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Reintroducing Dynamics into Static

Causal Models
Naftali Weinberger

Recently developed graphical causal modeling techniques significantly down-
play the role of time in causal inference. Time plays no role in the criteria
specifying what it means for causal hypotheses to be observationally equiva-
lent, and the probabilistic criteria used fail to distinguish among hypotheses
that – given the assumption that causal variables precede effect variables –
involve different time orderings among the variables. Additionally, the causal
Markov condition – a central condition for choosing among causal hypotheses
given a joint probability distribution – most straightforwardly applies to cases
in which the variables are sampled from time-stationary distributions. Finally,
it is commonplace to present models in which the variables are not explicitly
indexed to times.

The lack of emphasis on time in causal models may suggest that the
models are neutral with respect to the temporal relationships among the causal
variables. Here I propose that, in fact, the lack of reference to time in many
causal models is a legacy of the fact that causal models were initially designed
to model the relationships in simultaneous equations models. Simultaneous
equations represent the stable long-term relationships among the modeled
variables rather than the shorter-term dynamic of systems in which variables
have not reached stable values. Rather than being neutral with respect to the
temporal relations among the variables, many apparently atemporal causal
models in fact apply only under specific temporal assumptions about the
timescale at which the system is being modeled.

After spelling out the interpretation of causal models as applying to systems
that are treated as static, I consider ways that these models can be generalized
to model the dynamics of systems that are away from equilibrium. First, I
show how the dynamic causal models developed by Iwasaki and Simon (1994)
generalize the causal ordering method from Simon (1977), which had been
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designed for simultaneous equations. Simon’s causal ordering serves as a basis
for understanding the causal asymmetry of the structural equations that are still
used to represent the dependence of effects on their causes. Second, I consider
ways that the statistical methods used for causal modeling have primarily
dealt with stationary distributions, and explain how certain non-stationary
features of distributions correspond to the qualitative features in dynamic
causal models. While I do not here provide a systematic treatment how to
causally model time-series data, the present discussion contains both novel
suggestions as to why such data present a challenge as well as suggestions for
how dynamic causal models can be used as a bridge between contemporary
graphical models and econometric time-series methods.

This chapter is organized as follows. Section 10.1 provides background
regarding graphical causal models. Section 10.2 presents challenges to attribut-
ing times to the variables in these models, and explains how we can interpret
the relationships among simultaneously measured variables causally. Section
10.3 discusses Iwasaki and Simon’s dynamic causal models as a way of relax-
ing the presuppositions of simultaneous equations models. Section 10.4 draws
connections between these dynamic causal models and methods employed in
time-series analysis. Section 10.5 concludes.

10.1 Graphical Causal Models

The starting point of the present discussion is the graphical causal modeling
methods developed by Pearl (2000) and Spirtes et al. (2000). While these
works are relatively recent, their authors build on almost a century of con-
tributions by psychologists, social scientists, economists, philosophers, and
computer scientists. These methods provide a systematic and general account
of how to use one’s background causal assumptions to choose among compet-
ing causal hypotheses based on one’s evidence, both in experimental and non-
experimental contexts. For example, these methods enable one to determine
which probability distributions over a set of variables are compatible with a
particular causal hypothesis relating those variables. The methods also allow
one to give a general account of when a causal quantity is identifiable, which
means that it can be uniquely determined from the probability distribution,
given one’s causal assumptions.

In the graphical approach, causal models are typically represented using
directed acyclic graphs, or DAGs. A DAG is a set of nodes connected by
directed edges (i.e. arrows) such that one cannot get from a node back to
itself via a set of connected edges all going in the same direction. When
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DAGs are used for causal inference, the nodes are variables, the directed
edges are direct causal relationships, and the lack of cycles corresponds to
the assumption that no variable is either a direct or indirect cause of itself.
The acyclicity requirement can sometimes be relaxed (Richardson, 1996;
Park and Raskutti, 2016), although the general properties of cyclic graphs
and the data-generating mechanisms they represent are less well understood.
The term causal model typically refers to the combination of the graph and
the joint probability distribution over the variables. As we will see, given
a graph and distribution, it is sometimes possible to identify the functional
relationship representing how an effect depends on its causes. As to what
it means to interpret directed edges as direct causal relations, there are two
general approaches. One is to treat the concept of direct cause as an undefined
primitive whose content is determined holistically by the assumptions one uses
to link DAGs to probability distributions. The other is to explicate X’s being a
direct cause of Y in terms of the possibility of changing Y via intervening on
X while holding other causes of Y fixed.

I’ll now provide further background regarding the use of DAGs for causal
inference and identifiability, beginning with the latter. Let’s begin by consider-
ing the simplest case in which a causal effect is not identifiable. Suppose that
we were told that X causes Y , but these variables share an unknown common
cause. The effect of X on Y would not be identifiable, since no matter how
much we learned about the probabilistic relationship between X and Y , we
could not know to what extent an inferred probabilistic dependency should be
attributed to the causal relationship rather than to the common cause. In other
words, one cannot uniquely determine the magnitude of the effect of X on Y

from the DAG and probability distribution. In contrast, if we knew that X and
Y shared a common cause Z, and that there were no other common causes of
X and Y (other that causes of Z), then the effect of X on Y given particular
values of Z could be identified by conditioning on different values of Z. Given
the graph and the probability distribution, the effect would be identified by the
expression Pr(Y |X,Z).

A path is a set of connected arrows. Where X and Y share an unmeasured
common cause, the reason the effect is not identified is that in addition to the
single-arrow path from X to Y there is also an additional path between X

and Y via the common cause that ‘transmits’ probabilistic influence. Given an
account of the conditions under which probabilistic influence is transmitted,
we could provide conditions under which the effect of X on Y can be identified.
We have already seen that paths containing a common cause transmit proba-
bilistic influence unless the common cause is conditioned upon. In contrast,
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causally independent causes of a common effect are uncorrelated unless one
conditions on their common effect. So paths containing a common effect will
not transmit probabilistic influence unless the effects are conditioned upon.

