant description not just of A but of the
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pair (ϕ,A) — and neither the field strength nor the holonomy does that. I
expand on this observation in (Wallace 2014).

I return to the issue of characterizing (ψ,A) and not just A in section 3. For
now I want to point out a more basic problem with the idea that we need to
replace gauge-fixed accounts of electromagnetic physics with genuinely gauge-
invariant ones. Consider again the gauge-fixed expression (7) for the solenoid
spacetime’s scalar and vector potential in the Coulomb gauge, and pick a specific
t, x, y, z. The property that an electromagnetic potential has if, in the Coulomb
gauge, it has value (Φ/2π(x2 + y2))(0, y,−x, z) at point (t, x, y, z) is a gauge
invariant property.

How can this be? Well: a gauge-invariant property is one that holds of a
field (ψ,A) iff it holds of any gauge-related field (u∗(ψ,A)). The statement that
the A-field at (t, x, y, z) has such-and-such value, simpliciter, is obviously not
gauge-invariant: any gauge transformation with nonzero derivative at (t, x, y, z)
will change it. But two fields that are gauge related, are, by definition, exactly
the same when expressed in a specific gauge.

We can go further. The statement “there is a gauge in which the A-field is
given by (7)” is also gauge-invariant. It holds of a field A iff there is a gauge
transformation that takes it to (7). But of course if A and A′ are gauge-related
then this holds of one of them iff it holds of the other.

(There is a close analogy to the equally-counter-intuitive fact that we can
use coordinate systems to give coordinate-independent specifications of the dis-
tribution of matter. One way to say that a given curve in R2 is diffeomorphic to
the circle, for instance, is to say that there is a smooth coordinatisation of R2

in which the curve satisfies x2 + y2 = 1. I expand on this feature of coordinate
systems in (Wallace 2019).)

So: gauge-fixing is not an alternative to a gauge-invariant characterization
of the fields of scalar electrodynamics; it is a way to provide a gauge-invariant
characterization. And insofar as there is reason to find such characterizations
unsatisfactory, that reason cannot be that they are gauge-variant.

Let us see what it might be.

2 A framework for gauge-invariant descriptions

It will be helpful to consider the problem in a more general and abstract frame-
work. Let’s say that a gauge field theory is a triple (M,F ,GS), where

� M is a manifold (possibly with additional structure);

� F is a space of fields on M. I leave intentionally vague exactly what ‘field’
means here: certainly I intend it to cover at least the usual collections of
scalar, vector, tensor, and spinor fields one finds in particle physics. But
I require fields to satisfy two conditions:

(i) Fields are local: if φ is a field on M, it has a well-defined restriction
to a field φ|X on any open subset X ⊂ M, satisfying the consistency
requirement that (φ|X)|Y = φ|Y for Y ⊂ X ⊂ M.
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(ii) Fields are separable: If {Xi} is a collection of open subsets of M
with ∪iXi = X, then for any two fields φ,φ′, if φ|Xi = φ′|Xi for each
i then φ|X = φ′|X . (In other words, a field is specified in a region
by specifying its values in elements of an arbitrarily small partition
of the region.)

FX is the space of fields restricted to X.

� GS is a group of bijections of F — the (small) gauge transformations
of the gauge field theory. Any element g ∈ GS has a restriction g|X
to any open subset X ⊂ M, and this restriction commutes with field
restriction: (g|X)∗(φ|X) = (g∗φ)|X . Two restricted fields φ,φ′ on X are
gauge-equivalent iff there is some g ∈ GS such that g|A(φ) = g|A(φ′); as a
special case, two fields on the whole manifold are gauge-equivalent iff they
are transformed into one another by some g ∈ GS .

Of course, this is a very attenuated notion of physical field, lacking any notion of
dynamics, but it will suffice for our purposes. Scalar electrodynamics clearly fits
this framework: the fields are pairs (φ,A) satisfying the boundary conditions,
the small gauge transformations are the small local U(1) transformations. So
do non-Abelian gauge theories, and theories with spinor or tensor matter fields.

Given this setup, a descriptor d for the theory is a map d : F → D, where D
is any space we like. A descriptor might return a field’s value at some spacetime
point, or its average over some spacetime region, or its asymptotic behavior, or
it might be a map taking values in {T, F}, returning T iff the field has some
specified property.

