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Abstract: There is a fundamental subsets–partitions duality that runs through the exact sciences.
In more concrete terms, it is the duality between elements of a subset and the distinctions of a
partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major
architectonic of mathematics. The paper first develops the duality between the Boolean logic of
subsets and the logic of partitions. Then, probability theory and information theory (as based on
logical entropy) are shown to start with the quantitative versions of subsets and partitions. Some basic
universal mapping properties in the category of Sets are developed that precede the abstract duality
of category theory. But by far the main application is to the clarification and interpretation of quantum
mechanics. Since classical mechanics illustrates the Boolean worldview of full distinctness, it is natural
that quantum mechanics would be based on the indefiniteness of its characteristic superposition
states, which is modeled at the set level by partitions (or equivalence relations). This approach
to interpreting quantum mechanics is not a jury-rigged or ad hoc attempt at the interpretation of
quantum mechanics but is a natural application of the fundamental duality running throughout the
exact sciences.

Keywords: subset–partition duality; logics of subsets and partitions; category-theory duality; logical
entropy; quantum mechanics; objective indefiniteness

1. Introduction: A Basic Duality in the Exact Sciences
1.1. The Four Examples of the Duality

There is a basic duality that starts in logic, is abstractly formulated in category theory
(which expresses the architectonic of mathematics), provides a new foundation for informa-
tion theory, and then gives a new approach to understanding and interpreting quantum
mechanics. The structure of the paper develops the duality in four domains.

• The first example of the duality is in mathematical logic, where it is the duality
between the logic of subsets and the logic of partitions. A more granular form of the
subset–partition duality is between the elements of subsets and the distinctions of a
partition, the elements and distinctions duality.

• Category theory gives the abstract expression of the duality as the reverse-the-arrows
duality. The elements and distinctions duality is used to show the origin of the abstract
reverse-the-arrows duality in the concrete duality between functions in the category
of Sets and cofunctions in its opposite category Setsop. In category theory, the prefix
“co-” is used to indicate the partition side of the duality, as in the subset image (of a
function) and the coimage (the inverse-image partition of a function), product and
coproduct, or limit and colimit.

• Probability theory and information theory are the two theories that begin as quantita-
tive versions of subset logic and partition logic. Since probability theory is well known
to begin with the normalized number of elements (outcomes) in a subset (event),
our focus is on showing how the formulation of information theory based on logical
entropy (the normalized number of distinctions of a partition) develops the partition
side of the duality.
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• Quantum mechanics (QM), which is the main application, shows how the central notion
of a superposition is the Hilbert space version of a block in a partition. A partition
block (or equivalence class of an equivalence relation) is the mathematical way at the
set level to express the indefiniteness of the elements in the block. Hence, the idea is
to show that the math (not the physics) of QM is the vector space (particularly Hilbert
space) version of the math of indefiniteness, i.e., partition math. This connection
between partition math and QM math is carried out using a process called the “Yoga
of Linearization”.

The emphasis is on “application” since this approach to QM is not itself new [1].
There is a remarkable multiplicity of “interpretations” of QM with little or no agreement or
convergence. The important point is that this approach or interpretation is not just another
concocted “interpretation” but is an application of a “bigger picture” duality that runs
throughout the exact sciences.

1.2. History of the Beginning Logic and Category Theory Examples

Modern mathematical logic started with George Boole’s logic of subsets or classes [2].
Currently, the mathematical logic is usually presented in the form of “propositional” logic
that is really a special case of the Boolean logic of subsets (where the universe set is a
singleton set).

The algebra of logic has its beginning in 1847, in the publications of Boole
and De Morgan. This concerned itself at first with an algebra or calculus of
classes, to which a similar algebra of relations was later added. Though it
was foreshadowed in Boole’s treatment of “Secondary Propositions”, a true
propositional calculus perhaps first appeared from this point of view in the
work of Hugh MacColl, beginning in 1877. [3] (pp. 155–156)

The customary presentation of the mathematical logic of subsets in the special case
of propositional logic has led to the common assumption that “logic” has to be about
propositions—an assumption particularly prevalent in philosophy. But “proposition” is not
a mathematical object but a “subset” and there is a standard way to associate propositions
with subsets (which is particularly important in the mathematical logic of topos theory).

The propositional calculus considers “Propositions” p, q, r, ... combined under
the operations “and”, “or”, “implies”, and “not”, often written as p ∧ q, p ∨ q,
p ⇒ q, and ¬p. Alternatively, if P, Q, R, ... are subsets of some fixed set U
with elements u, each proposition p may be replaced by the proposition u ∈ P
for some subset P ⊆ U; the propositional connectives above then become
operations on subsets; intersection ∩, union ∪, implication (P ⇒ Q is ¬P ∪ Q),
and complement of subsets. [4] (p. 48)

This is also true in the quantum logic of (closed) subspaces of a Hilbert space [5],
where the associated proposition is that a state vector is in a certain subspace—instead of
an element of the universe set U being in a certain subset.

Category theory dates back to 1945 [6]. Category theory provides a formal (turn-
around-the-arrows) notion of duality, and the dual of the notion of a subset is the notion of
a quotient set or, equivalently, a partition or an equivalence relation. In general, a subobject
may be called a “part” and “the dual notion (obtained by reversing the arrows) of a ‘part’
is the notion of partition” [7] (p. 85).

This duality between subsets and partitions is missed when the Boolean logic of
subsets is only presented as propositional logic since propositions do not have duals. Hence,
the notion of a dual logic of partitions (or equivalence relations) was not ‘in the air’. It was
known in the 19th century (Richard Dedekind and Ernst Schröder) that partitions form a
lattice with the operations of join ∨ and meet ∧. A paper was published by Gian-Carlo Rota
and colleagues on the logic of certain equivalence relations but without any implication
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operation [8]. Indeed, throughout the 20th century, no new operations were developed of
partitions or equivalence relations. This was noted in a 2001 paper in a memorial volume
for Rota,

Equivalence relations are so ubiquitous in everyday life that we often forget
about their proactive existence. Much is still unknown about equivalence
relations. Were this situation remedied, the theory of equivalence relations
could initiate a chain reaction generating new insights and discoveries in many
fields dependent upon it.
This paper springs from a simple acknowledgment: the only operations on the
family of equivalence relations fully studied, understood and deployed are the
binary join ∨ and meet ∧ operations. [9] (p. 445)

Hence, the development of a full-fledged logic of partitions awaited the definition of
the implication operation on partitions in the twenty-first century [10]. When the algebra of
partitions on a set was developed alongside the Boolean algebra of subsets of a set, then it
became clear that there is a more ‘granular’ form of the subsets–partitions duality, namely,
the duality between the elements of a subset and the “distinctions” of a partition.

2. Method
2.1. Application to Partition Logic

Technically, a partition π = {B1, . . . , Bm} on a universe set U = {u1, . . . , un} (|U| ≥ 2)
is a set of non-empty subsets B1, ..., Bm of U (called the blocks of the partition) that are disjoint
and whose union is U. For simplicity and convenience, we will stick to finite universe
sets U. A distinction or dit of π is an ordered pair (ui, uk) of elements ui, uk ∈ U in distinct
blocks of the partition π. The set of distinctions is dit(π) ⊆ U × U and its complement
in U × U is the set of indistinctions or indits indit(π) = ∪m

j=1(Bj × Bj) = U × U − dit(π),
which is just the equivalence relation version of the partition π.

A partition and an equivalence relation are essentially the same idea viewed from
different viewpoints. An equivalence relation E could have been defined first as a binary
relation E ⊆ U × U that is reflexive (for all ui ∈ U, (ui, ui) ∈ E), symmetric (if (ui, uk) ∈ E,
then (uk, ui) ∈ E), and transitive (if (ui, uk), (uk, ul) ∈ E, then (ui, ul) ∈ E). Then, for
any ui ∈ U, let E(ui) = {uk|(ui, uk) ∈ E} be the equivalence class of ui. For ui ̸= uk,
the equivalence classes E(ui) and E(uk) are either the same (if (ui, uk) ∈ E) or are disjoint.
The equivalence classes are just the blocks of the corresponding partition. For the most
part, we will deal explicitly with partitions instead of equivalence relations.

For a simple example, consider U = {a, b, c} and π = {{a}, {b, c}}. Then, the set of
distinctions of π is the ditset dit(π) = {(a, b), (a, c), (b, a), (c, a)} and the set of indistinc-
tions of π is the indit set indit(π) = {(a, a), (b, b), (c, c), (b, c), (c, b)}.

2.2. Dual Logics of Subsets and Partitions

Given a universe set U = {u1, ..., un}, the set of all subsets is the powerset ℘(U).
The partial order on ℘(U) is the inclusion relation. Given S, T ∈ ℘(U), the join (or least
upper bound) is the union S ∪ T and the meet (or greatest lower bound) is the intersection
S ∩ T, which makes ℘(U) into the Boolean lattice on U. Whenever the inclusion relation
S ⊆ T holds, then there is a canonical injection S ↣ T. The implication (or conditional)
operation is S ⇒ T = Sc ∪ T (where Sc is the complement U − S) makes ℘(U) into the
Boolean algebra on U. The top of the Boolean algebra is U and the bottom is the empty set
∅. The implication has the characteristic property: S ⇒ T = U iff (if, and only if) S ⊆ T.

To construct the dual partition algebra on U, let Π(U) be the set of all partitions on U.
The partial order on Π(U) is the refinement relation, where given π = {B1, . . . , Bm} and
σ = {C1, . . . , Cm′}, then, σ is refined by π, written σ ≾ π, if any Bj ∈ π, there is a Cj′ ∈ σ
such that Bj ⊆ Cj′ . Whenever the refinement σ ≾ π holds, then there is a canonical surjection
π ↠ σ, which takes each block of π to the block of σ it is contained in. The refinement
partial order is equivalent to inclusion between ditsets: σ ≾ π iff dit(σ) ⊆ dit(π). The join
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π ∨σ is the partition whose blocks are all the non-empty intersection Bj ∩Cj′ for j = 1, . . . , m
and j′ = 1, . . . , m′. In terms of ditsets, dit(π ∨ σ) = dit(π) ∪ dit(σ), so the join is the least
upper bound to π and σ in the refinement partial ordering. To form the meet π ∧ σ, consider
the intersection ∩{E| indit(π), indit(σ) ⊆ E} of all the equivalences relations containing
indit(π) and indit(σ), and then since the intersection of the equivalence relations is always
an equivalence relation, the meet π ∧ σ is the corresponding partition. Then, the ditset
dit(π ∧ σ) is the largest ditset contained in dit(π)∩ dit(σ), so the meet π ∧ σ is the greatest
lower bound of π and σ. The meet and join operations make Π(U) in a partition lattice.