We can generalize these observations using the notion of d-separation:

Definition 10.1 d-Separation: A path is d-separated by variable set Z just
in case:

(a) The path contains a triple i→m→j or i→m←j such that m is in Z, or
(b) the path contains a collider i→m←j such that m is not in Z and no

descendant of m is in Z. [m is a descendant of Z if there is a path from
m to Z consisting of directed arrows all going in the same direction.]
(Pearl, 2000)

d-separation is a property of paths. Two variables are d-separated by Z if and
only if they are d-separated by Z along all paths. Two variables are d-connected
by Z if and only if they are not d-separated. To see how d-separation helps
with identifiability, note the following sufficient condition. The effect of X on
Y is identifiable given variable set Z if, in the DAG, X is d-separated from Y

by Z along any “back-door” path that contains an arrow going into X. While
this is just a sufficient condition, there exists a sound and complete procedure
for determining whether a causal quantity is identifiable from a graph and
probability distribution.

Identifiability concerns what one can measure given causal knowledge
and the probability distribution. But how do we get such knowledge in the
first place? Here d-separation helps as well. We can determine which DAGs
are compatible with a probability distribution using a criterion called the
causal Markov condition, which states that d-separated variables will be
probabilistically independent. More precisely:

Definition 10.2 Causal Markov Condition (CMC): given a graph G and a
probability distribution P over V , for any sets of variables X, Y , and Z in V , if
X and Y are d-separated conditional on Z in G, then X and Y are independent
conditional on Z in P.

CMC will not hold generally if one considers a variable set V that omits
common causes of variables in V . For ease of explication, in what follows
I’ll limit myself to considering causally sufficient variable sets that include
any common cause of variables in the set. Causal sufficiency will not hold in
general, and can be relaxed in many contexts. A further constraint is that the
variables in V must be logically, conceptually, and metaphysically independent
of each other. To see why, imagine two variables X and Y such that X = A&B
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and Y = B. Given this logical relationship, the probability of Y given X will
be 1 even if the unconditional probability of Y is not 1. But this correlation
reflects the logical relationship among the variables and does not by itself call
for a causal explanation.

CMC specifies what it means for a DAG to be compatible with a probability
distribution. The condition places only a weak constraint on the set of models
compatible with a distribution and supplemental conditions are needed to
choose amongst the hypotheses compatible with a given distribution. To see
how weak the condition is, note that any complete graph in which all the
variables are directly connected is compatible with any distribution (since no
variables are d-separated conditional on any others). Nevertheless, to draw
causal inferences from probabilistic knowledge some principle is required, and
CMC’s logical weakness gives it the virtue of being compatible with a wide
range of accounts of causation. Moreover, given suitable restrictions on the
variables considered (see above, as well as (Hitchcock, 2016, section 3.2)), it
is a plausible candidate for a universally true generalization. The most serious
potential counterexamples arise in quantum mechanics, and the interpretation
of these cases remains controversial. I discuss some further alleged counterex-
amples in Section 10.4.

Using CMC combined with additional parsimony principles (Zhang, 2012;
Forster et al., 2017) one can choose among causal DAGs based on a probability
distribution. Yet there is a limit on how much one can infer from the
distribution using these principles. Specifically, all DAGs that entail all and
only the same conditional independencies according to CMC are considered to
be observationally equivalent. For instance, one cannot distinguish between the
three DAGs in Figure 10.1. As a result, additional background knowledge is
required to distinguish among the DAGs, and a common plausible suggestion
is that time will often play this role. Nevertheless, the fact that time is only
invoked to choose among already specified models makes it clear that, in
theory if not in practice, time plays a secondary role in graphical causal models.
Notice, for instance, that if we were to know the time ordering of the variables
X, Y , and Z in Figure 10.1, and to assume that causes preceded their effects,
then the three DAGs would not be observationally equivalent.

The basis for using DAGs to establish identifiability is closely related to the
metaphysical assumption underlying CMC. For example, blocking all back-
door paths allows for identifiability because doing so blocks any way that the
value of a cause is informationally relevant to the value of the effect variable,
except via causal paths involving connected sets of unidirectional arrows from
the cause to the effect. But this would not establish identifiability unless one
believed that there must be some back-door path linking the cause to the effect
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Figure 10.1 Three ‘observationally equivalent’ DAGs.

in order for one to provide information about the other that is not due to the
causal path. In other words, one must accept CMC.

The concept of identifiability is crucial for understanding the relation-
ship between causation and probabilities. The DAG framework does reduce
causation to probabilities, but, given suitable causal assumptions, one can
interpret certain conditional dependence statements as providing an unbiased
measurement of the dependence of an effect on its causes. In such statements,
the effect is the probabilistic consequent and its causes the antecedents in the
probabilistic expression. When CMC holds, the joint probability distribution
can be decomposed into a set of conditional independencies in which each vari-
able is given as conditional only on its direct causes in the model. A useful way
for thinking about the relationship between conditional dependence statements
that can and cannot be interpreted causally is that only the former are invariant
to interventions (Korb et al., 2004; Pearl, 2000). An intervention on a causal
variable influences it in such away that any influence the intervention has on
the intervened upon variable’s effect is only via the intervened upon variable.
The concept of an intervention allows for a systematic distinction between
causal and non-causal probabilistic expressions, and has the added advantage
of linking causal inference to experimental methodology, which also relies on
interventions. Yet physically intervening is not necessary for gaining causal
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knowledge. What matters for whether a probabilistic quantity may be causally
interpreted is whether it is identifiable, with or without intervening.1

One of the main purposes of causal models is to aid causal inference. CMC
is evidently not sufficient for inference, since further parsimony principles are
needed to choose among the large set of Markovian models. Additionally,
most variable sets do not obey CMC (due to omitted common causes, for
instance). When it comes to the best methods for inferring causal models from
different types of data, a healthy dose of pragmatism is warranted. One can test
an inference method for reliability by running a simulation and seeing if the
method recovers the data generating process. Such a method can be reliable
even if it does not always produce models obeying CMC. Nevertheless, the
assumption that, given suitable restrictions on acceptable variable sets, the true
DAG over such variables will either satisfy CMC or can be embedded in a
broader variable set that satisfies CMC is indispensible for causal inference.
The reason is the close connection between CMC and identifiability. We need
identifiability to distinguish between probabilistic expressions that do and do
not provide unbiased effect measurements. Without some such notion, there is
no theoretical link between causal hypotheses and probabilistic information.
Such a theoretical link is necessary even for running simulations. To talk about
causal models as a data-generating process, one needs to specify the rules by
which causal models generate the data. This is so even if one adds distortions
to the data-generating process such that the inferred distribution will not itself
obey CMC.