A descriptor d is gauge-invariant if d(φ′) = d(φ) whenever φ′ and φ are
gauge-equivalent, i. e. whenever there is some g ∈ GS such that g∗φ = φ′. Con-
versely, a descriptor is complete if whenever d(φ) = d(φ′), φ and φ′ are gauge-
equivalent. A complete gauge-invariant descriptor provides a non-redundant,
gauge-invariant description of the field theory: if we know that a field is mapped
to some x ∈ D, we know which field it is up to gauge invariance.

In electrodynamics, each value F (x) of the field strength at spacetime point
x is a descriptor; so is the overall field F . Both are gauge-invariant; the latter is a
complete descriptor for vacuum electrodynamics provided that the spacetime is
simply connected. Each holonomy ∆(C) is a (gauge-invariant) descriptor; so is
the holonomy map C → ∆(C); the latter is complete for vacuum electrodynamics
whatever the topology of the spacetime. The vector field itself at a point, A(x),
is a descriptor; so is the matter field ψ(x); so is the (trivial) descriptor that
just assigns each field pair (ψ,A) to itself. The latter is complete; neither are
gauge-invariant.

Gauge fixings are also easily described in this framework: a gauge-fixing f
is a map from F to itself with the properties that (i) f(φ) is gauge-equivalent
to φ, and (ii) if φ and φ′ are gauge-equivalent, f(φ) = f(φ′). (This is just to
say that a gauge-fixing picks out a preferred member of each gauge equivalence
class.
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My point in the previous section is now simply that gauge fixings are com-
plete gauge-invariant descriptors. This is easy to demonstrate, indeed almost
immediate. Recall that a gauge fixing selects one element from each class of
gauge-equivalent fields. So it can be represented by a map f from F to itself,
such that f(φ) = f(φ′) iff φ and φ′ are gauge-equivalent. But that is just the
condition for f to be a complete gauge-invariant descriptor.

So what — if anything — is wrong with just saying that we extract a theory’s
gauge-invariant content just by choosing a gauge?

3 Locality

To answer this, let’s specialize again: back to scalar electrodynamics, and specif-
ically to Coulomb gauge. We have

#»∇× (
#»∇× #»

A) ≡ #»∇× #»

B; (12)

using the identity
#»∇ × #»∇ × #»

A =
#»∇(

#»∇ · #»

A) − ∇2 #»

A and the Coulomb gauge
condition, we get

∇2 #»

A =
#»∇× #»

B. (13)

The right side of this equation is gauge-invariant, and (given boundary condi-
tions) the equation can be solved explicitly to give the left side in terms of the
right:

#»

A( #»x , t) =
1

4π

∫
dx′3

#»∇× #»

B(
#»

x′)

| #»x − #»x ′|
(14)

On the one hand, this (combined with the equivalent result for V ) is an explicit
definition of my general observation that a gauge-fixed potential is uniquely de-
termined by gauge-invariant features of the field, and so is itself gauge-invariant.

On the other hand, it is equally true that the gauge-fixed potential is non-
locally dependent on manifestly local gauge-invariant features of the field like
#»

B. To determine
#»

A(t, #»x) in the Coulomb gauge we need to know the magnetic
field arbitrarily far from #»x (albeit the degree of dependence falls off with the

inverse square of distance).
#»

A(t, #»x) may be a gauge-invariant quantity, but it is
not in any physically meaningful sense localized at (t, #»x), despite its deceptive
formulation as a vector field.

With this in mind, let’s return to our abstract formalism and ask how to
think about locality. We can define a local descriptor d as follows: it is specified
(for a gauge field theory (M,F ,GS)) by:

� A map X → DX that assigns a (possibly structured) space DX to each
open subset X ⊂ M

� For each X,Y with Y ⊂ X, a restriction map x → x|Y from DX to DY ,
such that (x|Y )|Z) = x|Z (hence the notation x|Y is consistent without
needing to mention what DX x belongs to).

9



� For each X ⊂ M, a map dX : FX → DX , which commutes with restric-
tion:

(dX(φ))|Y = dY (φ|Y ). (15)

The idea is that d does not just describe the entire field: for any X, it describes
the field on X. Clearly any local descriptor is a descriptor.