There is a top partition, called the discrete partition, 1U = {{u1}, ..., {un}}, where all
the blocks are singletons, and there is a bottom partition, called the indiscrete partition,
0U = {U}, with only one block U. The partition lattice Π(U) becomes the partition algebra
with the addition of the partition implication σ ⇒ π operation, where σ ⇒ π is the partition
that is like π, except if any block Bj ∈ π is contained in a block of σ, then it is ‘discretized’,
i.e., replaced by the singletons of its elements. Then, it is easily seen that: σ ⇒ π = 1U
iff σ ≾ π, i.e., all the blocks of π are discretized iff each block of π is contained in a block
of σ. It should be noted that some older texts ([11,12]) define the “lattice of partitions”
with the reverse partial order (which reverses the join and meet) which Gian-Carlo Rota
called “unrefinement” or “reverse refinement” [13] (p. 30) (If one wants to associate a
proposition with a subset S in subset logic, then it is the proposition ui ∈ S. The elements
and distinctions duality says that one can associate a proposition with a partition π in
partition logic, namely, (ui, uk) ∈ dit(π)).

The lattice of partitions Π(U) for U = {a, b, c} is pictured in Figure 1. The lines
between partitions indicate refinement and it is a Hasse diagram in the sense that there are
no intermediate unpictured partitions. When the lines from two partitions join above, it is
the join and when they meet below, it is the meet.

Figure 1. Partition lattice on U = {a, b, c}.

The duality between the logical lattices (or “algebras” when the implication operation
is added to the lattice operations) ℘(U) and Π(U) takes the granular form of the duality
between the elements (or ‘Its’) of a subset and the distinctions (or ‘Dits’) of a partition, as
illustrated in Table 1.

Table 1. Duality of elements and distinctions (Its and Dits).

It and Dits Duality ℘(U) Π(U)

Its or Dits Elements of subsets Distinctions of partition

Partial order Inclusion S ⊆ T Inclusion dit(σ) ⊆ dit(π)

Canonical maps S↣ T π ↠ σ

Join Union S ∪ T Union dit(π) ∪ dit(σ)

Meet Subset of common elements Ditset of common dits

Top All elements U All distinctions 1U

Bottom No elements ∅ No distinctions 0U

Implication S ⇒ T = U iff S ⊆ T σ ⇒ π = 1U iff σ ≾ π
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3. Results
3.1. Application to Category Theory
3.1.1. The Definition of Functions Using the Elements and Distinction Duality

The fact that the canonical maps arise out of the totally algebraic structure of the
dual algebras portends their role in the ur-category (i.e., most basic category) of Sets (and
functions) to determine the universal mapping properties (UMPs) of the reverse-the-arrows
duality of category theory.

The morphisms in the category of Sets are the set functions f : X → Y. But there
is a natural definition of functions that leads to the concrete morphisms in the opposite
category Setsop by just exchanging the role of elements and distinctions.

Consider a binary relation R ⊆ X × Y.
R is said to transmit or preserve elements if for every x ∈ X, there is an ordered pair

(x, y) ∈ R for some y ∈ Y.
R is said to reflect elements if for each element y ∈ Y, there is an ordered pair (x, y) ∈ R

for some x ∈ X.
R is said transmit (or preserve) distinctions if for any pairs (x, y) and (x′, y′) in R, if x ̸= x′,

then y ̸= y′.
R is said to reflect distinctions if for any pairs (x, y) and (x′, y′) in R, if y ̸= y′, then

x ̸= x′.
The dual role of elements and distinctions is made clear if we translate the usual char-

acterization of the binary relations that define functions into the elements-and-distinctions
language. Ordinarily, a binary relation R ⊆ X × Y defines a function X → Y if it is de-
fined everywhere on X and is single-valued in Y. But “ being defined everywhere on
X” is the same as transmitting elements, and “being single-valued in Y” is the same as
reflecting distinctions:

R is a function if it transmits elements and reflects distinctions.

There are two special types of relations, i.e., those that transmit distinctions and those
that reflect elements. These two important special types of functions are the injections and
surjections, and they are defined by the other two notions:

a function is injective if it transmits distinctions, and a function is surjective if it
reflects elements.

Given a set function f : X → Y with domain X and codomain Y, the subset–partition
duality follows. A subset of the codomain is determined as the image f (X) of an injective
function f : X↣ Y, and a partition on the domain is determined as the coimage (or inverse-
image) f−1 = { f−1(y)}y∈Y of a surjective function f : X↠ Y, where Y is then the quotient
set where each block of f−1 is reduced to a point [7] (p. 86). In the terminology of the
reverse-the-arrows duality in category theory, given the name of a subset- or subobject-
based notion, the other side of the basic duality is a partition- or quotient-based notion
named with the “co-” prefix as in “image” and “ coimage”. The late category theorist,
F. William Lawvere, described, in his introductory text, the dual or “opposite” roles of
injections (or subsets) and surjections (or partitions): “The point of view about maps
indicated by the terms ‘naming’, ‘listing’, ‘exemplifying’, and ‘parameterizing’ is to be
considered as ‘opposite’ to the point of view indicated by the words ‘sorting’, ‘stacking’,
‘fibering’, and ‘partitioning’ [14] (p. 83).

The algebraically defined canonical injections and surjections in the dual algebras are
used to define the canonical maps in the universal mapping properties in the category of
Sets [15].

3.1.2. Duality in Sets—Where “Reverse-the-Arrows” Comes from

In the opposite or dual Cop of a category C, the arrows are usually just treated abstractly
as the reversed arrows of C, and then a universal construction like the product in C is the
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coproduct in Cop and similarly for the equalizer and coequalizers. But we can do better
in Setsop, where the reversed arrows are binary relations where elements and distinctions
are interchanged. That is, the concrete morphisms in Setsop are the binary relations that
transmit distinctions and reflect elements that might be called cofunctions—instead of
functions which transmit elements and reflect distinctions. Interchanging “elements” and
“distinctions” in the definition of a function amounts to reversing the directional notions of
“transmitting” as well as “reflecting”, i.e., reversing the function-arrows of Sets to obtain the
cofunction-arrows of Setsop. Then, one can see concretely that the product in dual category
Setsop is the coproduct in Sets and so forth. This shows how the abstract reverse-the-arrows
duality of category theory is abstracted from the elements and distinctions duality behind
the definitions of functions and cofunctions in Sets and Setsop.

The same duality carries over to the concrete categories of structured sets, such as
groups, rings, modules, and vector spaces (e.g., subgroups versus quotient groups, etc.)
and is then abstracted in the reverse-the-arrows duality in abstract categories. Thus, our
fundamental duality finds its most elegant expression in the reverse-the-arrows duality of
category theory. However, that treatment of the duality is, in general, too abstract to show
all the detailed dual structures of the subsets and partitions or elements and distinctions
duality in the exact sciences. The foundational ‘takeaway’ point is that our fundamental
duality in the category-theoretic reverse-the-arrows form is expressed throughout the
architecture of mathematics itself.

3.2. Application to Probability Theory and Information Theory
3.2.1. Probability Theory

Probability theory starts with the Boole–Laplace notion of probability as relative or
normalized number of elements in a subset or event. For S ⊆ U = {u1, . . . , un}, its
probability in one-draw from U (with equiprobable points) is:

Pr(S) = |S|
|U| .

If the elements of U have the (positive) probabilities p = (p1, . . . , pn), then
Pr(S) = ∑ui∈S pi. In terms of measure theory, p is a measure on ℘(U) and Pr(S) = p(S) is
just the value of the measure on the subset or event S. Since probability theory starts as the
quantitative version of subset logic, then what is the quantitative version of partition logic
and what is the theory of such a measure?

3.2.2. Logical Information Theory

Gian-Carlo Rota asked the right question and made the right connection of partitions
to information. In his writings and lectures at MIT [16], Rota made the analogy:

Subsets
Probability

≈ Partitions
Information

.

In other words, “The lattice of partitions plays for information the role that the Boolean
algebra of subsets plays for size or probability” [13] (p. 30). After making the connection
between partitions and information, the question is: Given the “intuitive idea of the size of
a set”, what is the measure “which will capture some property that will turn out to be for
[partitions] what size is to a set?” He then asks: “How shall we be led to such a property?
We have already an inkling of what it should be: it should be a measure of information
provided by a random variable. Is there a candidate for the measure of the amount of
information?” [17] (p. 67). The elements and distinctions duality answers Rota’s questions.

The measure of information is the relative or normalized number of distinctions in a
partition. As the quantitative version of partition logic, this is the notion of logical entropy
(with equiprobable elements):

h(π) = |dit(π)|
|U×U| =

|U×U−∪m
j=1(Bj×Bj)|

|U×U| =
|U|2−∑Bj∈π |Bj |2

|U|2
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= 1 − ∑Bj∈π(
|Bj |
|U| )

2 = 1 − ∑Bj∈π Pr(Bj)
2.

For positive probabilities p, Pr(Bj) = ∑ui∈Bj
pi, so that in general:

h(π) = 1 − ∑m
j=1 Pr(Bj)

2 = ∑m
j=1 Pr(Bj)(1 − Pr(Bj)) = ∑j ̸=k Pr(Bj)Pr(Bk)

since 1 = (∑m
j=1 Pr(Bj))

2 = ∑m
j=1 Pr(Bj)

2 + ∑j ̸=k Pr(Bj)Pr(Bk). The probabilities p define
the product measure p × p on U × U, so the logical entropy is the value of a probabil-
ity measure:

h(π) = p × p(dit(π)).

