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Abstract

I.J. Good’s “On the Principle of Total Evidence" (1967) looms large
in decision theory and Bayesian epistemology. Good proves that in
Savage’s (1954) decision theory, a coherent agent always prefers to
collect, rather than ignore, free evidence. It is now well known that
Good’s result was prefigured in an unpublished note by Frank Ram-
sey (Skyrms 2006). The present paper highlights another early fore-
runner to Good’s argument, appearing in JaninaHosiasson’s “Why do
We Prefer Probabilities Relative to Many Data?" (1931), that has been
neglected in the literature. Section 1 reviews Good’s argument and
the problem it was meant to resolve; call this the value of evidence prob-
lem. Section 2 offers a brief history of the value of evidence problem
and provides biographical background to contextualize Hosiasson’s
contribution. Section 3 explicates the central argument of Hosiasson’s
paper and considers its relationship to Good’s (1967).

Keywords: Janina Hosiasson-Lindenbaum, formal epistemology, probability,
induction
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In 1957, A.J. Ayer’s “The Logical Conception of Probability" was published
in the proceedings of a conference on the philosophy of physics held by
the Colston Research Society. According to the view referenced in its title,
there is an important sense of “probability" inwhich “what is being asserted
when it is said that a statement is probable, in this sense, is that it bears a
certain relation to another statement, or set of statements, whichmay also be
described as confirming, or supporting, or providing evidence for it" (Ayer,
12). On this view, paradigmatic probability claims take the following form:
“h is probable to degree p given e as evidence" (we’ll follow Ayer, who
follows Keynes (1921), in abbreviating this with “h/e = p"), where h and e
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are propositions and p is a real number in the unit interval. On the logical
interpretation, the meanings of e and h uniquely determine the value of p.
Since the meanings of the relevant propositions are sufficient to determine
the probability of the one given the other, probabilities do not depend on
the attitudes of any particular agent toward the propositions in question. In
this sense, probabilities are objective on the logical conception.

Ayer raises a challenge for this view. Suppose we are considering bet-
ting on a horse named “Eclipse" in an upcoming race (Ayer, 13). Let h be
the statement “Eclipse will win the race". Let e1 be the statement “Eclipse
will be ridden by the champion jockey," and let e2 be the conjunction of e1
with many other statements pertinent to predicting Eclipse’s performance.
Suppose that h/e1 = p1 and h/e2 = p2. It seems clear that, given that e1
and e2 are among our available evidence (whatever this might mean), we
ought to take p2, and not p1, as the probability of h. At least, we’d certainly
prefer to place our bet on h on the basis of p2 rather than p1.

Whatmakes probabilities based onmore evidence better than, or prefer-
able as guides to action to, probabilities based on less evidence? According
to the logical conception, there is an important sense in which each proba-
bility is as good as the other: the probability of h really is p1 relative to e1,
just as it really is p2 relative to e2. It is true, just in virtue of the meanings
of e1 and h, that e1/h = p1 and it is true, just in virtue of the meanings of
e2 and h, that h/e2 = p2, and it is unclear what grounds we might have for
privileging one of these probabilities over the other. Ayer’s objection is that
the logical conception of probability lacks the resources to explain why we
should prefer probabilities based on more evidence to probabilities based
on less evidence. Call the challenge of rationalizing this preference the value
of evidence problem.

I.J. Good took on the value of evidence problem in a three-page note
titled “On the Principle of Total Evidence," published in The British Journal
for the Philosophy of Science in 1967. The centerpiece of that paper is a short
proof of a theorem in Savage’s (1954) decision theory.

In Savage’s decision theory, states and outcomes are taken as primitive,
where the set of states S represents ways theworldmight be that are outside
an agent’s control and aboutwhich she is uncertain (e.g., whether itwill rain
this afternoon) and the set of outcomes O represents states of affairs the
agent ultimately cares about (e.g., whether she gets wet on her afternoon
walk). A set A of acts is defined as the collection of all functions from S to
O. Savage proved that, if A is sufficiently rich and an agent has preferences
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over acts, represented by a binary relation⪰ onA, that obey a few coherence
constraints taken as requirements of rationality, then her preferences can
be represented with a pair consisting of a unique probability function P :
S → [0, 1] and a utility function U : O → R unique up to positive affine
transformation such that, for all A0,A1 ∈ A,

A0 ⪰ A1 ⇔ E [U(A0)] ⩾ E [U(A1)] ,

where E denotes expectation relative to P.