We define a local descriptor as:

� separable iff, given any collection of sets {Xi} with ∪iXi = X, if dXi
(φ|Xi

) =
dXi(φ

′|Xi) then dX(φ|X) = dX(φ′|X). In other words, a local descriptor is
separable iff its description of a field on X depends only on its descriptions
of the restrictions of the field to arbitrarily small elements of a partition
of X.

� Locally complete iff for any X ⊂ M, and any fields φ,φ′ ∈ FX , if dX(φ) =
dX(φ′) then φ and φ′ are gauge-equivalent.

We can apply this framework to the usual gauge-invariant descriptors used
in discussions of the A-B effect. The map A→ F is a local descriptor, assigning
to each gauge potential on a region its field strength on that same region; it
is separable, but not locally complete, even though it is complete (as long as
we continue to ignore matter fields) on simply connected manifolds. That is:
knowing F everywhere on a simply connected space fixes the connection on that
space up to gauge equivalence, but knowing F on a multiply-connected subset
of that space does not fix the connection on that subset, even up to gauge
equivalence. Conversely, the assignment to each X ⊂ M of the holonomies of
curves in X is locally complete, but not separable.

As for gauge-fixings: the Coulomb gauge is not a local descriptor at all,
despite its deceptively field-theoretic format: we cannot gauge-transform the
restriction of a field to X ⊂ M into Coulomb gauge without knowing the gauge-
invariant features of the field everywhere, not just in X, as we have seen. Nor
are the Lorenz and Rξ gauges, for similar reasons.

How general is this? It is straightforward to see that a large class of gauge-
fixings fail to be local descriptors. Specifically, consider local gauge-fixings, in
which the gauge is fixed by requiring

H(x,Aµx, ∂νAµ(x), . . . ψ(x), ∂µψ(x), . . .) = 0 (16)

for all x and for some function H, with the . . . indicating possible dependence
on finitely many higher derivatives. (All gauge-fixings I know are local gauge
fixings; it is hard to see how any other gauge-fixing could provide a local de-
scriptor, though I know of no rigorous results here.) Suppose that (ψ,A) is a
field and that Λ is a gauge transformation which transforms it into a field that
satisfies the gauge-fixing condition, and suppose also (which is generically the
case) that the gauge group acts freely on (ψ,A), i. e. no nontrivial gauge trans-
formation leaves (ψ,A) invariant, so that Λ is unique. We will then have some
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equation for Λ, of form

H(x,Aµ(x)+∂µΛ(x), ∂ν(Aµ(x)−∂µΛ(x)), . . . , ψ′(x)eieΛ(x), ∂µ(ψ
′(x)eieΛ(x)), . . .) = 0.

(17)
It is clear that in general this will be a differential equation, which suffices to
uniquely determine Λ within X only given boundary conditions on X. For the
gauge-fixing to be well-defined on M we will have to assume that the conditions
(16) are supplemented by some boundary conditions on M. But these do not
in general determine boundary conditions on some subset X ⊂ M: in general,
even if we can solve the equations inwards from the boundary of M (which
is by no means guaranteed) the boundary data on X will depend not only on
the boundary conditions at M but also on the fields on the complement of
X. Hence, two fields that are gauge-equivalent on X will in general not be
gauge-fixed into fields that are equal on X.

The only way around this requirement is for H to depend at most on ψ(x)
and x, but not on A(x) or any derivatives of ψ or A: only in this case will
the gauge condition be an algebraic constraint on Λ. Since the modulus of ψ is
gauge-invariant, this effectively makes the gauge condition into a condition on
the phase of ψ: writing ψ(x) = ρ(x)eieϕ(x), the gauge condition becomes

ϕ(x) = f(x, ρ) (18)

for an arbitrary smooth function f(x, ρ). Call this gauge-fixing condition gener-
alized unitary gauge (fairly clearly it will almost always be simpler in practical
applications just to use unitary gauge).

4 The limitations of unitary gauge

To sum up: most gauge-fixings provide a gauge-invariant description of a theory,
but in most cases that description is highly nonlocal, describing the fields as
a whole but providing no reliable insight into the spatial structure of those
fields’ gauge-invariant features. Unitary gauge (and its generalizations) are an
exception, providing a description of the fields that is gauge-invariant, local,
and separable.