Venn diagrams are based on measures on sets, usually counting measures. Since
logical entropy is given by the values of a measure on U × U, the compound notions of
joint, difference (or ‘conditional’), and mutual logical entropy are just the values of the
measure on the appropriate sets:

h(π ∨ σ) = p × p(dit(π ∨ σ)) = p × p(dit(π) ∪ dit(σ));
h(π|σ) = p × p(dit(π)− dit(σ));
h(σ|π) = p × p(dit(σ)− dit(π)); and
m(π, σ) = p × p(dit(π) ∩ dit(σ))

and, thus, they satisfy the usual Venn diagram relationships, as illustrated in Figure 2.

Figure 2. Venn diagram for compound logical entropies.

The Shannon entropy, in contrast, is defined directly in terms of the block probabilities,
not as the value of a measure on a set:

H(π) = ∑m
j=1 Pr(Bj) log2(

1
Pr(Bj)

).

The compound Shannon entropies are carefully defined so that they satisfy the usual
Venn diagram relationship even though they are not defined in terms of a measure on a set.
This ‘mystery’ [18] is solved by the dit-to-bit transform that converts the measure-defined
logical entropies into the corresponding Shannon entropies:

1 − Pr(Bj)⇝ log2(
1

Pr(Bj)
)

Dit-Bit Transform

so that

h(π) = ∑m
j=1 Pr(Bj)(1 − Pr(Bj))⇝ H(π) = ∑m

j=1 Pr(Bj) log2(
1

Pr(Bj)
)
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and similarly for the compound definitions. The non-linear but monotonic dit–bit transform
preserves the Venn diagram relationships, such as: h(π ∨ σ) = h(π) + h(σ)− m(π, σ), so
it explains how the Shannon entropies can satisfy the Venn relationships without being a
measure in the sense of measure theory.

3.2.3. Information as a Measure of Distinctions

The logical entropy definition directly defines information in terms of distinctions.
Claude Shannon remarked that “no concept of information itself was defined” [19] (p. 458)
in what he called “A Mathematical Theory of Communications” [20] (he did not like the
name “information theory”). But he did consider his entropy as a quantification of infor-
mation which is true by the dit–bit transform. The wide-ranging anthropologist, Gregory
Bateson, described information as “differences that make a difference” [21] (p. 99). In the
context of symmetries, the making of distinctions is described as “symmetry-breaking”, so
John Collier [22] and Scott Muller [23] have characterized information in terms of symmetry-
breakings. And one of the founders of quantum information theory, Charles Bennett, has
described information as “the notion of distinguishability abstracted away from what we
are distinguishing, or from the carrier of information. . . ” [24] (p. 155).

But the germ of the idea of information-as-distinctions goes back almost four centuries
to John Wilkins, a seventeenth century polymath and one of the founders of the Royal
Society. Wilkins published anonymously in 1641 (the year before Newton was born) one
of the earliest books on cryptography, Mercury or the Secret and Swift Messenger. The book
not only pointed out the fundamental role of differences but noted that any (finite) set of
different things could be encoded by words in a binary code.

For in the general we must note, That whatever is capable of a competent
Difference, perceptible to any Sense, may be a sufficient Means whereby to
express the Cogitations. It is more convenient, indeed, that these Differences
should be of as great Variety as the Letters of the Alphabet; but it is sufficient if
they be but twofold, because Two alone may, with somewhat more Labour and
Time, be well enough contrived to express all the rest. [25] (Chap. XVII, p. 69)

Wilkins explains that a five-letter binary code would be sufficient to code the letters of
the alphabet since 25 = 32.

Thus any two Letters or Numbers, suppose A.B. being transposed through five
Places, will yield Thirty Two Differences, and so consequently will superabun-
dantly serve for the Four and twenty Letters. . . . [25] (Chap. XVII, p. 69)

As James Gleick noted:

Any difference meant a binary choice. Any binary choice began the expressing
of cogitations. Here, in this arcane and anonymous treatise of 1641, the essential
idea of information theory poked to the surface of human thought, saw its
shadow, and disappeared again for [three] hundred years. [26] (p. 161)

Gleick is here dating the development of modern information theory from Claude
Shannon’s monumental work published in 1948—as well as referring to the old Pennsylva-
nia Dutch superstition that if on the second of February each year, a groundhog emerges
from its den and sees its shadow, then it returns to its den for another six weeks.

The formula for logical entropy, e.g., h(1U) = 1 − ∑n
i=1 p2

i , goes back at least to the
early twentieth century in Corrado Gini’s index of mutability [27], but the derivation as the
quantitative measure of partitions puts it on a logical basis and, thus, provides a logical
foundation for information theory [28]. The formula has a rich history [28] (Chap. 1.5) but
most notably, it is the special case of C. R. Rao’s notion of quadratic entropy ([29,30]). Given
a set U with point probabilities p = (p1, ..., pn) and a distance measure d(ui, uk) between
the points of U, the quadratic entropy is ∑n

j,k=1 d(ui, uk)pi pk; so, the logical entropy is just
the quadratic entropy for the logical distance function d(ui, uk) = 1 − δik (where δik is the
Kronecker delta function δik = 1 if i = k, and 0 otherwise).



Foundations 2024, 4 183

3.2.4. Codes and Partitions

Today’s theory of communications and coding has played an enormous role in our
“Information Age”. One of the recurring themes on the partitions side of the subset and par-
titions duality is the way that repeated joins of partitions on a set can eventually distinguish
all the elements of the set by reaching the discrete partition 1U . When the elements of U are
interpreted as messages, then the codes for the messages can be defined using consecutive
joins of partitions to eventually reach the discrete partition [31] (p. 56).

Wilkins considered code letters of A and B, but, in modern terms, it is 0 and 1. Suppose
we have messages U = {a, b, c, d, e}. An instantaneous code (no code is a prefix to another
code) can be generated by taking consecutive joins of binary partitions like {{a}, {b, c, d, e}},
with the left block labeled 0 and the right block labeled 1 as if the partition was the inverse-
image of a function U → {0, 1}. A code table like Table 2 gives a sequence of partitions
whose eventual join is discrete. In the Consecutive Joins column, whenever an element first
becomes a singleton, then its history of 0-blocks and 1-blocks in the Partitions column gives
its code. Since a singleton cannot further differentiate, the sequence of code letters cannot
be the prefix in any other code.

Table 2. Codes generated by consecutive joins of partitions.

Partitions Consecutive Joins Code

{{a}, {b, c, d, e}} {{a}, {b, c, d, e}} 0 = a

{{a, b, c}, {d, e}} {{a}, {b, c}, {d, e}}

{{a, b}, {c, d, e}} {{a}, {b}, {c}, {d, e}} 100 = b; 101 = c

{{a, b, c, d}, {e}} {{a}, . . . {e}} = 1U 1110 = d; 1111 = e

The progress in the development of the codes can always be traced in a rooted tree
(pictured upside down) as in Figure 3 with the rows marked off from Table 2.

Figure 3. Rooted tree illustrating the codes defined by a sequence of partition joins.

Partitions make distinctions and partition joins make more distinctions since
dit(π ∨ σ) = dit(π) ∪ dit(σ), so a sequence of partition joins to fully distinguish elements
in the discrete partition is a standard structure in the mathematics of partitions that we will
see again below.
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3.3. Subset–Partition Duality and the Two Metaphysics
3.3.1. Dual Types of Creation

The subset–partition duality can be related to ancient Greek philosophical notions of
substance (or matter) and form [32]. Heisenberg provided a modern interpretation.

Just as the Greeks had hoped, so we have now found there is only one funda-
mental substance of which all reality consists. If we have to give this substance
a name, we can only call it “ energy”. But this fundamental “energy” is capable
of existence in different forms. [33] (p. 116)

Real entities combine substance and form, but they can be developed in two dual
ways according to the elements and distinctions duality. Figure 4 indicates these two ways
of creation, i.e., moving from bottom to the top, using the dual algebras.

Figure 4. Two creation stories described in terms of the elements and distinctions duality and the
dual lattices.

On the left of Figure 4 is the Boolean lattice of subsets. The subset creation story is
that in the beginning there was the void of no substance (null set ∅) and then fully formed
elements are created ex nihilo to eventually reach the full universe (universe set U).

On the right in Figure 4 is the lattice of partitions. The partition creation story is
that in the beginning, there was all the substance but with perfect symmetry [34] and
no differentiated form (0U) and then in a Big Bang, the substance was increasingly in-
formed by distinctions (symmetry-breaking) to eventually reach the universe with full
differentiation (1U).

These two creation stories, told according to the fundamental duality, are highly
schematic, but, nevertheless, it is the partition story that accords with the current cosmology
of the Big Bang.

3.3.2. Metaphysics of Classical Physics

The classical physics view of reality was particles with fully definite states. Definite-
ness went all the way down (to paraphrase the old “turtles all the way down” joke). One
expression of this metaphysics was Leibniz’s Principle of Identity of Indistinguishables
(PII) [35] (Fourth letter, p. 22). Given two seemingly different entities, by digging down far
enough there must be some property that applies to one and not the other to distinguish
them. If there was no such distinguishing property, i.e., they were indistinguishable, then
they had to be one and the same entity. The same idea was expressed by Kant as the
Principle of Complete Determination:

Every thing as regards its possibility is likewise subject to the principle of
complete determination according to which if all possible predicates are taken
together with their contradictory opposites, then one of each pair of contradic-
tory opposites must belong to it. [36] (B600)

This classical view can be expressed by the interpretation of the Boolean lattice of
subsets. Figure 5 is the Hasse diagram for the Boolean lattice of subsets of U = {a, b, c, d},
where the lines indicate inclusion.
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Figure 5. Boolean lattice of subsets of U = {a, b, c, d}.

The different interpretations of classical and quantum metaphysics given here start
with the different interpretations of the dual logics of subsets and partitions. For the
Boolean algebra of subsets, the elements of U are different classical particles and the subsets
represent classical properties. An element is either in a subset or in its complement, i.e., the
element has the property or the complementary property. Distinct elements can always
be differentiated by one having a property and the other not having it, i.e., having the
complementary property.

3.3.3. Metaphysics of Quantum Physics

In our treatment of quantum physics, we mean the more or less standard von Neu-
mann/Dirac (finite-dimensional non-relativistic) theory. The point is to show how the
distinctions-side of the fundamental duality sponsors an approach to understanding that
standard theory. There is no discussion of alternative formulations, such as Bohmian
mechanics or spontaneous localization theories, not to mention many-world theories.