P represents the agent’s degrees of belief about how the world is with
respect to S, andU represents something like the overall desirability of out-
comes. This result establishes that (assuming Savage’s constraints on pref-
erences are genuine requirements of rationality) a rational agent’s prefer-
ences go by expected utility relative to her probabilistic degrees of belief.
So, a rational agent can be represented as an expected utility maximizer.

Notice that in this setting probability is interpreted as a measure of a
particular agent’s subjective degrees of belief, not as a logical relation. Prob-
abilities reflect certain of the agent’s attitudes toward the propositionswhose
probabilities are being considered; they aren’t fixed by the meanings of the
propositions alone.

Good has us consider a rational agent facing a decision problem in
which she considers a set of actsA1,A2, ...,As and a set ofmutually exclusive
and exhaustive hypotheses H1,H2, ...,Hr. Good’s resolution of the value of
evidence problem consists in a proof that if the agent has an opportunity to
learn new evidence by making a costless observation, the expected utility
of first making the observation and then choosing (from A) on the basis of
her expanded evidence is always at least as great as, and possibly greater
than, the expected utility of passing up on the new evidence a choosing on
the basis of her prior information. This establishes that, if an agent’s prefer-
ences are coherent, she must prefer (at least weakly) acting on the basis of
probabilities based on more rather than less evidence, assuming the cost of
acquiring more evidence is negligible.

Here is a sketch of the proof, following Good’s presentation. LetU(Aj |

Hi) = uij denote the utility of choosingAj given that the true state is an ele-
ment ofHi. Suppose the agent has some evidence E ⊆ S (i.e., she knows the
true state lies in E) so that her prior probabilities are given by P(Hi | E) for
i = 1, 2, ..., r. Going forward, we will drop reference to the background evi-
dence E, writing the agent’s prior probability for Hi simply as P(Hi). Since
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she has coherent preferences, our agent will choose an act whichmaximizes
expected utility relative to these probabilities. SupposeA0 is an expectation-
maximizing act. With justE as her evidence, then, the expected utility of our
agent’s act is equal to

maxj

(
r∑

i=1
P (Hi)uij

)
=

r∑
i=1

P (Hi)ui0.

Now, suppose the agent has the opportunity to perform a costless experi-
mentwith possiblemutually exclusive and exhaustive outcomesE1,E2, ...,Et.
These outcomes define posterior probabilities over the Hi,

P (Hi | Ek) ,

which describe, for each hypothesis Hi, how her probability for Hi will
change upon adding the outcome Ek to her evidence. We might think of
these as defining a plan that specifies how the agent will change her belief
in each Hi contingent on each possible outcome of the experiment.

Our agent knows that, if she performs the experiment, she will sub-
sequently choose the expected-utility-maximizing act relative to her up-
dated probabilities: that is, given that the observed outcome is Ek, she will
choose an act Aj that maximizes the value of

∑r
i=1 P(Hi | Ek)uij. Since

the experiment is costless and the prior probability for each Ek is equal to∑r
i=1 P(Hi)P(Ek | Hi), the expected utility of performing it and acting on

her expanded evidence is given by

t∑
k=1

[(
r∑

i=1
P (Hi)P (Ek | Hi)

)
maxj

(
r∑

i=1
P (Hi | Ek)uij

)]
,

which is equal to

t∑
k=1

maxj

(
r∑

i=1
P (Hi)P (Ek | Hi)uij

)
.

And since E1,E2, ...,Et form a partition over E, we can rewrite the ex-
pected utility of acting without learning the outcome of the experiment
(i.e., choosing the act whichmaximizes expected utility relative to our prior
probabilities) as

4



maxj

[
t∑

k=1

(
r∑

i=1
P (Hi)P (Ek | Hi)uij

)]
.

Note that, for any t and any real-valued function, f, of j and k,

t∑
k=1

maxj [f(j,k)] ⩾ maxj

[
t∑

k=1
f(j,k)

]
.1

Letting f =
∑r

i=1 P(Hi)P(Ek | Hi)uij, it follows that

t∑
k=1

maxj

[
r∑

i=1
P (Hi)P (Ek | Hi)uij

]
⩾ maxj

[
t∑

k=1

(
r∑

i=1
P (Hi)P (Ek | Hi)uij

)]
,

with strict inequality unless the set of expected-utility-maximizing acts is
identical for each possible experimental outcome (and so the additional ev-
idence from performing the experiment makes no difference to the agent’s
choice, relative to what she would have chosen on the basis of E alone). So,
the expected utility of acting on the basis of the more-informed probabil-
ities is always at least as great, and sometimes greater than, the expected
utility of acting on the basis of the less-informed probabilities.