Furthermore, unitary gauge has a natural interpretation in terms of directly-
physical, obviously gauge-invariant features of a theory. The (always-real, always-
positive) field ψ in unitary gauge represents the manifestly gauge-invariant quan-
tity |ψ|. (In a generalized unitary gauge, this is represented by ψe−ief(x,|ψ|)).
The connection A satisfies the equation

Dµψ = ∂µψ + ieAµψ (19)

and in unitary gauge ψ is real, so that Aµψ, up to charge, is the imaginary part
of the covariant derivative. If we write ψ = ρeieϕ, this can be rewritten as

Aµ = ∂µϕ (20)
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so thatA just represents the (again, manifestly gauge-invariant) covariant deriva-
tive of the phase. (See (Struyve 2011) for further consideration of this close re-
lationship between unitary gauge and a manifestly gauge-invariant description.)

This might suggest a preferred status for (generalized) unitary gauge: it,
and it alone, provides a local, separable, representation of the gauge-invariant
features of a field. There are two reasons to be cautious of this conclusion, which
I will refer to as the Degeneracy Reason and the Incompleteness Reason.

The Degeneracy Reason is that unitary gauge is not actually a gauge-fixing
whenever ψ = 0 on an open subset of M. For then we can assign the phase of
the scalar field arbitrarily, and more importantly, then we cannot recover the
connection (and hence the gauge-invariant field strength) from the (vanishing)
covariant derivative of ψ.

There is something important to this objection (to which I return below) but
in itself it should not be taken seriously. If ψ literally vanishes on an open set X,
then unitary gauge is ill-defined onX. But if 0 < |ψ| < 10−10100kg onX, unitary
gauge is perfectly well defined.5 And to suppose that it is physically significant
whether |ψ| = 0 or merely |ψ| < 10−10100kg is to take scalar electrodynamics far
more literally than it has any right to be taken. It is an approximately-accurate
description of the structure of certain systems on certain scales, not a candidate
for the Theory of Everything.

The point is only sharpened in quantum field theory, where classical fields
are not direct descriptions of a system but merely variables in a path integral.
That path integral requires regularization to be well-defined, but under any
reasonable regulararization, fields that vanish on an open set will have measure
zero, and so will not contribute to the path integral.

That said, the Degeneracy Reason does suggest that unitary gauge will be
misleading or unhelpful — even if strictly correct — when applied to regions
where the matter field is negligible. One way to characterize the abstract struc-
ture of a gauge theory is that a choice of gauge corresponds to a reference frame
(for scalar electrodynamics, a choice of the real axis) in the internal field space
at each point in space, and that the connection tells us how to relate those
reference frames along any given path. Unitary gauge amounts to letting the
matter field itself determine the reference frame; this has clear physical signifi-
cance when the matter field is dynamically relevant, but seems rather arbitrary
when it is negligible.

Similarly, if we are using quantum-field-theoretic methods to study elec-
trodynamics in a region where there are no matter particles, it is natural to
integrate out the matter field entirely, obtaining an effective field theory for the
electromagnetic field alone. The resulting theory will have only A as its degree
of freedom, and so we cannot define unitary gauge. (It remains well-defined in
the full quantum field theory, but the degrees of freedom it uses are dynamically
irrelevant in this regime.)

The Incompleteness Reason is more compelling, and applies whether or not

5|ψ| has the dimensions of mass in units where ℏ=1. If you prefer SI units, use them;
manifestly the point I make here is independent of a choice of scale.
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the matter field is negligible. Consider a constant phase shift, ψ(x) → ψeieθ,
where θ is spatially independent. Manifestly, the unitary-gauge description of a
field is invariant under that transformation: it leaves both A and |ψ| invariant.
But the physical features of the system are not invariant, for this transformation
is not a small gauge transformation: it is a physical shift of the system, repre-
senting a change in its phase as measured by an observer outside the system.
This means that, in the terminology of section 1, unitary gauge is not a gauge-
fixing at all, since it does not assign an element to every gauge equivalence class:
if the phase of ψ tends to anything other than zero at infinity, there is no small
gauge transformation which puts ψ in unitary gauge. Put another way: putting
a field into unitary gauge discards genuine information — the average phase
of the scalar field — along with descriptive fluff. If the Degeneracy Reason
gives cause to worry that unitary gauge is not a gauge-invariant descriptor, the
Incompleteness reason gives cause to worry that it is not a complete descriptor.