Instead of properties that an entity has or not, consider numerical attributes such as
size, weight, location, etc., where an entity may have a certain value. Quantum physics
envisages quantum particles having indefinite values of an attribute. Quantum mechanics
(QM) differs from classical mechanics in having superposition states. In the partition
algebra of partitions on U = {a, b, c, d}, the elements do not represent different particles
but different definite states of a (quantum) particle. The non-singleton blocks in a partition
represent the particle being in a superposition of those states in the block. A singleton
block represents a definite- or eigen-state. A partition then represents a mixture of disjoint
(orthogonal) states, some may be eigenstates and some might be superposition states.

To represent the partition algebra on U, we will use a shorthand of replacing the
innermost curly brackets with juxtaposition so, for instance, the partition {{a, b}, {c, d}}
becomes {ab, cd}. Using this shorthand, the partition lattice on U = {a, b, c, d} is given in
Figure 6, where the lines now represent the partial order of refinement.
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Figure 6. Lattice of partitions on U = {a, b, c, d}.

In comparing Figures 5 and 6, the horizontal levels in the subset case is by the number
of elements in the subsets and, in the partition case, the levels are by the number of
distinctions and, thus, the values of logical entropy, as shown in Figure 7.

Figure 7. Classical and quantum worlds illustrated using the lattice of partitions along with logi-
cal entropies.

The blocks in a partition are the same as the equivalence classes in the associated
equivalence relation. The states in a non-singleton block are ‘equated’ in the sense of being
undifferentiated. These block-subsets are not like ordinary classical subsets of distinct
entities (e.g., as in the Boolean algebra of subsets). In a superposition subset, the differences
between the states are rendered indefinite or blurred; it is only definite on commonalities
between the states. If a quantum particle is in a superposition of being “here” or “there”,
then “the particle is neither definitely here nor definitely there” [37] (p. 75)—but definitely
not anywhere else. The key to understanding the ‘mysteries’ of QM is to understand
the differences between the notion of a superposition state of a particle in contrast to
the classical particle that either definitely has a property or definitely does not. That
difference between classical and quantum metaphysics is exemplified by the different
interpretations of the dual lattices of subsets and partitions. Since quantum theory is a
highly confirmed theory about physical reality, we turn to our main application, a more
detailed analysis about how the partition-side and distinctions-side of the duality clarifies
quantum mechanics.

3.4. Application to the Mathematics of Quantum Mechanics
3.4.1. Interpreting Superposition is the Key

The mathematics of QM is quite distinctive and different from the math of classical
physics in that states are vectors in a vector space (so addition of vectors gives new
‘superposition’ states) and observables are operators (whose eigenvalues and eigenvectors
gives quantization of values). QM math is different for a reason; it has to describe a different
kind of reality that is not contemplated in classical physics—the reality of superposition
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states. To see this, we will focus on just the math of QM, not the physics. For instance,
Planck’s constant h (or the limit as h → 0) will not be discussed in the analysis.

How is the mathematics of partitions relevant? The thesis is that the math of QM is
the Hilbert space version of the math of partitions, or put the other way around, the math
of partitions is a very schematic or skeletonized version of QM math. For instance, in a
superposition state, there is a linear combination of eigenstates like |ψ⟩ = α|a⟩ + β|b⟩,
but if we throw away the complex coefficients α and β along with the vector space sum,
then we are left with the underlying support set, which is just a ‘superposition subset’
{|a⟩, |b⟩} or just {a, b} without the Dirac notation. That is the skeletonized version of the
quantum superposition state and those are the superposition subsets or blocks dealt with
in partition math.

The exposition strategy is to develop a side-by-side dictionary of partition math and
the corresponding QM math so that one can easily see how the QM math is the Hilbert
space version of the partition math. And since we know how to interpret the partition
math, e.g., non-singleton blocks or equivalence classes as superposition subsets, we can
then see how to interpret the corresponding QM math.

The idea that superposition is the key non-classical concept in QM and that quantum
superpositions are indefinite states is not new, so this approach through partitions is
corroborating some rather common views held in quantum mechanics. For instance,
the philosopher of science, Mario Bunge, makes these points (where he calls a quantum
particle, a “quanton”).

Another surprising peculiarity of quantons is that they are blurry or fuzzy
rather than neat or sharp. Whereas in classical physics all properties are sharp,
in quantum physics only a few are: most are blunt or smudged. . . .
The reason for this fuzziness is that ordinarily an isolated quanton is in a
“coherent” state, that is, the combination or superposition (weighted sum) of two
or more basic states (or eigenfunctions). The superposition or “ entanglement”
of states is a hallmark of quantum mechanics. [38] (pp. 49–50)

There is only one partition on a set that contains no superposition blocks (non-singleton
blocks) and that is the discrete partition 1U , where all the states are fully distinguished
as singleton blocks. Leibniz used the Principle of Identity of Indistinguishables (PII) as
a characterization of classical reality. Accordingly, the discrete partition (and only that
partition) satisfies the partition logic version of the PII:

For any u, u′ ∈ U, if (u, u′) ∈ indit(1U), then u = u′

Principle of Identity of Indistinguishables in Partition Logic.

Thus, we can divide the partition lattice in the classical part (tip of the iceberg) and
the quantum part (rest of the iceberg), where all the states include a superposition state, as
illustrated in Figure 7 (with logical entropies based on an equiprobable assumption).

We begin building up the side-by-side dictionary by developing the set versions of the
key QM concepts of quantum observables, quantum states, and quantum measurement.

3.4.2. Quantum Observables

We use a semi-algorithmic procedure to relate set concepts with the corresponding
vector space concepts, where, for our purposes, the vector space is a Hilbert space. Such a
procedure might be called a “yoga” [39] (p. 251). The key is to consider a set U first as just
a set of elements at the set level and then as a basis set at the vector space level.

Yoga of Linearization:
Apply a set concept to U as a set,

and then the corresponding vector space concept
is whatever is linearly generated from the set concept

when U is taken as a basis set.
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For instance, when a subset S ⊆ U = {u1, . . . , un} taken as a subset of a basis set,
then it generates a subspace [S] of the Hilbert space V = [U] and the cardinality |S| of the
subset correlates with the dimension dim([S]) of the subspace. Technically, the Yoga can
be considered as an embellishment of the functor from the category of Sets to the category
of vector spaces over a given field, in our case the complex numbers C. Given the vectors
in a vector space represented in a certain basis U, the underlying set functor would take
α|a⟩+ β|b⟩ to the support {a, b} ⊆ U.

If we start with a partition π = {B1, . . . , Bm} on U, then applying that to a basis set of
V, each block Bj ∈ π generates a subspace [Bj] and the collection of subspaces {[Bj]}m

j=1
is a direct-sum decomposition or DSD of V, where DSD is defined as a set of subspaces so
that each non-zero vector in the space can be uniquely represented as a sum of non-zero
vectors from the subspaces in the set. Hence, a set partition correlates with a vector space
DSD in our side-by-side dictionary. Indeed, we could have given a DSD-type definition of
a set partition on U as a set of non-empty subsets {Bj}m

j=1 such that every subset S ⊆ U
is uniquely represented as a union of non-empty subsets of the Bj’s. If the union of the
Bj’s did not exhaust U, then U −∪m

j=1Bj would have no representation, and if Bj ∩ Bk ̸= ∅,
then that overlap would not have a unique representation. Hence, the DSD-type definition
is equivalent to the usual definition as a set of non-empty subsets that exhaust U and are
mutually disjoint.

In QM, the observables are Hermitian (or self-adjoint) operators F : V → V, which
have all eigenvalues as real numbers. The set correlate is a real-valued numerical attribute
f : U → R. Given such a numerical attribute, the Yoga defines a Hermitian operator F by
Fui = f (ui)ui on U as a basis set which then extends linearly to F : V → V. The numerical
attribute has an inverse-image partition f−1 = { f−1(r)}r∈ f (U) and, by the Yoga, this
generates the DSD {Vr}r∈ f (U) of eigenspaces of F, where Vr = [ f−1(r)]. Given a Hermitian
operator with an orthonormal (ON) basis U of eigenvectors, the numerical attribute f is
recovered as the eigenvalue function f : U → R that assigns each eigenvector in the basis
to its eigenvalue. Thus, the set level correlate of an eigenvalue is a value of a real-valued
numerical attribute.

What is the set level notion of an eigenvector? If we take “rS” to stand for “r is the
value on the subset S”, then “ f ↾ S = rS” (where f ↾ S is f restricted to S) is the set version
of the eigenvalue-eigenvector equation Fui = rui. Then the set level eigenvectors are just
the constant sets of f , the subsets on which f is constant (with some value r). The set level
correlate of the eigenspace Vr = [ f−1(r)] is the set of all constant subsets ℘( f−1(r)) (where
we include ∅ as an honorary ‘eigenvector’).

Characteristic functions χS : U → {0, 1} ⊆ R, where χS(ui) = 1 if ui ∈ S, and 0
otherwise, define projection operators P[S] : V → V, which have only 0 or 1 eigenvalues.
A Hermitian operator F, with eigenvalue function f , has a spectral decomposition as:
F = ∑r∈ f (U) rPVr , and the eigenvalue function or numerical attribute f : U → R also has a
‘spectral decomposition’, where characteristic functions are substituted for the correlated
projection operators, i.e., f = ∑r∈ f (U) rχ f−1(r) : U → R. Furthermore, given two sets U
and U′, we may form the set notion of the product U × U′ = {(u, u′)|u ∈ U, u′ ∈ U′}.
Considering U and U′ as a basis set for vector spaces V and V′, we may apply the Yoga and
the ordered pairs (u, u′) (written as u ⊗ u′) bilinearly generate the tensor product V ⊗ V′.

We collect together these side-by-side correlates in partition math and QM math in
Table 3.

Table 3. Partition math for f : U → R and corresponding QM math for F : V → V.

Partition Math f : U → R Hilbert Space Math F : V → V

Partition { f−1(r)}r∈ f (U) DSD {Vr}r∈ f (U)

U = ⊎r∈ f (U) f−1(r) V = ⊕r∈ f (U)Vr

Numerical attribute f : U → R Observable Fui = f (ui)ui
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Table 3. Cont.