Good notes that his result may be taken as establishing only that, given
the opportunity, one should always choose to acquire additional evidence
by means of cost-free observation, whereas Ayer raised the value of evi-
dence problem in terms of Carnap’s “Principle of Total Evidence," which is
the injunction to take into account all of one’s currently available evidence in
calculating probabilities. The objection is that Good has not resolved the
value of evidence problem as Ayer posed it unless he has motivated Car-
nap’s principle.

Good answers that we can consider our currently available evidence
as constituting a kind of record, where consulting the record is itself an
observation—one that can be modeled in the same way as the experiment
in the sketched proof above. So understood, it is clear that Good’s result
has “justified the decision to make this observation and to use it, provided
that the cost is negligible" (Good, 320). As long as consulting the record is
practically costless, it pays to consult it until our present stock of evidence
is exhausted.

1Good treats this statement as a lemma, offering a very short proof on p. 320 of his (1967).
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Interest in Good’s landmark paper is by nomeansmerely historical. "On the
Principle of Total Evidence" has spawned a literature concerning value of ev-
idence results for generalizations of conditionalization. Notable contribu-
tions include Graves (1989), Skyrms (1990), and Huttegger (2014). These
fruits of Good’s project are well known. Less well known are its seeds.

Neither Ayer’s problem nor Good’s solution were without precedent.
Five pages of C.D. Broad’s Perception, Physics, and Reality (1914)—adapted
from his 1911 doctoral dissertation—are devoted to difficulties arising in
connection with the principle that “we ought to prefer a probability calcu-
lated on awider to one calculated on a narrower basis, even though theman
who only had the narrower basis of knowledge had made his calculations
properly" (Broad (1914), 151). Seven years after the publication of Broad’s
book, John Maynard Keynes’ landmark Treatise on Probability (1921) was
published, including a chapter on “The Application of Probability to Con-
duct" in which Keynes prefigures Ayer’s challenge:

[I]f two probabilities are equal in degree, ought we, in choos-
ing our course of action, to prefer that one that is based on the
greater body of knowledge? The question appears to me to be
highly perplexing, and it is difficult to say much that is useful
about it. But the degree of completeness of the information upon
which a probability is based does seem to be relevant, as well as
the actual magnitude of the probability, in making practical de-
cisions. Bernoulli’s maxim that in reckoning a probability we
must take into account all the information which we have, even
when reinforced by Locke’s maxim that we must get all the in-
formation that we can, does not seem completely to meet the
case. (345-6)

Ayer, then, was preceded by at least Broad and Keynes in highlighting
the value of evidence problem. In a 1986 visit to the Frank Ramsey archives
at Cambridge, Brian Skyrms discovered that Good’s strategy for resolving
the problem has a similarly long history. There, Skyrms found a two-page
note titled “Weight, or the Value of Knowledge" in which Ramsey proves a
result analogous to Good’s (Skyrms 2006), apparently intended as a reso-
lution to the value of evidence problem as it appeared in Keynes (1921).

Between Ramsey’s note and Good’s paper, there is Savage’s indepen-
dent proof of the value of information theorem in chapter 7 of The Foun-
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dations of Statistics (1954, 125-7). Good himself acknowledges the influ-
ence of Raiffa and Schlaifer’s treatment of “The Value of Sampling Informa-
tion" in their Applied Statistical Decision Theory (1961, 89) and a statement
of part of his (1967) proof in Lindley’s Introduction to Probability and Statis-
tics (1965). And a footnote in the 1957 Colston proceedings reports that
astronomer Ernst Öpik had “produced a purely formal mathematical argu-
ment by which he claims to show that if we increase the amount of infor-
mation on which we calculate probabilities to guide our actions, then the
expectation of gain resulting from these actions will increase" (Ayer, 23).
(No proof appears in the Proceedings or, as far as I have found, in any other
published material).