(Similarly, if a gauge theory is defined on a topologically non-trivial mani-
fold, the gauge transformation required to put a field in unitary gauge may be
topologically large; this occurs in the solenoid spacetime of section 1. Again,
this means that unitary gauge conflates two fields that are distinguished one
from another by their relation with external systems, though the nature of that
relation is subtler here — see (Wallace 2022b).)

It is helpful here to compare gauge theory to Newtonian mechanics. In the
latter theory, it is fairly straightforward (Barbour and Bertotti 1982; Barbour
2012) to start with the dynamics of an isolated system and then quotient out its
translational and rotational symmetries; the result is a self-contained dynam-
ical theory of how the intrinsic features of the theory change with time. But
doing so throws away genuine information, since (at least in most applications)
Newtonian mechanics describes not a fictional system in an otherwise-empty
universe but a de facto isolated subsystem of a larger cosmos, and symmetry-
related states of that system are differently located and oriented with respect
to that larger cosmos (Wallace 2022a). In the same sense, the unitary-gauge
description of a field can helpfully be understood as representing the intrinsic
features of an isolated subsystem. A single additional, nonlocal, piece of infor-
mation — its average phase — is required to specify the system completely, at
least if it too is understood as an isolated subsystem in a larger cosmos.

But the Incompleteness Reason has an important limitation: it assumes that
global phase shifts actually are symmetries of the theory. Whether this is true
depends sensitively on the boundary conditions of the theory. If that boundary
condition imposes lim| #»x |→∞ ψ = 0, it is preserved by global phase shifts, and

so ψ and ψeieθ, for constant θ, are distinct possible states. But if it imposes
a nonzero infinite limit ψ0 for ψ, that limit will not be preserved under global
phase shifts and so they will not represent a physical symmetry. In the latter,
but not the former, case, (generalized) unitary gauge is indeed a gauge-fixing,
and moving to (generalized) unitary gauge provides a lossless description of a
field’s gauge-invariant properties.

The distinction between these two scenarios can be usefully illustrated by
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considering the spectrum of elementary excitations of the theory, which in clas-
sical field theory is the space of solutions of the linearized field equations, and
in quantum field theory is the space of particles. In either case we obtain it
by looking at the quadratic part of the expansion of the action of the theory
around its minimum. In classical field theory the action is given once and for all
and determines the classical equations of motion; in quantum field theory the
action is the (temperature-dependent) effective action and its successive deriva-
tives determine the vacuum expectation value and the one-particle-irreducible
(1PI) N -point functions, with the quadratic part of the expansion determining
the (inverse of the connected part of the) 2-point function and hence the mass
spectrum.

In the case of an unbroken symmetry (boundary conditions where the mat-
ter field vanishes) the elementary excitations consist of two excitations of the
matter field, related by a 90-degree phase shift (the signature of this in QFT is
antimatter; cf (Baker and Halvorson 2009; Wallace 2009)) and describable by
a complex scalar field, and two excitations of the gauge connection, forming a
massless vector field (the exact description of which varies from gauge to gauge).
Here the existence of multiple phase-related modes of the matter field is entirely
hidden in unitary gauge in the quadratic expansion (of course it can be seen at
higher order points in the expansion) while being manifest in Lorenz, Coulomb,
or Rξ gauge.

The awkwardness of accessing the spectrum from unitary gauge can be traced
back to the Degeneracy Reason: we are trying to expand the field around ϕ = 0,
but unitary gauge fails on that configuration, and so the expansion is badly
behaved.

If the symmetry is broken (in other words, if the boundary conditions are
such that the matter field is nonvanishing) we can safely use unitary gauge
to study the excitation spectrum; here, as any elementary QFT textbook will
tell you, we encounter the Higgs mechanism, where the excitations comprise
a single excitation of the matter field describable by a real scalar field, and
three excitations of the gauge connection which jointly form a massive vector
field (and which are described in an entirely local, gauge-invariant manner if we
gauge-fix to unitary gauge).

(What becomes of the analogy to Newtonian mechanics in this case? The
short answer is that if the symmetry is spontaneously broken, we cannot simply
combine isolated systems with different boundary conditions to make a larger
system. For the longer answer, see (Wallace 2022b).)