Partition Math f : U → R Hilbert Space Math F : V → V

f ↾ S = rS Fui = rui

Constant set S of f Eigenvector ui of F

Value r on constant set S Eigenvalue r of eigenvector ui

Characteristic fcn. χS : U → {0, 1} Projection operator P[S]ui = χS(ui)ui

Spectral Decomp. f = ∑r∈ f (U) rχ f −1(r) Spectral Decomp. F = ∑r∈ f (U) rPVr

Set of r-constant sets ℘( f−1(r)) Eigenspace Vr = [ f−1(r)] of r -eigenvectors

Product U × U′ Tensor product V ⊗ V′

3.4.3. Quantum States

In ordinary mathematics. a real-valued random variable is a function f : U → R,
where U = {u1, ..., un} is an outcome set with point probabilities p = (p1, ..., pn). But it will
be noted that probabilities played no role in the above treatment of quantum observables
or their set correlates as real-valued numerical attributes. This is because in the comparison
with real-valued random variables, quantum mechanics splits the two aspects between
quantum observables (with no probabilities) and the quantum states which carry the
probability information.

Hence, to build up the side-by-side correlates between partition math and QM math
for quantum states, we begin with a universe set U = {u1, ..., un} but with positive point
probabilities p = (p1, ..., pn) (so U is an outcome space), and then we build the partition
version of the quantum state. In QM math, there are two ways to represent a quantum
state, as a state vector or as a density matrix. For our purposes, the density matrix [40]
is far superior since the elements of the set level n × n density matrix can be one-to-one
correlated with the distinctions and indistinctions of a partition in U × U.

For a subset or event S ⊆ U, consider the n × 1 column vector |s⟩ whose ith-entry
is ⟨ui|s⟩ =

√
pi

Pr(S) if ui ∈ S, and otherwise 0. Taking ⟨s| = |s⟩t as the 1 × n row vector

transpose of the normalized |s⟩, we define the density matrix representation of the event S
as the outer product:

ρ(S) = |s⟩⟨s|.

Density matrices ρ are called pure if ρ2 = ρ, and otherwise mixed. Since |s⟩ is nor-
malized, the inner product is ⟨s|s⟩ = 1 so ρ(S)2 = |s⟩⟨s|s⟩⟨s| = |s⟩⟨s| = ρ(S), so it is a
pure state density matrix. The off-diagonal elements are ρ(S)ik =

√
pi pk

Pr(S) if ui, uk ∈ S and 0
otherwise. This corresponds to the interpretation of S as a superposition subset since the
non-zero off-diagonal elements indicate that the associated elements ui and uk are blurred,
blobbed, or cohered together in a superposition. In QM math, the non-zero off-diagonal ele-
ments are called “coherences” indicating superposition, and, since superposition states are
the characteristic non-classical states in QM, they account for the characteristic interference
effects in QM.

For this reason, the off-diagonal terms of a density matrix . . . are often called
“quantum coherences” because they are responsible for the interference effects
typical of quantum mechanics that are absent in classical dynamics. [41] (p. 177)

At the set level, |s⟩ plays the role of the state vector or the so-called “wave function”
even though there are no waves in sight in partition math.

It should be noted that the set version of the Born rule already appears since
Pr(ui|S) = ⟨ui|s⟩2. It might be said that the Born rule was simply built into the defini-
tion of |s⟩, but it still appears if we start with simply a pure state density matrix ρ. Since
density matrices are positive and Hermitian, the eigenvalues of any density matrix are
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non-negative and sum to 1. The eigenvalues of a pure state density matrix ρ are one 1 with
the rest 0’s. If |s⟩ is the normalized eigenvector associated with the eigenvalue 1, then it is
the same as our previously defined |s⟩ (up to sign), and the spectral decomposition of ρ is
ρ = |s⟩⟨s|. Empirically, the Born rule does give the probability Pr(ui|S).

We now consider a partition π = {B1, ..., Bm} on U and define the pure state density
matrices ρ(Bj) = |bj⟩⟨bj| by taking S = Bj with |s⟩ then denoted |bj⟩. Then, the set level
density matrix for π is the probabilistic sum of the ρ(Bj) matrices:

ρ(π) = ∑m
j=1 Pr(Bj)ρ(Bj),

which is a mixed state density matrix except in the case π = 0U which is pure. All
the properties of the partition π are now expressed in a density matrix form at the set
level. For instance, the entries in ρ(π) are ρ(π)ik =

√
pi pk if (ui, uk) ∈ indit(π) and

0 otherwise. Thus, the non-zero entries represent the indistinctions of π and the zero
entries represents the distinctions. The point probabilities are along the diagonal of ρ(π)
and the n eigenvalues of ρ(π) are the m block probabilities Pr(Bj) and n − m 0’s and the
associated ON eigenvectors are the m |bj⟩ vectors and n − m other ON vectors; so, the
spectral decomposition is: ρ(π) = ∑m

j=1 Pr(Bj)|bj⟩⟨bj|. Since the blocks of π are disjoint,
the normalized vectors |bj⟩ are mutually orthogonal, so ⟨bk|bj⟩ = δki.

Now that we have converted the set level machinery of partition math into a density
matrix format, the rest of the argument that QM math is just the Hilbert space version of
the partition math is trivial. In a (n-dimensional) Hilbert space, an arbitrary density matrix
ρ has an orthonormal basis of eigenvectors {|ui⟩}n

i=1 with n non-negative eigenvalues
λ1, ..., λn, which sum to 1 and the spectral decomposition is: ρ = ∑n

i=1 λi|ui⟩⟨ui|. These and
the correlations for pure state density matrices ρ(ψ) are given in Table 4.

Table 4. Quantum states: partition math and QM math.

Partition Math Hilbert Space Math

Density matrix: ρ(π) ρ

ON eigenvectors: ⟨bk|bj⟩ = δkj ⟨uk|ui⟩ = δki

Eigenvalues: Pr(B1), ..., Pr(Bm), 0, ..., 0 λ1, ..., λn

Spectral decomp.: ρ(π) = ∑m
j=1 Pr(Bj)|bj⟩⟨bj| ρ = ∑n

i=1 λi|ui⟩⟨ui|

Non-zero off-diagonal entry: Cohering of diag.
states Cohering of diagonal states

Pure state: ρ(S) = |s⟩⟨s| ρ(ψ) = |ψ⟩⟨ψ|

Eigenvector Eigenvalue 1 State vector: |s⟩ |ψ⟩

Born Rule: Pr(ui|S) = ⟨ui|s⟩2 Pr(ui|ψ) = |⟨ui|ψ⟩|2

3.4.4. Quantum Measurement

A quantum measurement (always projective) can be described at the quantum level
by the Lüders mixture operation ([42,43]). Given an observable F : V → V with projections
{PVr}r∈ f (U) to the eigenspaces {Vr}r∈ f (U) with an ON basis of eigenvectors U, the result
of measuring a quantum state given by a density matrix ρ, expressed in the measurement
basis U, is the post-measurement density matrix ρ̂ given by:

ρ̂ = ∑r∈ f (U) PVr ρPVr .
Hilbert space Lüders mixture operation

The Lüders mixture operation creates a mixed state, a set of states, one of which occurs
with the probabilities given by the Born rule. That process is overall described as the
infamous ‘quantum jump’.

We have already built up the side-by-side correlation tables between partition math
and QM math, so we know how to formulate the set level version of the Lüders mixture
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operation. Given a numerical attribute f : U → R with the inverse-image partition
f−1 = { f−1(r)}r∈ f (U) playing the role of the observable and the state ρ(π) playing the role
of the state being measured, we can compute the effect of the set level measurement. Let
Pf−1(r) be the n × n projection matrix, which is a diagonal matrix with the diagonal entries
being χ f−1(r)(ui). Then, the Lüders mixture operation at the set level is:

ρ̂(π) = ∑r∈ f (U) Pf−1(r)ρ(π)Pf−1(r).

What is the result of measuring the partition-based state ρ(π) by the numerical at-
tribute f which defines the partition f−1 = { f−1(r)}r∈ f (U)? It is easily shown that:

ρ̂(π) = ρ(π ∨ f−1)
Set level Lüders mixture operation.

Thus, the effect of (projective) measurement at the set level is to go from a state given by π
to the more refined state π∨ f−1. The increase in logical entropy is: h(π ∨ f−1)− h(π) = h( f−1|π)
as one can see from the Venn diagram of Figure 2 with σ = f−1. Moreover, that dif-
ference can be read off of the difference between the pre-measurement ρ(π) and the
post-measurement ρ̂(π) = ρ(π ∨ f−1). Logical entropy is the value of product measure
p × p on the ditsets and the ditsets are given by the zeros in the density matrices. Hence,
we consider all the indits given by non-zero entries

√
pi pk in ρ(π) that were turned into

dits (i.e., zeroed) in ρ(π ∨ f−1). The squares pi pk of all those zeroed entries is the value of
the product measure p × p on the additional dits created in the measurement, which is just
h( f−1|π) = p × p[dit( f−1)− dit(π)]. The analogous theorem holds for quantum logical
entropy for the projective measurement process in QM math ([1,28]).

This completes the argument that the QM math of quantum states, quantum observ-
ables, and quantum measurement is just the Hilbert space version of the math of partitions.
The results are given in the side-by-side dictionary of Table 5.

Table 5. Three basic notions: partition version and QM math version.

Dictionary Partition Math Hilbert Space Math

Notion of state ρ(π) = ∑m
j=1 Pr(Bj)|bj⟩⟨bj| ρ = ∑n

i=1 λi|ui⟩⟨ui|

Notion of observable f = ∑r∈ f (U) rχ f −1(r) : U → R F = ∑r∈ f (U) rPVr

Notion of measurement ρ̂(π) = ∑r∈ f (U) Pf −1(r)ρ(π)Pf −1(r) ρ̂ = ∑r∈ f (U) PVr ρPVr

A numerical example. These results can be illustrated with a simple example. Let
U = {a, b, c} with the point probabilities pa =

1
2 , pb = 1

3 , and pc =
1
6 . We first construct the

density matrix ρ(π) for the partition π = {B1, B2} = {{a, c}, {b}}. Then, we have:

|b1⟩ =


√

1/2
2/3
0√
1/6
2/3

 =


√

3
2
0
1
2

 and |b2⟩ =

 0√
1/3
1/3
0

 =

0
1
0


so that the two pure state density matrices are:

|b1⟩⟨b1| =


√

3
2
0
1
2

[√3
2 0 1

2

]
=

 3
4 0

√
3

4
0 0 0√

3
4 0 1

4

 and |b2⟩⟨b2| =

0 0 0
0 1 0
0 0 0

.