A less well known forerunner to Good’s argument appears in Janina
Hosiasson’s2 “WhydoWePrefer Probabilities Relative toManyData?" (1931)
(henceforth “Probabilities Relative toManyData"). Born inWarsaw in 1899,
Hosiassonwas a logician andphilosopher closely associatedwith the Lwów-
Warsaw School. She received her doctorate from the University of Warsaw
in 1926, where she wrote a dissertation on the “Justification of Inductive
Reasoning" under logician Tadeusz Kotarbínski. Hosiasson would spend
the next fifteen years writing extensively (in four languages) on issues re-
lated to probability and induction. Little is known about the details of Hosi-
asson’s professional life after earning her doctorate, though Anna Jedynak
(2001) reports that Hosiasson “combined her scientific research with work
in a secondary school as a teacher of philosophy" (Jedynak, 97). In 1940,
Hosiasson published her best-known work, “On Confirmation," notable for
including the first published discussion of Carl Hempel’s “raven paradox."
3 Two years later, Hosiasson would be murdered by the Gestapo in Vilnius,
where she had fled in the wake of the Nazi invasion of Warsaw in 1939.

“Probabilities Relative to Many Data" was published in January 1931,
shortly after a visit toCambridge spanning the 1929/30 academic year. Hosi-
asson’s primary interestswerewell represented at her host university: in ad-
dition toKeynes andBroad, Richard Braithwaite, Harold Jeffreys, and Frank
Ramsey (until his death in January 1930) were employed by Cambridge at
the time. It was likely during this visit that Braithwaite, a lecturer in moral
sciences and close friend of Ramsey, shared Ramsey’s then-unpublished

2Hosiasson published under multiple names, including “Lindenbaum" and “Hosiasson-
Lindenbaum" following her marriage to Adolf Lindenbaum in 1935. For simplicity, I follow
Marta Sznajder in using “Hosiasson" throughout this paper.

3AlthoughHempelwould not publish on the problemuntil 1945, he had shared a version
of it with Hosiasson in conversation when the two met in 1937 (Niiniluoto, 332).
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“Truth and Probability" (written in 1926)withHosiasson. “Truth and Prob-
ability" is significant for its defense of a subjectivistic conception of probability—
according to which probabilities are interpreted as the degrees of belief of
particular agents, in contrast to the Keynesian logical interpretation—and
for including a very early example of a representation theorem deriving an
expected utility representation of an agent’s choice behavior from her pref-
erences alone. Hosiasson was impressed by Ramsey’s paper, seeing it as
developing views about probability close to those she had independently
arrived at, and acknowledges its influence on her approach to the value of
evidence problem in a footnote in the 1931 paper.4

Hosiasson opens “Probabilities Relative toManyData" by claiming that
the probability of a given event depends on the evidence relative to which
we consider that event. Hosiasson discusses the evidence-relativity of prob-
abilities in terms of the descriptions under which we consider the relevant
events. Different descriptions of some event may include different bits of
evidence relevant to assessing how likely it is to occur. So a given event
may have different probabilities relative to different descriptions. Hosias-
son offers an example:

If we take into account the probability that this card lying face
downwards on the table is a court-card [i.e., a jack, queen, or
king], we may have regard to the fact that a minute ago some-
body has drawn it from a pack of fifty-two playing cards and
reckon the probability as 3/13; but we may also, by a nearer ex-
amination of the back of the card, find that there is a mark on it,
and we may know that amongst the marked cards only 1/5 are
court-cards. After taking the mark into account our probability
will be other than before. (Hosiasson 1931, 23)

As in Ayer’s setup, the puzzle arises from the fact that in both cases the
probability we assign to the event that the card on the table is a court card
is that which we “should take into account” (emphasis mine). That is, both
probabilities are, in some sense, “correct," given our information. But, Hosi-
asson notes, there seems to be something better about the probability based
on the more informative description. Hosiasson devotes the rest of the pa-
per to the question: “Why are we the more satisfied with our probability
the more particulars about the given case it takes into consideration?” (24).

Hosiasson considers and rejects several candidate solutions to the value
4See Section 3 of this paper.
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of evidence problem before presenting the answer which “seems to [her]
the most satisfactory” (30) in the paper’s fourth section. In fact, Section 4
includes two closely related arguments. Both arguments concern a decision
problem involving repeated bets and invite the reader to compare a case in
which the chooser has more information about the events on which she will
bet to a case in which she has less.

The first argument shows that, other things being equal, a rational deci-
sionmaker facing this problemwould always in fact realize (weakly) greater
gains in this setting if she entered it with more rather than less evidence, on
the assumption that the probabilities guiding her choices are equal to the
empirical relative frequencies of the relevant events. The second argument
aims to explain the value of additional evidence without making strong as-
sumptions relating the bettor’s decision-making probabilities to the empir-
ical frequencies of the events on which she bets. It shows that the sum of
expected gains (relative to the bettor’s subjective probabilities) of the indi-
vidual bets is weakly larger in the case in which the choosing agent has
more information relative to the case in which she has less. The remainder
of the present paper is dedicated to reconstructing Hosiasson’s arguments
and explicating their relationship to the argument of “On the Principle of
Total Evidence."