For CMC to play a theoretical role in providing identifiability conditions, it
is a virtue that it provides only weak constraints on which models it deems
acceptable. Note that the concept of identification considered here is non-
parametric. That is, the claim that effects of X and Y on Z are identified from
the probability distribution Pr(Z|X,Y ) does not indicate which probabilistic
expression or structural equation is appropriate for quantifying the effect of
X and Y on Z. Whether, for example, the structural equation giving Z as a
function of X and Y involves an interaction term (e.g. δXY ) is not determined
by the DAG, but the identifiability of the Pr(Z|X,Y ) ensures that in principle
whether X and Y interact could be established from knowledge of the true
probability distribution. The fact that the form of identifiability that CMC
underlies is silent with respect to, e.g., which correlation coefficient is best
for quantifying causal strength, provides a reason for thinking that the notion

1
If we focus on ‘hard’ interventions that fully determine the value of the intervened upon
variable, the effect of X on Y is identifiable by intervening on X if Pr(Y |X) is identifiable in the
DAG derived from breaking all arrows going into X.
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of probabilistic independence invoked by CMC should also be given in a
way that is independent of any way of measuring probabilistic independence.
As we will see in Section 10.4, there are alleged counterexamples to CMC
with variables that are by hypothesis not causally related, but which appear
to be probabilistically dependent if one uses certain correlation coefficients.
There I will side with those who claim that these correlations are insufficient
for establishing probabilistic dependence, and that whether two variables are
genuinely dependent for the purpose of applying CMC is something that is
to be determined by statisticians using whichever measure of dependence is
appropriate for the data.

This brief discussion of graphical causal models is sufficient for seeing
how they represent causal relationships without explicit reference to time. The
asymmetric relationships in the models are not explicated in terms of causes
preceding their effects in time, but rather in terms of the different probabilistic
consequences of the directions of the arrows in a DAG. In Section 10.3 we will
see that the project of explicating causal directionality in fact precedes prob-
abilistic approaches, and in Section 10.4 we will consider some subtle ways
in which probabilistic assumptions relate to temporal ones. But before we get
there, we need to ask an even more basic question. How do we make sense of
causal models that do not specify the temporal relations among their variables?

10.2 Temporal Relations in Seemingly
Atemporal Causal Models

In the previous section we reviewed graphical causal models and saw how the
basic causal concepts are defined without explicit reference to time. Yet on
reflection, it is somewhat puzzling as to how to understand the variables within
the causal models without reference to time. In many causal models there is a
single variable for each quantity. For instance, a model for an ideal gas system
might have a variable V for volume, and not, for instance, a vector of variables
V1, V2, . . ., Vn for the volumes at times 1 to n. In some cases, this does not
lead to ambiguity. In the ideal gas case with a moveable piston, we know that
equilibrium volume depends on pressure and temperature, and so we do not
need to consider values away from equilibrium. But, more generally, simply
to talk about the relationship between X and Y without saying when Y occurs
(at least relative to X) leaves it ambiguous which relationship we are talking
about. So we need to ask: which assumptions make it appropriate to compress
potentially complex sets of causal relationships among time-series variables
into simple representations involving single variables?
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Some philosophers may take issue with my claim that the variables in a
causal model in fact have a temporal ordering. Philosophers commonly treat
variables as referring to properties, where the relationship between a variable
and its values is akin to that between a determinable and its determinates (e.g.
the relationship between ‘being a shade of red’ and ‘being crimson’). On this
way of talking, a variable can have different values at different times, since an
object’s properties can change over time. Yet this way of talking does not match
statisticians’ definition of a variable. Mathematically, a variable is a mutually
exclusive and jointly exhaustive partition over a space of possibilities. Since it
follows that a variable can have at most one value, to represent a quantity that
changes over time we need multiple variables – typically, one corresponding
to each observation. If we are not talking about a quantity that is changing
in time, then we may define a variable without respect to time. But since we
are here considering the role of time in causal models, it will help to eliminate
ambiguity and to explicitly assign each variable a time.2 Where we want to talk
about a quantity changing over time, we will need a time-series of variables:
{Xt,Xt+1, . . . ,Xt+n}.

It is natural to assume that once we make the time-indices of the variables
in a causal model explicit, the temporal ordering should match the causal
ordering. That is, causes must precede their effects. In the present volume,
Livengood and Zwier’s Chapter 9 seek to reconcile this plausible assumption
with actual modeling practice. Here I propose an alternative explanation for
why graphical causal models often do not include explicitly time-indexed
variables. Specifically, all of the variables are indexed to the same time. This,
I suggest, is a legacy of origin of certain aspects of the causal modeling
framework in an econometrics tradition that uses so-called simultaneous
equations. I will say a bit more about that tradition in the next section. Here I
will simply assume that the variables in many causal models are simultaneous,
and consider how we might interpret the relationships among such variables
causally.