Then, ρ(π) is the probabilistic sum:

ρ(π) = ∑2
j=1 ρ(Bj)|bj⟩⟨bj| = 2

3

 3
4 0

√
3

4
0 0 0√

3
4 0 1

4

+ 1
3

0 0 0
0 1 0
0 0 0

 =


1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6

.
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With π = {{a, c}, {b}}, we have: indit(π) = {(a, a), (b, b), (c, c), (a, c), (c, a)}, which
corresponds to the five non-zero entries in ρ(π)—and thus the zero entries correspond to
the ditset: dit(π) = {(a, b), (b, a), (b, c), (c, b)}.

The orthogonal eigenvectors of ρ(π) are:

{

− 1√
3

0
1

} ↔ 0, {


√

3
0
1

} ↔ 2
3 , {

0
1
0

} ↔ 1
3 ,

the non-zero eigenvalues are the block probabilities Pr(B1) and Pr(B2), and the eigenvectors
for those non-zero eigenvalues normalize to |b1⟩ and |b2⟩.

Let f : U → R be the numerical attribute where f (a) = f (b) = 1 and f (c) = 0; so, the
inverse-image partition is f−1 = {{a, b}, {c}}. The projection matrices for the blocks are:

P{a,b} =

1 0 0
0 1 0
0 0 0

 and P{c} =

0 0 0
0 0 0
0 0 1


so, the set version of the Lüders mixture operation is:

P{a,b}ρ(π)P{a,b} + P{c}ρ(π)P{c}

=

1 0 0
0 1 0
0 0 0




1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6


1 0 0

0 1 0
0 0 0

+

0 0 0
0 0 0
0 0 1




1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6


0 0 0

0 0 0
0 0 1


=

 1
2 0 0
0 1

3 0
0 0 0

+

0 0 0
0 0 0
0 0 1

6

 =

 1
2 0 0
0 1

3 0
0 0 1

6

 = ρ̂(π).

The first thing to check is ρ̂(π) = ρ(π ∨ f−1)? The join is:

π ∨ f−1 = {{a, c}, {b}} ∨ {{a, b}, {c}} = {{a}, {b}, {c}} = 1U

as illustrated in Figure 8.

Figure 8. Partition join {{a, c}, {b}} ∨ {{a, b}, {c}} = 1U .

Then, it is clear that ρ̂(π) = ρ(π ∨ f−1) = ρ(1U) since there are no non-zero off-
diagonal elements indicating no superpositions in the partition, i.e., the discrete partition
1U . Furthermore, we can check that the increase in logical entropy from ρ(π) to ρ̂(π) is
equal to the sum of the squares of the ‘coherence’ entries that were ‘decohered’, i.e., zeroed
in the measurement. The logical entropy of π is:

h(π) = 1 − ( 2
3 )

2 − ( 1
3 )

2 = 1 − 4
9 − 1

9 = 4
9 .

The logical entropy of 1U is:

h(1U) = 1 − ( 1
2 )

2 − ( 1
3 )

2 − ( 1
6 )

2 = 1 − 1
4 − 1

9 − 1
36 = 1 − 14

36 = 11
18
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so, the increase in logical entropy due to the measurement is:

h(1U)− h(π) = 11
18 − 8

18 = 3
18 = 1

6 .

In the transition from ρ(π) to ρ̂(π), there were two non-zero coherence terms with the
value of 1

2
√

3
which were zeroed (i.e., those indits were decohered into dits), so the sum of

their squares is: ( 1
2
√

3
)2 + ( 1

2
√

3
)2 = 1

12 + 1
12 = 1

6 .✓

3.4.5. ‘Quantum Mechanics’ Over Sets

Now that we have established a basic dictionary to translate between partition math
and QM math, we can start to use the partition math to help explain in relatively simple
and intuitive terms, some of the more vexing aspects of QM. But there is one aspect of
QM math that we have not yet given a set-based version for, and that is the existence of
different bases since the QM math is formulated in a vector space.

The solution is that the set-based math can also be formulated in the vector space,
where the vectors stand for subsets, name vector spaces over Z2 = {0, 1}. Addition modulo
two is like normal addition except that 1 + 1 = 0. To represent the subsets of U in vector
space terms, we may work in Zn

2 , where the vectors are n × 1 column vectors with 0, 1
entries and modulo two addition of components. The canonical basis vectors are the
column vectors |ui⟩ with a 1 in the ith place and otherwise 0’s; so, a subset S ⊆ U would be
represented on this basis by the column vector |S⟩ with the ith entry χS(ui). Given the vector
|T⟩ for T ⊆ U, the sum |S⟩+ |T⟩ would have cancellation on the overlap S ∩ T; so, the
sum is the vector for the symmetric difference S∆T = (S ∪ T)− (S ∩ T) = (S − T) ∪ (T − S)
so, |S⟩+ |T⟩ = |S∆T⟩. By associating the canonical basis vectors |ui⟩ with the singletons
{ui} ∈ ℘(U), we can transfer the vector space structure on Zn

2 to ℘(U), where the subset
addition operation in ℘(U) as a vector space is S + T = S∆T; so, we have an isomorphism
of vector spaces Zn

2
∼= ℘(U). In this manner, we can build up a toy or pedagogical model

of QM called “Quantum Mechanics over Sets” or QM/Sets ([1,44]).
To keep matters simple, let us take U = {a, b, c} and then the singletons {a}, {b},

and {c} are a basis set for the 23 = 8 vectors in the 3-dimensional vector space ℘(U)—a
basis that we can treat as the computational basis. Now, there are other basis sets, such
as U′ = {a′, b′, c′}, where {a′} = {a, b}, {b′} = {a, b, c}, and {c′} = {b, c}. The U′ vectors
form a basis since:

{a′, b′} = {a, b}+ {a, b, c} = {c},
{b′, c′} = {a, b, c}+ {b, c} = {a}, and {a′, b′, c′} = {a, b}+ {a, b, c}+ {b, c} = {b}.
Table 6 lists the eight vectors expressed in three different bases, where each row

represents the same abstract vector or “ ket”, so it is a ket table.

Table 6. Ket table giving a vector space isomorphism: Z3
2
∼= ℘(U) ∼= ℘(U′) ∼= ℘(U′′) where

row = ket.

Z3
2 U = {a, b, c} U′ = {a′, b′, c′} U′′ = {a′′, b′′, c′′}

[1, 1, 1]t {a, b, c} {b′} {a′′, b′′, c′′}

[1, 1, 0]t {a, b} {a′} {b′′}

[0, 1, 1]t {b, c} {c′} {b′′, c′′}

[1, 0, 1]t {a, c} {a′, c′} {c′′}

[1, 0, 0]t {a} {b′, c′} {a′′}

[0, 1, 0]t {b} {a′, b′, c′} {a′′, b′′}

[0, 0, 1]t {c} {a′, b′} {a′′, c′′}

[0, 0, 0]t ∅ ∅ ∅
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3.4.6. A Pedagogical Model of the Two-Slit Experiment

One simple application of this set level framework is to build a pedagogical model
of the two-slit experiment, an experiment that Richard Feynman said “ has in it the heart
of quantum mechanics” and the “only mystery” [45] (Section 1-1). We have already
seen how quantum measurement looks at the set level. The transition of an isolated
system in QM without any measurements (state reductions) is described as a unitary
transformation, which is a linear transformation that preserves inner products and thus
maps an ON basis to an ON basis. There are no inner products in vector spaces over finite
fields, so the corresponding type of transformation would just be a non-singular one that
transforms a basis into a basis, e.g., transforms the U-basis into the U′-basis. Indeed, in our
model of the two-slit experiment, we will assume that ‘dynamics’ for each time period,
i.e., {a} ⇝ {a′} = {a, b}, {b} ⇝ {b′} = {a, b, c}, and {c} ⇝ {c′} = {b, c}. There are
three (equiprobable) states of U = {a, b, c} that a particle can have which are the vertical
positions as pictured in Figure 9 for the initial setup for the experiment. We could think of
the vertical positions as having numerical values 3, 2, and 1, respectively, but the letters
will suffice for a pedagogical model.

Figure 9. Setup for two-slit experiment.

The two slits are in the screen at positions {a} and {c}, and the detection wall can
record a particle hitting at positions {a}, {b}, or {c}. A particle emerges at the source on
the left at {b} and in one time period evolves to the state {b′} = {a, b, c}. The particle in
that superposition state {a, b, c} has its first state reduction at the screen. If it hits the screen
at {b}, then it does not proceed on to the detection wall. Otherwise, the particle is reduced
to the superposition state {a, c} at the screen, i.e., a superposition of Slit 1 and Slit 2.

Starting with the superposition {a, c} at the screen, we need to consider two cases:
Case 1 where there are detectors at the slits so there is a state reduction to {a} or {c} with
equal 1

2 probability, or Case 2 where there is no detection at the screen.
Case 1: Starting with {a, c} at the screen, with detectors, there is a half-half proba-

bility of the particle being detected at each of the slits and then it evolves according to
the dynamics to the detection wall. If it went through Slit 1 at {a}, then it evolves to
{a′} = {a, b} and hits the detection wall with equal probability at {a} or {b}. If it went
through Slit 2 at {c}, then it evolves to {c′} = {b, c} and hits the detection wall with equal
probability at {b} or {c}. Then, we add up the final probabilities at the detection wall
as follows:

Pr({a} at wall | {a, c} at screen)
= Pr({a} at screen |{a, c} at screen)Pr({a} at wall | {a} at screen)
= 1

2 × 1
2 = 1

4 ;
Pr({b} at wall | {a, c} at screen)
= Pr({a} at screen | {a, c} at screen)Pr({b} at wall | {a} at screen)
+Pr({c} at screen | {a, c} at screen)Pr({b} at wall | {c} at screen)
= 1

2 × 1
2 + 1

2 × 1
2 = 1

2 ; and
Pr({c} at wall | {a, c} at screen)
= Pr({c} at screen | {a, c} at screen)Pr({c} at wall | {c} at screen)
= 1

2 × 1
2 = 1

4 .
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Hence, Case 1 of detectors at the screen, gives the probability distribution pictured in
Figure 10.