I pause to note two subtleties. Firstly, in classical field theory whether a
symmetry is broken or not is a once-and-for-all feature of a theory: it is fixed
by the action, and the action encodes the fundamental dynamics. In quantum
field theory, by contrast, the action is an effective function determined by the
temperature, and the same theory can display different symmetry-breaking phe-
nomena at different temperatures. It thus makes literal sense in QFT (but only
metaphorical sense in a classical theory) to talk about symmetry-broken and
symmetry-unbroken sectors of the same theory.

Secondly, this attribution of excitations to matter rather than gauge con-
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nection, or vice versa, should be taken with a grain of salt, since it is not gauge
invariant. (We can study the symmetry-broken sector of scalar electrodynamics
in Rξ gauge perfectly well; if we are feeling masochistic we can even study it in
Coulomb or Lorenz gauge.) It is of course gauge-invariant to say that in unitary
gauge the elementary excitations of the symmetry-broken sectors comprise one
matter and two gauge-connection excitations.

5 Locality and unitary gauge in non-Abelian gauge
theories

(This section lies outside the main flow of the paper, and may be skipped on
first reading.)

The general arguments of section 3 apply to non-Abelian gauge theories too:
in order to be a local descriptor, a gauge-fixing must algebraically determine
the gauge transformation required to take any field into its gauge-fixed form,
and this means it must fix the gauge-variant features of the matter field. For
the moment, consider this problem for a scalar matter field, taking values in
some space V on which the gauge group G acts. We can partition V into
orbits, equivalence classes under the action of V; the generalization of unitary
gauge requires us to pick, in each orbit, some representative element.6 Let
f : V → V map each point in V to the representative element in its orbit;
then we gauge-fix a field (ψ,A) by applying a gauge transformation u such that
u(x)ψ(x) = f(ψ(x)). (For scalar electrodynamics, f is given by f(ψ) = |ψ|.)

Does this actually determine a gauge-fixing? Only if it fixes u uniquely,
which requires that no gauge transformation u′ distinct from u exists such that
u(x)ψ(x) = u′(x)ψ(x), which is equivalent to the requirement that no non-
trivial gauge transformation v exists such that v(x)ψ(x) = ψ(x) (for any x). In
other words, the group G should act freely on every orbit of G in V in which
ψ(x) takes values. Requiring gauge transformations to be smooth weakens this
slightly: there must be no orbit of G in V such that (i) G does not act freely
on V; (ii) there is an open set in spacetime such that ϕ, restricted to that set,
takes values in the orbit.

For scalar electrodynamics, there is only one such non-free orbit: the point
ψ = 0, already discussed. But in many scalar non-Abelian theories, there will be
many. Take, for instance, the standard action of SU(N) or U(N) on CN . The
orbits are the (complex) spheres of fixed |ψ|, and SU(N) does not act freely on
any such orbit: for any nonzero vector in CN , there will be a U(1) subgroup of
SU(N) that leaves it invariant. (This is essentially the mathematics behind the
breakdown of electroweak SU(2) × U(1) ≡ U(2) symmetry to U(1) symmetry
in the Standard Model.)

So unitary gauge is not well-defined for non-Abelian gauge theories with
scalar matter, at least in these important cases. But in general it will be defin-

6We could choose to let the choice of representative element depend on spatial location,
but nothing is gained by such generalization.
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able for more complicated (and realistic) matter fields. If ψ is a spinor matter
field, for instance, ψ(x) can be thought of as a linear map from C2 to V, with
the gauge group acting on the space of such maps; generic points in the space
of such maps transform freely under gauge transformations, so that specifying
a representative element in each orbit will fix the gauge of any field except for
some non-generic ones. Unitary gauge then works as well for non-Abelian as for
Abelian theories: that is, it works, up to the Degeneracy and Incompleteness
reasons, which apply to the non-Abelian case mutatis mutandis.