Talk of causal relations among simultaneous variables raises a puzzle, as
causes are generally assumed to precede their effects. Some philosophers do
allow for simultaneous causation, and equilibrium relationships – such as the
effect of the current supply and demand of a good on its current (equilibrium)
price – are plausible candidates for simultaneous relationships. Yet there
are available causal interpretations of simultaneous equations, even assuming
that causal relationships are genuinely diachronic. I consider two: the ‘limit’

2
See (Hitchcock, 2012) for a further defense of time-indexing variables.
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interpretation and the ‘steady-state’ interpretation.3 On the limit interpretation,
the claim that X causes simultaneous variable Y should be interpreted as saying
that X influences Y diachronically over arbitrarily small intervals. On the
steady-state interpretation, which I adopt, simultaneous causal relationships
among variables should not be understood as genuinely simultaneous, but
rather as simultaneously observed. To interpret the relationship between Xt

and Yt causally one needs to assume that (a) Xt equals Xt−1 and (b) Y is in
a steady state at t . Condition (a) indicates that Xt itself is not the cause of
Yt but nevertheless enables one to infer the value of the genuine prior cause.
Condition (b) indicates that Y at t has had sufficient time to reach a steady state
in response to any changes in X. A variable is in steady state just in case its
time-derivative is 0.

The steady-state interpretation of simultaneous equations is somewhat
counterintuitive. While talk of simultaneity suggests that one is evaluating a
system at a very short timescale, on the suggested interpretation simultaneous
equations represent long-run relationships. To avoid confusion, it is important
to distinguish between two inversely related rates that we might be referring
to when talking about time in causal models. On the one hand, we might be
talking about the timescale at which we evaluate a system, operationalized in
terms of the rate at which the system is sampled. Here slower rates of sampling
correspond to evaluating the system at a longer timescale. On the other hand,
there is the rate at which a variable stabilizes in response to changes in its
causes’ values. One can think of simultaneous equations as evaluating the
system at a sufficiently long timescale such that the rate at which the effects
in the model respond to their causes is negligibly small at the sampling rate
corresponding to that timescale.

Why interpret non-time-indexed causal models in the manner suggested
here? Suppose that X causes Y , but it takes time for Y to stabilize. To make
this a bit more concrete, imagine that if Y = y0 at t and X is set to x at t, then
Y will equal y1 after 1 second and y2 after 2 seconds, and will then remain
at y2 in the absence of further interventions. If we modeled this as X → Y it
would be unclear at which time Y was being measured and we could not give
a quantitative structural equation. There are two options: either X and Y are
not represented as simultaneous or they are. If not, then the modeler is being
sloppy, and the sloppiness can only be eliminated by specifying how much
time has passed between X and Y . If X and Y are simultaneous, then we need
to choose between the limit and the steady-state interpretation. On the limit
interpretation the effect of X on Y corresponds to the instantaneous rate of

3
This discussion is inspired by (Strotz and Wold, 1960, section 3).
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change of Y given X at t: dy
dx

. This fails to capture the longer-term effect of X

on Y , and especially that Y is constant after t=2. In contrast, the steady-state
interpretation clarifies that the variables are measured simultaneously, but does
not require one to know precisely how long it takes Y to fully respond to the
intervention on X. It indicates simply that the system is being evaluated at a
timescale at which Y has had enough time to respond. So assuming that causal
relationships take time and the modeler is not sloppy, treating the variables as
simultaneous is the natural way to go.

The proposal that the variables in non-time-indexed DAGs are simulta-
neous illuminates some otherwise puzzling features of contemporary causal
modeling. It would explain, for instance, why so much of causal inference
is done on cross-sectional rather than longitudinal data, and also why social
scientists working with time-series data often reach for alternative causal
frameworks such as those relying on Granger causality (though see (Eichler,
2012) for a discussion of the use of DAGs for time-series analysis). This
suggests that existing models have limitations regarding how to model time,
though it is surprisingly unclear what those limitations are. The strategy of the
present chapter is to begin with the working hypothesis that the limitation of
causal models is due to their original application to simultaneous equations
with the steady-state interpretation, and then to consider how they can be
generalized to systems that are away from steady state. The following section
presents Iwasaki and Simon’s dynamic causal models, which provide such a
generalization. These are, to be clear, only one type of dynamic causal model,
and I here make no attempt to provide a survey of the options. Nevertheless,
the following discussion will reveal them to be especially useful for thinking
about the temporal assumptions of causal models.

10.3 Reintroducing Dynamics into Causal Ordering

The dynamic causal models in Iwasaki and Simon (1994) are a general-
ization of Simon’s causal ordering method (Simon, 1977). While Simon
does not make this explicit in the earlier paper, Iwasaki and Simon later
write:

[T]he theory’s definition of causal relations is useful in generating a causal
interpretation of the behavior of any system described by a system of
simultaneous equations, including a physical device. Causal ordering was
initially defined by Simon for a static system consisting of equilibrium
equations. (1994, p. 145)
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The progression in this section is from causal models with the steady-
state interpretation to models that can represent systems away from steady
state. I will begin by presenting Simon’s original causal ordering method
and explaining its relationship to contemporary modeling methods. The fact
that his account can still be used to explain the asymmetry of the structural
equations in causal models supports the working hypothesis that seemingly
atemporal causal models contain simultaneous variables.

Simon asks what makes causation an asymmetric relationship, and he
rejects the answer that it is temporal ordering. His strategy is to show how one
can begin with a set of ‘symmetric’ equations in which one can freely move
terms across the equals sign via applying the same operation to both sides, and
to provide conditions under which such equations can be reorganized so that
each variable is given as an effect of its causes. Systems that can be interpreted
causally are those in which the values of certain variables can be solved for
prior to others, and the causal ordering – that is, the partial ordering of the
variables such that causes always precede their effects – is determined by the
order in which the variables must be solved for.