Figure 10. Case 1 probabilities at the detection wall.

The partition lattice for U = {a, b, c} provides an anschaulich or intuitive picture of
these processes where {a, c} at the screen reduces (i.e., “quantum jumps”) to the classical
states {a} or {c}, i.e., the particle goes through Slit 1 or through Slit 2, and evolves to either
{a′} or {c′}, as illustrated in Figure 11.

Figure 11. Case 1 state reductions to {a} or {c} and evolution to {a′} or {c′}, all at classical level.

Case 2: Starting with the superposition {a, c} at the screen, if there are not detectors at
the slits, then the superposition evolves linearly according to the dynamics:

{a, c} = {a}+ {c}⇝ {a′}+ {c′} = {a, b}+ {b, c} = {a, c}.

Then, the probabilities at the detection wall are:
Pr({a} at wall | {a, c} at screen)
= Pr({a} at wall | {a, c} at wall)Pr({a, c}at wall|{a, c}at screen)
= 1

2 × 1 = 1
2 ;

Pr({b} at wall | {a, c} at screen)
= Pr({b} at wall | {a, c} at wall)Pr({a, c}at wall|{a, c}at screen)
= 0 × 1 = 0; and
Pr({c} at wall | {a, c} at screen)
= Pr({c} at wall | {a, c} at wall)Pr({a, c}at wall|{a, c}at screen)
= 1

2 × 1 = 1
2 .

Hence, Case 2 of no detectors at the screen, gives the probability distribution pictured
in Figure 12.
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Figure 12. Case 2 probabilities at detection wall.

Figure 10 shows the probability stripes characteristic of the full QM two-slit experi-
ments with no detectors at the slits. The stripes are due to the interference in the evolving
superposition state, i.e., {a, c} ⇝ {a′, c′} = {a, b}+ {b, c} = {a, c}, where the {b}’s de-
structively interfere in the modulo two addition of the model. Since there were no state
reductions (or ‘measurements’) at the screen, the evolution was from the superposition state
{a, c} to the superposition state {a′, c′}, all at the non-classical quantum level, as illustrated
in Figure 13–not at the classical level that is crossed out.

Figure 13. Case 2 Evolution of the superposition {a, c} to {a′, c′} at the non-classical quantum level.

One of the important ‘takeaways’ of the partition analysis is that there are different
levels of reality (Figure 7), and yet our intuitions only see reality in classical terms as fully
definite. Thus, in case two, there is no state reduction at the screen (since there are no
detectors), so the evolution of the superposition takes place at a non-classical level (Figure 13)
without ever achieving the definiteness of “going through Slit 1” or “going through Slit” as
in Case 1.

The great sticking point in the “mystery” of the two-slit experiment is that question:
“Which slit did the particle do through to get to the detection wall in the case of no
detectors?” This is the question that has gone unanswered for a century. The implicit
classical assumption is that evolution has to be at the fully definite (“It has to go through one
slit or the other”) classical level. Feynman stated that intuitive assumption as: “Proposition
A: Either an electron goes through hole No. 1 or it goes through hole No. 2”. And then he
showed that “Proposition A is false” [46] (pp. 139–140). If the particle did go through one
slit or the other, then there would be no interference effects.

Nobel laureate Anthony Leggett, when addressing physics departments, would refer
to the two-slit experiment with its Slit 1 (or path A) and Slit 2 (path B) and then ask for a vote
on the negative statement “that it is not the case that each individual atom of the relevant
ensemble chooses either path A or path B.” And he reports that “I almost invariably get a
large majority in favor” [47] (pp. 154–155). Thus, it would seem that most physicists realize
that the particle’s evolution does not rise to the classical level of having to go through
one slit or the other; it has to take place at the quantum level of evolving non-classical
superpositions as illustrated in the skeletal model of Figure 13.
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3.4.7. Commuting, Non-Commuting, and Conjugate Observables

One of the distinctive features of QM math is the non-commuting and even conjugate
observables, such as position and momentum. What light can the partition math throw
on that feature? Given two or more numerical attributes defined on the same set U, their
join is always another (more refined) partition on U. The join of two such partitions is
formed by taking as blocks all the non-empty intersections of their blocks. Since a direct-
sum decomposition of a vector space is the QM version of a partition, we might make a
similar join-like operation of two or more DSDs. Given two DSDs {Vi}i∈I and {Wj}j∈J
of eigenspaces of two observables F, G : V → V, we consider all the non-zero spaces
Vi ∩ Wj, which would consist of the eigenvectors common to F and G, i.e., simultaneous
eigenvectors. Let SE be the subspace of V spanned by those non-zero subspaces Vi ∩ Wj
of simultaneous eigenvectors. The difference with the set case is that SE may not be the
whole space. Commutativity is usually defined in terms of the commutator linear operator
[FG − GF] : V → V being the zero operator. But as a linear operator, the commutator
[FG − GF] has a kernel (the subspace of vectors taken to the zero vector by the operator)
and it can be shown [1] that:

ker([FG − GF]) = SE .

Since commutativity is equivalent to ker([FG − GF]) = V, we can characterize com-
mutativity by SE = V, and it is only in that case that the join-like operation of forming the
intersections Vi ∩ Wj can be called the join of commuting operators. Moreover, it is then
clear that conjugacy can be characterized as the case SE = 0 (the zero space), i.e., the case
where there are no simultaneous eigenvectors. Moreover, we can use QM/Sets to construct
canonical examples of conjugate operators in Zn

2 for even n ≥ 4.
Example: take U = {a, b, c, d} as the computational U-basis {{a}, {b}, {c}, {d}} in

℘(U) ∼= Z4
2. The basis for a ‘conjugate’ attribute is Û = {{â}, {b̂}, {ĉ}, {d̂}}, where the

“hat” means leave out that state of the U-basis, so {â} = {b, c, d},..., {d̂} = {a, b, c}. Then,
we can define two linear operators in Z4

2 by: f : U → {0, 1} with f (a) = f (b) = 1 and
f (c) = f (d) = 0, and by g : Û → {0, 1} by g(b̂) = g(ĉ) = 1 and g(â) = g(d̂) = 0. Then,
the two operators define two DSDs. For f , the DSD has two subspaces:

℘( f−1(1)) = {∅, {a}, {b}, {a, b}} and ℘( f−1(0)) = {∅, {c}, {d}, {c, d}}.

For g, the DSD also has two subspaces:

℘(g−1(1)) = {∅, {b̂}, {ĉ}, {b̂, ĉ}} and ℘(g−1(0)) = {∅, {â}, {d̂}, {â, d̂}}.

But to take intersections of the subspaces in the DSDs, we need to first express the Û
DSD in terms of the computational basis:

℘(g−1(1)) = {∅, {a, c, d}, {a, b, d}, {b, c}} and ℘(g−1(0)) = {∅, {b, c, d}, {a, b, c}, {a, d}}.

Then, when we take all the four cross-intersections between the two DSDs, we see
that the zero vector ∅ is only a common subset, so the two operators F, G : Z4

2 → Z4
2

defined by f and g are conjugate operators. Any eigenvector of one operator, such as {â}
or {b̂}, is a superposition of eigenvectors for the other operator, such as {b, c, d} = {â}
and {a, c, d} = {b̂}, and vice versa in this Fourier-like transform, since {a} = {b̂, ĉ, d̂} and
{b} = {â, ĉ, d̂}.

It was previously noted in our treatment of coding and partitions that a sequence of
partition joins can eventually characterize each distinct element. This provides one of the
excellent cases where the partition math and QM math are just word-for-word translations
of each other. Two or more numerical attributes are said to be compatible if defined on the
same set.

Set case: A set of compatible numerical attributes f , g, ..., h : U → R is said to be
complete if their join is the partition with all subsets of cardinality 1. In that case of a
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Complete Set of Compatible Attributes (CSCA), each element of U is uniquely characterized
by the ordered set of its attribute values.

And then a word-for-word translation, using the Yoga-generated translation dictionary,
gives the quantum case emphasized by Dirac.

Quantum case: A set of commuting observables F, G, ..., H : V → V is said to be
complete if their join is the DSD with all subspaces of dimension 1. In that case of a Complete
Set of Commuting Observables (CSCO) [48] (p. 57), each simultaneous eigenvector in the basis
is uniquely characterized by the ordered set of its eigenvalues.

3.4.8. Von Neumann’s Type I and II Processes and the Feynman Rules

Quantum processes were divided by John von Neumann (vN) into Type I and
Type II [49]. The Type I processes were the state reductions (or measurements), which, as
we have seen, make distinctions, e.g., in the set case, adding the distinctions of f−1 to the
distinctions of π. The Type II processes are those that evolve by Schrödinger’s Equation.
That equation seems to have no connection to partitions, so let us consider how Type II
processes might otherwise be characterized. Since Type I processes make distinctions,
perhaps Type II processes should be those that do not make distinctions. In QM math,
the distinctness or indistinctness of two quantum states is measured by their inner product,
e.g., if the inner product is zero, then they have zero indistinctness or overlap so are fully
distinct or orthogonal. Hence, the analysis in terms of distinctions indicates that Type II
processes would be naturally characterized as those processes that preserve inner products,
i.e., by unitary transformations. The connection to the solutions to the Schrödinger equation
is then supplied mathematically by Stone’s Theorem [50]. The two types of fundamental
processes in quantum mechanics are illustrated in Figure 14.

Figure 14. Anschaulich (intuitive) picture of the two von Neumann processes.

Classical mechanics has only one type of fundamental process, the evolution of definite
states to definite states. There has been some questioning of how QM can have two basic
processes unlike classical mechanics.

Even if the notion of “measurement” were somehow given a clear and precise
meaning—even if, that is, a sharp boundary were somehow drawn between
“measurements” and “non-measurements” so that it became unambiguous
when to apply which part of the quantum formalism—there would still be
something unbelievable about the idea that there are these two fundamentally
distinct types of processes. [51] (p. 79)

Figure 14 also helps to explain that difference between quantum and classical mechan-
ics. The classical worldview is based on completely distinct states and those states are
represented in the partition lattices of Figure 14 as the states in the discrete partitions 1U
and 1U′ . But at that classical level of full definiteness, there are no more Type I processes of
becoming more definite; so, there is then only one type of fundamental process, the evolu-
tion at the same level of indefiniteness, i.e., the evolution of definite states to definite states
as in classical mechanics.