It must be admitted, though, that there is something awkward and cumber-
some about these generalizations of unitary gauge (and indeed I am not aware
of any such generalization having applications in the physics literature). We
can understand why this is by considering again the interpretation of unitary
gauge I offered in the previous section: a choice of gauge amounts to a choice
of reference frame at each point; unitary gauge uses the matter field itself to
fix a choice of reference frame. For scalar electrodynamics there is an obvious
best way to do so: any nonzero field at a point has a phase and the connection
along a path between any two points can be interpreted simply and invariantly
as giving the change in phase between the fields at those two points. When the
matter field is more complicated, there may be no obviously most natural rule
to determine a reference frame or to define the transformation between two such
frames, even when the field has sufficient structure that such rules can be stated.
(Similar issues would arise even in electrodynamics given a more complicated,
e.g. spinor, matter field.)

6 Conclusion

Gauge-invariant descriptions of a theory with local gauge symmetry are easier
to come by than you may think: any gauge-fixing for a theory provides a gauge-
invariant description of that theory’s fields, just as any description of a spatial
system in an antecedently-specified coordinate system provides a coordinate-
invariant description of that spatial system.

However, most such descriptions are deceptive. On the surface they appear
to be a local description of the system (specified as they are in terms of the values
of local fields), but in reality they are generally nonlocal, in the sense that two
fields gauge-equivalent in a region can often have distinct gauge-fixings in that
reason.

The exception is unitary gauge (along with its generalizations). Unitary
gauge is local (thus improving on most other gauges), gauge-invariant (thus
improving on a description in terms of field strengths) and separable (thus im-
proving on a description in terms of holonomies), and explicitly includes matter
degrees of freedom (which field-strength and holonomy descriptions do not).
However, in the unbroken sector of a gauge theory, unitary gauge provides an
incomplete description of the system (although a complete description of the in-
trinsic features of the system), since it leaves out overall phase and potentially
also topological information; in cases more complicated than scalar electrody-
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namics it may also be quite awkward, and there may be no natural reason to
choose one version of unitary gauge over another.

What does this mean for the search for gauge-invariant descriptions of phys-
ical processes? In a sense they are easy to come by: pick a gauge, describe
the physics in that gauge, and call it a day. But the nonlocal aspects of most
gauges may make the description thus obtained (gauge-invariant, but) some-
what opaque. In many cases we can avoid this problem by using unitary gauge,
but this must be done with some caution if asymptotic symmetry is unbroken,
since that description is incomplete (although it ought still to be adequate if all
that is desired is a description of the system’s intrinsic behavior), obscures the
particle spectrum, and is awkwardly suited to describing situations where the
matter field is negligible.

The Higgs mechanism provides a brief illustration. Philosophers of physics
have long7 sought a gauge-invariant description of it: here is one (closely related
to that offered by (Struyve 2011)). Firstly, we must ask whether asymptotic
global symmetry is broken in the sector of the theory being studied: this can
be characterized simply and gauge-invariantly, and its ‘tell’ is the nonvanishing
expectation value of the magnitude of the Higgs field in the ground state (or
at thermal equilibrium in a finite-temperature sector). If it is unbroken, the
Higgs mechanism does not apply, and the symmetry is manifest in the particle
spectrum. If it is broken, unitary gauge offers a complete, gauge-invariant, local,
separable description of the physics, in which it is easy to see that the vector
boson field is massive and that there is no Goldstone mode.

I close with remarks aimed at a somewhat different audience. I have ar-
gued that gauge fixings offer gauge-invariant descriptions of the physics, so that
different gauge-fixings offer different gauge-invariant descriptions. But which de-
scription is best? The question has an obvious pragmatic interpretation: ‘best’
means ‘most helpful for the purpose at hand’, in which case we should adopt
whichever choice we find most helpful (even a nonlocal choice), with little care
as to the rightness of that choice beyond its use.

But there is a tradition in the metaphysics of physics (illustrated very clearly
by (Sider 2020)), where the question is rather: which description is most funda-
mental, which description carves nature at its joints? For reasons I explicate in
(Wallace 2022d), I am sceptical that there is a meaningful question here once
we set pragmatism aside. For those who disagree, I recommend unitary gauge
as the clearly-preferable choice, notwithstanding its limitations when applied to
subsystems of the larger cosmos — an issue which in any case I suspect will
not bother those whose metametaphysics is less deflationary than mine. But I
also note that the range of possible versions of unitary gauge for systems more
complicated than scalar electrodynamics may ultimately cause metaphysical
difficulties for any such strategy.

7See, e. g. , (Earman 2003; Smeenk 2006; Lyre 2008).
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