As a simple example, consider an ideal gas system with the variables
temperature (T ), pressure (P ), and volume (V ). If the relevant system is a
sealed container, we begin with the following symmetrical equations:

0 = f (P,V ,T ) (10.1)

0 = f (T ) (10.2)

0 = f (V ) (10.3)

Equation (10.1) indicates that there is a function relating temperature, pressure,
and volume, i.e. the ideal gas law. Equations (10.2) and (10.3) indicate that
the values of temperature and volume are exogenous – that is, they do not
depend on those of other variables in the system. Given these equations, one
can solve for T and V first, and only then can one solve for P in equation
(10.1). Accordingly, the equations can be rewritten as follows:

P = f (V ,T ) (i)

T = f (t) (ii)

V = f (v) (iii)

Equation (i) indicates that pressure is an effect of volume and temperature.
Equations (ii) and (iii) indicate that T and V are assigned constant values.
After reorganizing the equations, one can treat them as structural equations in
which the variables on the left-hand side are effects of those on the right-hand
side, where each variable appears on the left-hand side in a single equation.
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Of course, not every set of symmetric equations can be causally ordered in
this way. If one could not divide up the equations so that certain self-contained
subsets could be solved first, no causal ordering could be identified given the
equations.

In one sense, the causal ordering method does not provide causal
information beyond that required for specifying the equations in the first place.
We needed to specify which variables are lawfully related (in (10.1)) and also
which variables were exogenous to find the causal ordering. If pressure, instead
of volume, were exogenous, we would have to replace (10.3) with an equation
(10.4):

0 = f (P ) (10.4)

These equations entail that T and P are causes of V . This causal ordering
represents the relationships in a movable piston system, rather than a fixed-
volume container. Like recent methods, the causal ordering method does not
yield causal knowledge without causal assumptions. Nevertheless, the method
reveals how causal asymmetries follow from symmetric laws and assumptions
about exogeneity.

Although Simon’s method does not rely on probabilities, the structural
equations identified using the methods are the same as those identified using
graphical causal models. To see how this could be, it helps to know that
any variable set linked by equations with a deterministic component plus
an independent error term for each variable automatically satisfies CMC.
Accordingly, exogenous variables can be operationalized as those whose
values depend on an independent error term alone. Nevertheless, we may be
able to make judgments of independence even in cases where we cannot make
probability attributions. In the ideal gas case, the judgment that temperature is
exogenous is due to the ability of an experimenter to change the temperature
at will by adjusting the heat bath in which the container is immersed, and the
judgment that volume is exogenous reflects the assumption that the volume is
either fixed by the experimental setup or can be adjusted by the experimenter.
While modeling external sources of variation in a system as random variables
enables one to infer causal relationships from probabilistic information, the
type of independence that underlies causal attributions need not be identified
with probabilistic independence.

I now consider Iwasaki and Simon’s dynamic causal models, which gen-
eralize Simon’s causal ordering method to systems in which at least some of
the variables have not yet reached steady state. I will especially emphasize the
models’ use of time-derivatives to expand the representational power of the
framework. This will help clarify the models’ temporal assumptions, and will
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Figure 10.2 Iwasaki and Simon’s bathtub example: Qin: rate of flow in, Qout :
rate of flow out, D: depth, P : pressure, K: drain size.

further allow us to later compare Iwasaki and Simon’s use of derivatives to the
somewhat similar use of derivatives in time-series econometrics models.

Let’s begin with an example (Figure 10.2). Consider a bathtub in which
water flows in at a rate of Qin and out at a rate of Qout . The difference between
these rates determines the rate of change of depth, which in turn influences
depth, D. The pressure P at the bottom of the tub is proportional to depth.
The rate of flow out depends on pressure and the size of the drain, K , which is
treated as exogenous. The system is at steady state when Qin equals Qout and
D no longer changes.

The symmetric equations for the steady state of this system are as follows.

Qout = c5kP (10.5)

D = c6P (10.6)

Qin = c7 (10.7)

K = c8 (10.8)

Qin = Qout (10.9)

Equations (10.5) and (10.6) indicate that the rate of flow out is proportional
to the size of the drain and pressure, and that depth is proportional to pressure.
Equations (10.7) and (10.8) say that the rate of flow in and the size of the drain
are exogenous. Equation (10.9) indicates that at equilibrium the rate of flow in
equals the rate of flow out. This is what indicates that we are considering the



Reintroducing Dynamics into Static Causal Models 201

Figure 10.3 Equilibrium causal ordering for bathtub.

model at equilibrium. The resulting causal ordering is given by the graph in
Figure 10.3. Since Qin is exogenous, one can solve for Qout via (10.9). From
(10.5) we see that given K and Qout we can solve for P , and then from (10.6)
we derive D.

The causal model in Figure 10.3 is far from intuitive. To make sense of it, it
is crucial to bear in mind that we are assuming that all variables have reached
stable values in response to any perturbations of their causes. While changing
the rate of flow in would have a short-term effect on depth and pressure,
assuming that the system reaches steady state, the long-term rate of flow out
will only depend on the new rate of flow in. Similarly, changing the size of the
drain would alter the steady-state pressure and depth, but would not influence
long-term Qin and Qout . This is not to say that the model is wholly satisfying.
It is especially difficult to understand the causal ordering of pressure and depth.
Within the causal ordering method, the way to understand this is that assuming
that the system is at steady state, and that the drain is size k, the steady-state
pressure must have a certain value p in order to achieve the required rate of
flow out, and in order for pressure to have this value the water must be a certain
depth. But this seems to describe teleological rather than causal relationships.
In fact, Iwasaki and Simon bring this example in large measure to motivate the
desirability of more dynamic representations of a system, which yield a more
intuitive ordering. Whether or not the model is intuitive, it bears mentioning
that Dash (2003) uses simulations to confirm that it is the model we would
infer when sampling at a longer timescale.

Since Qin and Qout are rates of change, we could have represented them
using time-derivatives. But we need not do so. While the traditional causal
ordering method applies to variables that have reached stable values, these
variables can themselves be derivatives, in which case the stable values
are constant rates of change. In extending the framework to represent the
dynamics, the innovation is not the use of time-derivatives per se, but the
use of both variables and their time-derivatives within a single model. Since
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variables and their time-derivatives are conceptually related, they are not fully
independent. But, as we will now see, including both variables and their time-
derivatives in a model enables us to reintroduce dynamics into a static set of
equations.