Moreover, the sought-after boundary between “measurements” and “non-measurements”
is given in the Feynman rules as the boundary between the distinguishable and indistin-
guishable cases. One of the important connections made by this partitional analysis in
terms of distinctions is to connect the two vN processes characterized in terms of making
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more distinctions or preserving the level of distinctness with the two cases in the Feynman
rules based on distinguishability or indistinguishability. As early as 1951 [52], and later
in his Lectures, Richard Feynman made that point about the two cases in considering a
quantum process that has an initial and a final state.

If you could, in principle, distinguish the alternative final states (even though
you do not bother to do so), the total, final probability is obtained by calculating
the probability for each state (not the amplitude) and then adding them together.
If you cannot distinguish the final states even in principle, then the probability
amplitudes must be summed before taking the absolute square to find the actual
probability. [45] (Section 3-9)

It might be noted that those two cases can be read off of the skeletal model of Figure 13;
the case 1 where the alternatives are distinguished by detection at the slits so probabilities
are added and the case 2 where there is no distinguishing at the slits so the superposi-
tion does not rise to the classical level and, thus, it evolves unitarily, which involves the
interference effects. This analysis has been further explained by John Stachel.

Feynman’s approach is based on the contrast between processes that are dis-
tinguishable within a given physical context and those that are indistinguishable
within that context. A process is distinguishable if some record of whether or
not it has been realized results from the process in question; if no record results,
the process is indistinguishable from alternative processes leading to the same
end result. [53] (p. 314)

Feynman avoided the anthropomorphic language of “measurement” in stating his
rules, but John Stachel has cleared up that language problem. “Using a registration appara-
tus is commonly called making a measurement” [53] (p. 290).

In my terminology, a registration of the realization of a process must exist for
it to be a distinguishable alternative. In the two-slit experiment, for example,
passage through one slit or the other is only a distinguishable alternative if a
counter is placed behind one of the slits; without such a counter, these are indis-
tinguishable alternatives. Classical probability rules apply to distinguishable
processes. Nonclassical probability amplitude rules apply to indistinguishable
processes. [53] (p. 314)

In short, over-simplified terms,

Feynman’s Distinguishable Case = vN Type I state reductions, and
Feynman’s Indistinguishable Case = vN Type II unitary evolution.

In both cases, the key analytical concepts are distinctions and indistinctions, which at
the set level are modeled by partitions (or equivalence relations).

Nobel laureate Anton Zeilinger described the Feynman rule using the notion of
information-as-distinctions of any sort.

In other words, the superposition of amplitudes . . . is only valid if there is no
way to know, even in principle, which path the particle took. It is important
to realize that this does not imply that an observer actually takes note of what
happens. It is sufficient to destroy the interference pattern, if the path informa-
tion is accessible in principle from the experiment or even if it is dispersed in
the environment and beyond any technical possibility to be recovered, but in
principle is still “out there”. The absence of any such information is the essential
criterion for quantum interference to appear. [54] (p. 484)
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Incidentally, it might also be noted that Zeilinger and Brukner [55] have also suggested
the formula for logical entropy as being superior for analysis than the Shannon entropy.

Feynman uses ([45] (Section 3-3); [56] (pp. 17–18)) an example of a neutron starting at
point A and then scattering off the atoms in a crystal to finally reach a point B. If there was
no distinction made as to which atom it scattered off of (the indistinguishability case), then
the amplitudes of getting from A to B by scattering off the different atoms would be added,
and then the absolute square would give the probability of the transition. However, it might
be that a distinction was made, say, by all the atoms having spin down and the neutron
with spin up and the scattering would exchange the spin. Then, there was a distinction
made as to which atom did the scattering (the distinguishability or “registration of a record”
case), so the probabilities (not amplitudes) of scattering off the different atoms must be
added to obtain the final A to B probability.

Hermann Weyl, in his informal writing about quantum mechanics, used the notion of
a grating or sieve and implicitly used the Yoga to liken an equivalence relation on a set to a
direct-sum decomposition of a vector space as two types of gratings [57] (p. 256). Then,
a measurement of a state would be the application of a grating. In Figure 15, the grating
metaphor for state reduction or measurement is used to illustrate the Feynman rules, where
the ‘ball of dough’ black circle is like the superposition of the polygon-shapes, and when it
passes through the distinguishing grating (left side of the figure), it reduces to one of the
polygon shapes. On the right-side of the figure is the non-distinguishing grating so the
amplitudes to go through each round hole are added to get the amplitude of going from A
to B, and then the absolute square gives the probability.

Figure 15. Grating metaphor illustrating the Feynman rule.

Thus, the partitional analysis, in terms of making distinctions or not, is realized in the
Feynman rules based on distinguishability or indistinguishability. In the two-slit experi-
ment, case 1 is the distinguishable case (in Feynman’s terms), where there were detectors at
the slits, and case 2 is the indistinguishable case, with no detectors at the slits. In Feynman’s
example, the measurement is entirely at the quantum level with no macroscopic apparatus.
Hence, the Feynman analysis undermines the approach trying to analyze measurement
in term of the “decoherence” induced by a macroscopic measuring devices (e.g., [58])
as well as the literature about the “von Neumann cut” [49] (or “Heisenberg cut”) also
involving macroscopic measuring devices. With virtual certainty that the state reductions
take place at the quantum level, the literature about the ‘problems’ arising from extending
Schrödinger’s equation to the macroscopic level (e.g., his eponymous cat) are pseudo-
problems. Naturally, humans need some amplification of the quantum level physical result
in the distinguishable case to know the result, but such macroscopic considerations have
no role in quantum theory.

3.4.9. Summing up about Quantum Mechanics

Even though the Hermitian observables have real eigenvalues, quantum mechanics
could not be formulated in vector spaces over the reals since the reals are not algebraically
complete. Only in the algebraically complete extension of the reals, the complex numbers,
could the Hermitian operators have a full set of eigenvectors [59] (p. 67, fn. 7). But the
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complex numbers are also the natural mathematics to express waves; in the polar represen-
tation, each complex number has an amplitude and a phase. But that turned out to be a
major false clue about the nature of quantum reality. Now, it is widely accepted that the
so-called “wave function” is only a computational device to compute probabilities by the
Born rule, not a part of physical reality. Einstein’s famous quip that “The Lord is subtle,
but not malicious” may need to be nuanced. If not malicious, He is at least a trickster.
The mathematics of complex-valued vectors is not wrong, but it is certainly misleading if
taken as a description of quantum reality.

That interpretive problem with waves was compounded by the misinterpretation of
superposition, the key non-classical notion in QM. Superposition was misinterpreted as be-
ing like the classical addition of water waves or electromagnetic waves. Here, the approach
by partitions or equivalence relations offered an alternative interpretation of superposition; the
idea is that a superposition of definite states is indefinite on where the states differ and
is only definite on commonalities. That is why superposition states are indefinite, blurry,
blobby, or smeared-out, unlike the whole idea of superposition as the addition of physical
waves. That basic wave-misinterpretation of superposition is compounded in the classroom
ripple tank demonstration of the two-slit experiment. Again, it is not the math of complex
numbers that is wrong but the interpretation of “probability waves” as matter waves like
the water waves in a ripple tank. The partition approach was also helpful in building the
pedagogical model of QM/Sets, which we used to model the two-slit experiment. In that
model, using operations in a vector space over Z2, there was superposition and interference
effects, but no waves.

The indefiniteness interpretation of superposition is certainly not new but it has
been expressed in the language of “potentialities” by Werner Heisenberg [60], Abner Shi-
mony [61], Gregg Jaeger [62], and many others, where indefinite states were described as
being potentially any of a set of actualized definite states. But the notion of “potentiality”
or “possibility” should be construed only as a manner of speaking (like “the thrown die
has the potentiality of landing with six up”) instead of as a different ontological category of
reality. There is only one type of reality but it can be in indefinite superposition states or
definite eigenstates. Others, such as Henry Margenau [63] and R. I. G. Hughes [64], held
similar views but used the word “latency” instead of “potentiality.” Many other quantum
theorists have emphasized objective or ontic indefiniteness, such as Peter Mittelstaedt,
“objective indeterminateness” [65] (p. 178), Paul Feyerabend, “inherent indefiniteness is
a universal and objective property of matter” [66] (p. 202), and Fritz Rohrlich who saw
“blurring as a fundamental ontic feature” [67] (p. 380). Thus, the partitional approach cor-
roborates and clarifies this widespread acceptance of quantum reality as featuring objective
indefiniteness. If quantum philosophers call any view of the nature of quantum reality an
“interpretation”, then this might be called the “objective indefiniteness interpretation of
quantum mechanics”.

4. Discussion and Conclusions

Our purpose has been to show that the subset–partitions duality (concretely, the
elements and distinctions duality, and, abstractly, the reverse-the-arrows duality of category
theory) shows up throughout the exact sciences in significant and sometimes unexpected
ways, e.g., the connection between probability and information theory. But the major
application has been to cast new light on the understanding and interpretation of quantum
mechanics. Classical physics was very much a part of the Boolean worldview of full
definiteness, and, thus, the dual worldview of partition logic and partition math turned
out to play a major clarifying role in the century-old problem of interpreting quantum
mechanics. The connection was simple: partitions or equivalence relations mathematically
model the cohering together of states to become indefinite in partition blocks or equivalence
classes; so, that clarifies at the set level the key non-classical notion in QM of superposition.

From these two basic ideas alone—indefiniteness and the superposition
principle—it should be clear already that quantum mechanics conflicts sharply
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with common sense. If the quantum state of a system is a complete description
of the system, then a quantity that has an indefinite value in that quantum state
is objectively indefinite; its value is not merely unknown by the scientist who
seeks to describe the system. . . . Classical physics did not conflict with common
sense in these fundamental ways. [68] (p. 47)

We have placed the partition math approach to understanding QM math in the context
of the basic duality so that it will not be seen as another ad hoc, concocted, or jury-rigged
attempt to make sense out of quantum mechanics, but as a natural application of the
partition-side of the fundamental duality running throughout the exact sciences.
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