Naturally enough, if we no longer assume that the system is at steady state,
we need to eliminate the assumption that Qin equals Qout . We can replace
equation (10.9) with the following:

D′ = Qin − Qout (10.10)

Equation (10.10) states that the rate of change of depth is equal to the
difference between the rate of flow in and rate of flow out. When adding an
equation with an explicit derivative into our model, we also need to add two
other equations. One states that integrating D′ yields D:

D = Int (D′) (10.11)

The other specifies an ‘initial condition’ for D at time 0:

D0 = d (10.12)

These equations enable us to represent the passing of time in the model. Given
a variable’s current value and its time-derivative, integration yields a discrete
approximation of the variable’s value at subsequent moments. Equations such
as (10.12) are crucial for the causal ordering method, since they indicate that
at a particular time-step we need to treat the value of the non-equilibrated as
exogenously given. Given such a value, the model will tell us how the variables
will evolve over time.

The dynamic model derived from combining (10.5) – (10.8) with (10.10) –
(10.12) is given in Figure 10.4. The water flowing in increases depth, which
increases pressure, which, given a drain of size k influences the rate at which
the water flows out. The rates at which the water flows in and out in turn
determine the rate at which the depth changes and thereby influence the future
depth.

The graph in Figure 10.4 provides a subtle way of integrating activities
occurring at several timescales into a single model. Variables linked by causal
arrows are interpreted as they were in simultaneous equations models. That is,
P , K , and Qout respond quickly to changes in their causes and are measured at
steady state. If desired, one could include additional derivatives for all variables
in the model, but this would not substantially change the causal relationships
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Figure 10.4 Dynamic causal ordering for bathtub.

among the variables.4 However, the inclusion of D′ along with the integration
link indicates that we are sampling the system at a rate at which depth has not
reached a stable value. Using this derivative, we represent how current depth
influences its rate of change. It is via this form of self-regulation that the system
gets moved towards equilibrium in the long run.

To get a feel for the dynamic graph, it helps to consider how we might
represent the same causal relationships using a ‘rolled-out’ graph with time-
indexed variables and no derivatives (Figure 10.5). While the rolled-out graph
does not explicitly represent the way that the rate of change of D is a function
of Qin and Qout , and that D′ combines with D0 to produce D1, it otherwise
preserves the causal ordering and differentiates between the synchronic and
diachronic relationships. It helps to think of this graph in light of the CMC.
Note, for example, that given D1, P1 is probabilistically independent of P0.
This reflects the sense in which P is ‘memoryless’ – to know its value at a
time, we need not know its prior values. More generally, causal models for

4
To illustrate, if we included P ′ in the model and added the required equations, the resulting
graph would contain an arrow from D to P ′, an integration link from P ′ to P , and causal
arrows from P to P ′ and from P to Qout . This would indicate that it takes time for depth to
influence pressure, but would not further change the relationships between D, P , and the other
variables in the model.



204 Naftali Weinberger

Figure 10.5 ‘Rolled-out’ graph without time-derivatives.

static relationships are memoryless – which is why we needed to specify initial
conditions only once we moved to the dynamic model. In contrast to pressure,
depth is not memoryless when considering the system away from steady state.
To know what the depth will be at the next moment you need to know its
current value. As long as the system is away from equilibrium, the value of
depth serves as a record of a past event – often the event that shocked the
system out of equilibrium – and as an index for how far the system is from
equilibrium.

The relationship between Figures 10.4 and 10.5 resembles that between
causal models for simultaneous equations and time-indexed causal models
more generally. The causal ordering method yields shorthand representations
of the temporal development of a system without presupposing a characteristic
timescale. In the static case, the graphs indicate that the variables are at
steady state without needing to specify precisely how long it took them to
stabilize. Similarly, causal models with derivatives convey information both
about the relative rates at which variables influence one another and about the
timescale at which the system is being evaluated, without providing specific
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rates. From the inclusion of a variable along with its derivative, we can infer
that the variable does not reach a stable state at the timescale at which the
system is considered, and if there are other variables in the model without their
derivatives, we know that they reach steady state at a comparatively faster rate.

Earlier I discussed the counterintuitive device of using simultaneous equa-
tions to model long-run relationships. The explanation I gave there similarly
helps clarify how including diachronic causal relationships corresponds to
evaluating the system at a shorter timescale. Specifically, by ‘zooming in’ and
sampling the system at a faster rate, the slower relationships that appeared as
simultaneous at the longer timescale now can be seen unfolding in time at the
shorter timescale characterized by the faster sampling rate. While this is a lot
to keep track of, the feature of the representation that is not counterintuitive
is that synchronic relationships refer to faster causal interactions than those
represented by diachronic relationships.

Iwasaki and Simon develop an ‘equilibration’ operator, which transforms
a dynamic model into a model with the causal ordering one would get were
one to wait for the equilibrated variable to reach steady state. To equilibrate
D, delete equations (10.11) and (10.12) indicating the integration equation
and the initial value of D, and replace D′ with 0 in equation (10.10) (D

′ =
Qin − Qout ). Then use the causal ordering method to derive the equilibrium
mapping. Since replacing D′ with 0 in (10.10) yields that Qin = Qout , we end
up with the same equilibrium equations we started with and therefore get the
equilibrium causal ordering. More generally, to equilibrate X (Dash, 2003):

1 Set all derivatives of X in the model to 0 and remove them from the model.

2 Delete all equations going into X or its derivatives.

3 Remap to get the new causal ordering.

The second step deletes both the integration equation and that stating X’s
initial conditions. Note that equilibration is always relative to a variable or
set of variables. In models with multiple dynamic variables, certain variables
sometimes must be equilibrated before others (Iwasaki and Simon, 1994,
p. 166). Note also that equilibration does not always preserve the causal
ordering among the variables, as can be seen from the reversal of the arrows
linking D, P , and Qout between the equilibrium and dynamic models.

The link between Iwasaki and Simon’s dynamic causal models and the
econometric time-series we will consider in the following section is that both
use simultaneous equations to represent long-run equilibrium relationships and
diachronic equations to represent non-equilibrium behavior, and both rely on
derivatives (or difference equations) to do so. The econometric tradition is, in
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general, much less systematic in identifying the causal assumptions of their
models than the causal modeling tradition, but also more focused on issues
of measurement, especially when it comes to the analysis of time-series data.
So, the similarities just mentioned bode well for a better unification of causal
theory with measurement methods.

10.4 Dynamic Causal Models and Econometric
Time-Series Methods

While I suspect many philosophers and social scientists will be surprised
by my claim that non-time-indexed models should be taken as representing
steady-state relationships, there is one context in which philosophers have
noticed that causal models are easier to apply in static scenarios. Specifically,
for non-stationary time-series, more sophisticated statistical tools are needed
to determine whether variables are probabilistically dependent, and thus, by
CMC, d-connected in the true causal graph. This issue arises in discussions of
Elliott Sober’s proposed counterexample to CMC (Sober, 2001). The example
involves the relationship between the sea level in Venice and British bread
prices. These quantities are not causally related, but since both increase over
time, the value of one is informative about that of the other. So, Sober claims,
we have a case of a correlation without a causal explanation, violating CMC. I
have deferred discussion of the counterexample until now, since it introduces
time-series concepts that will help us understand the econometric methods that
are the subject of the present section.

In my view, the correct response to Sober is that bread prices and sea levels
are not in fact probabilistically dependent, and thus there is no dependency
lacking a causal explanation. Hoover (2003) presents a helpful discussion of
why the counterexample fails. In defining CMC in Section 10.1, we presumed
knowledge of the true probability distribution over the modeled variables, and
in particular knowledge of which variables are independent. But statistical
independence is not directly observed; it must be inferred from a finite sample.
Statistical inference requires a model of the distribution from which the data is
sampled. One common assumption is that the random variables in a sequence
are independent and identically distributed. If one uses the wrong probability
model for statistical inference, one will make incorrect inferences regarding
which variables are probabilistically independent, and thus regarding which
causal models are ruled out by CMC.

In determining which probability model is apt for a set of observed random
variables, it is crucial to consider whether the underlying distribution is
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stationary or non-stationary with respect to time. Informally, a sequence is non-
stationary if its variables or the relationships between them exhibit a systematic
dependence on time. Sober’s sequences are manifestly non-stationary, since
the mean values of the variables in the sequences increase with time. If one
models the two time-series for bread prices and sea levels using a correlation
coefficient designed for stationary time-series, one will get a positive value,
but this will not reflect a genuine probabilistic dependency. As Hoover notes,
econometricians would model the time-series in Sober’s example as being
I (1), indicating that although each time-series is non-stationary, the time-
series derived from taking the first difference between time-steps – that is,
subtracting each variable from its predecessor – is itself stationary. (Taking
the difference in this manner corrects for autocorrelation.) The process of
taking the difference between time-steps is called integration, the n number
of times one must take the difference to achieve stationarity is called the
order of integration I (n). For two I (1) series such as that in Sober’s example,
the test of whether they are probabilistically dependent is whether there is a
function of the two differenced time-series that is itself stationary. This roughly
corresponds to whether one time-series is informative about the other, even
once one has taken the difference. In Sober’s case, the answer is presumably
no. Although the level of the sea is informative about the level of bread
prices, the changes in one are not informative regarding the changes in the
other.

While I view Hoover’s response to Sober as successful, it is only a starting
point for a broader discussion of causal inference from time-series. Defenders
of Sober’s counterexample (Reiss, 2007) have argued that Hoover’s response
severely limits the usefulness of CMC in inference by limiting the variable sets
to which the condition applies and making causal inference overly dependent
on the prior work of statisticians who process the data. Yet, as I argued
above, while CMC can be relaxed and modified to deal with variable sets not
satisfying CMC, its role in providing identification criteria specifying when
a probabilistic relationship is causally interpretable is indispensible. For this
purpose, what matters is that variables cannot be mutually informationally
relevant in the absence of some causal connection (i.e. some d-connected
path) and it is ok for the causal modeler to outsource the task of establishing
informational relevance to the statistician. That said, CMC is only part of
causal inference and we should not infer from Hoover’s discussion that, as
a general strategy, causal modelers can relegate the nuances of time-series
inference to the statistician. As we have seen, causal models incorporate very
specific temporal assumptions, and these assumptions are closely related to
those studied by time-series econometricians.
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Let’s think further about stationary and non-stationary time-series. A simple
example of a time-series gives each variable in the series as a function of its
prior value plus an error term:

xt = ρxt−1 + εt (10.13)

When |ρ| < 1, the time-series given in (10.13) is stationary, and when
|ρ| = 1 the time-series is non-stationary. This derives from the way that the
shocks represented by the error terms accumulate. When |ρ| < 1, shocks from
the past will continue to have an influence into the future, but the longer ago a
shock is, the less influence it will have now. This is because although a shock
now is incorporated into the present value of X, at each subsequent time-step
the value of X gets multiplied by ρ. So the contribution of a shock now to
the trend n time-steps later will be a function of ρn, which tends towards 0 as
n increases as long as |ρ| < 1. In contrast, when |ρ| = 1 the force of each
shock is never diminished. In stationary series, one can abstract away from
the role of time in the sense that the relationship between the variables will
only depend on their relative times, not absolute time. More specifically, in a
stationary time-series, the mean and variance (and higher-order moments) are
independent of time, and the covariation of variables at different times depends
only on how far apart they are.

We see that even with stationary time-series a variable’s current value
reflects prior shocks, though as time passes the influence of prior shocks dimin-
ishes. Accordingly, ρ can be understood as indicating how much ‘memory’
a variable has of earlier events in the series. As we saw in our discussion
of Iwasaki and Simon, considerations of how much memory a system has
are not incidental to the content of causal models. While a system that has
reached equilibrium retains no memory of the prior shocks that perturbed it
from equilibrium, and can be represented using simultaneous equations, when
a system is away from equilibrium a variable’s value does contain information
regarding prior shocks, and this must be incorporated into the model via
relationships across time-steps. Whether one treats a stationary time-series as
having memory depends both on the timescale at which one considers the
system (i.e. the length of the lags) and a judgment regarding how small the
influence of a prior shock needs to be before it counts as negligible enough to
be ignored.

These considerations suggest that extending causal models from the simul-
taneous case to the dynamic one will require the incorporation of more sophis-
ticated time-series methods into causal modeling. Even if causal modelers
continue outsourcing the data analysis to statisticians, they cannot ignore that
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models for different timescales correspond to different time-series with distinct
statistical properties.

Of course, the very simple time-series represented by (10.13) does not
involve causal relationships. Let’s now turn to a causal example. The following
example comes from Hoover’s illuminating discussion (Hoover, 2015) of
when we might interpret the relationships in econometric time-series models
causally. The example concerns a drunk who, after leaving the bar, is followed
by a concerned friend. The friend following the drunk keeps a safe distance in
order to avoid detection, but will speed up to get closer to the drunk whenever
the distance between them gets too large.

The drunk’s trajectory is a random walk. That is, at each time-step the drunk
is equally likely to move in any direction. The equation giving the movement
of the drunk is that in (10.13) with ρ = 1, meaning that the time-series
for the drunk’s trajectory will be non-stationary. The friend’s movement is
also represented by a non-stationary time-series. Nevertheless, the time-series
for the friend and the drunk are first-order cointegrated. This cointegration
relationship indicates that in the long term, the friend and the drunk will never
drift more than a certain amount apart. Since the friend is following the drunk,
it is clear that the position of the drunk causes that of the friend. But this
relationship will only be evident when considering the system at the right
timescale. If one observes the system at too short a timescale, one will miss the
fact that the friend and the drunk never drift too far apart. If one observes it at
too long a timescale, one will discover the long-term cointegration relationship,
but miss that it is the drunk influencing the friend and not vice versa.

The causal ordering framework does a nice job representing this case
(Figure 10.6). Xd is the position of the drunk and Xf is that of the friend.
In the dynamic graph on the left, the distance between the drunk and the

Figure 10.6 Dynamic graph for cointegration example Xd : position of drunk, Xf :
position of friend.
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friend determines the position of the friend at the next time-step. The use of
a derivative/integration link pair indicates that the friend reduces the distance
only after some time has passed. (Note that the cointegration relationship
between the time-series is represented using an integration link in the causal
model.) Applying the equilibration operation to Xf yields the simpler graph
on the right, which indicates that the position of the drunk is causing that of
the friend.

The present example could be represented in econometrics using an error
correction model (Engle and Granger, 1987; Wooldridge, 2015). In the back-
ground, we assume that the time-series for the friend and drunk are I(1), and
that there is a long-run relationship between them as follows:

xf (t) = α + βxd(t) (10.14)

We represent the equation for the dependence of the position of the friend
on that of the drunk as follows:

�xf (t) = δ�xd(t) − γ (xf (t−1) − α − βxd(t−1)) + ut (10.15)

Equation (10.15) takes the first difference for both the friend and the drunk
to render the non-stationary time-series stationary. δ indicates the short-term
effect of the change in the position of the drunk on the change of position of the
friend. In our example δ will be 0, as the friend does not respond immediately
to the drunk’s movements. The term in parentheses represents the longer-term
cointegrating relationship. Given the long-run equilibrium relationship from
(10.14), any difference between the first term and the difference between the
second and third term indicates that the system is away from equilibrium. The
coefficient γ determines how quickly the system will return to equilibrium.

It is straightforward to see how Equation (10.15) with δ = 0 neatly
corresponds to the dynamic graph in Figure 10.6(a), and how equation (10.14)
corresponds to the static model in Figure 10.6(b). The example chosen was
exceedingly simple, so it remains to be seen how generally causal models
can be linked to econometric time-series models. Nevertheless, by linking
the dynamic causal model to a well-understood econometric model, we see
how the mathematical operations that econometricians use to correct for
autocorrelation map on to the relationships in dynamic causal models.

I conclude this section with a reflection of the relationship between causal
and statistical inference when it comes to more complex time-series. I’ve
argued that CMC is a general rule of causal inference and that the question
of which variables are probabilistically independent should be left to the
statisticians. Relatedly, if variables are probabilistically dependent, CMC does
not differentiate among the inferences one can draw from different types of
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dependencies. But this just means that we need principles in addition to CMC.
This is generally acknowledged even in the stationary case, where CMC must
be supplemented by additional principles to choose among Markovian models.
When we consider more complex time-series, we need to make additional
distinctions among ways that variables can be probabilistically dependent, and
whether we treat certain vectors of variables as dependent or independent
will sometimes depend on the timescale at which we consider the system.
This is the lesson of Iwasaki and Simon’s dynamic causal models, and the
present section provides preliminary confirmation that inferring these models
from time-series data will require an appeal to time-series techniques from
econometrics.

10.5 Conclusion

While graphical causal models have revolutionized causal inference and
analysis, it remains surprisingly difficult to specify their domain of application.
There is work to be done in determining how graphical methods can be used for
inferring causal hypotheses based on time-series data. Yet in order to figure out
how the framework can be expanded, we need to first get clear on its current
limitations. Here I have suggested that far from being neutral regarding the
temporal relations among causal variables, existing models often implicitly
come with strong assumptions about the variables’ temporal stability. This
diagnosis indicates that generalizing the framework is a matter of expanding
it to represent cases in which at least some variables are away from their
steady states. I have shown how Iwasaki and Simon’s dynamic causal models
provide such a generalization, and further illustrated the relationship between
the generalized representation and concepts from econometric time-series
methods.