Though “Probabilities Relative to Many Data" has received much less
attention than “On Confirmation," it has not been entirely ignored. In a
paper on the “The Sessions on Induction and Probability at the 1935 Paris
Congress" (at which Hosiasson was present), Galavotti (2018) highlights
Hosiasson’s suggestive comments about the interpretation of probabilities
in connection with Ramsey’s “Truth and Probability." And the paper re-
ceives passing mention in Hilpinen (1970), Peden (2018), Sznajder (2021,
2022), and Horwich (1982). But in none of these works is the connection
with Good’s argument discussed explicitly.

3

Hosiasson opens Section 4 by clarifying how probabilities are to be inter-
preted in the arguments that follow. She explains: “In a considerable num-
ber of cases in ordinary life we take account of [probabilities] by consid-
ering the amount of something which could be said to be a mathematical
expectation” (30). As an illustration, she offers the following example:

A photographer has to decide whether to go or not, tomorrow,
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Sunday, to a country town to take some photographs. The pho-
tos can be taken only if the weather is fine. Whether he will
decide to go or not will not only depend on the probability of
fine weather, but also on the gain he may get by going if it is
fine and the loss if it rains. . .he will consider the good he will
get by going if it is fine and if it is not fine, on the one side, and
the good he will get by not going on the other, and the corre-
sponding probabilities-the whole taken together in the form of
a difference of mathematical expectations. (32)

In cases like this one, in which the probabilities we “take into account" are
probabilities of individual events, “our procedure consists. . .in adjusting
our action so as to have the biggest mathematical expectation” (35). Hosi-
asson sometimes uses “gain" and other times “good" to refer to the quan-
tity, representing something like overall desirableness, whose expectation
is maximized in rational choice.

That acting so as to maximize expected gain is characteristic of ratio-
nal choice is taken as axiomatic, though Hosiasson considers the possibility
of justifying the recommendation to maximize expected gain by pointing
out that, if probabilities are equal to the relative frequencies of the relevant
events, then “by choosing the greatestmathematical expectationwe get—by
the realisation of the frequency—the greatest amount of good. (Compare
with Ramsey (1931), who treats the principle of expected utility maximiza-
tion as a law of human psychology.)

Probabilities as they figure in Hosiasson’s arguments, then, are to be
interpreted in terms of their role in guiding rational choice subject to uncer-
tainty. They are the weights used to calculate expected gain for alternative
courses of action. The language of “mathematical expectation" may be bor-
rowed from Ramsey, who in “Truth and Probability" (1931) adopts a use
of the phrase similar to Hosiasson’s. It is in a footnote following her first
characterization of probabilities in terms of mathematical expectations that
Hosiasson thanks Braithwaite for furnishing an opportunity to read that pa-
per, and acknowledges a debt to Ramsey for “for clearness on this question,"
despite having “previously thought along similar lines" herself (30).

Both of Section 4’s arguments involve a particular decision problem.
Consider an event e, and let Gi = (ki, li) stand for a gamble in which we
receive ki if e occurs and li if e does not occur, ki and li denoting quantities
of “good" (33). Suppose that in each of n many separate events in which
e may or may not occur, we are to choose one gamble from among G =
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G1,G2, ...,Gk. e might, for example, be the event that a certain coin comes
up heads. In this example, the coin would be flipped n many times, and
before each flip, we would asked to choose one from a set of gambles which
specify howmuch “good" we get in the event that the coin comes up heads,
and how much “good" we get in the event that the coin comes up tails (or
fails in some other way to land heads-up). After each flip, we receive the
payoff corresponding to the outcome of the flip according to the gamble we
chose.

Hosiasson invites us to compare two versions of this scenario, α and
β. In α, “we know in each of the n cases only one general description of
the event, say A, to which we refer its probability [ i.e., the probability of e
occurring], which is say, m

n " (33). In that case, we’ll calculate the expected
value of each gambleGi by taking the sum m

n ki+(1−m
n )li, and, sincewe’re

rational, we’ll choose the gamble that maximizes that value relative to our
probability for e based on the description A: call that gamble Ga (with ka
and la as the payoffs we receive if e occurs or not, respectively).

In β, we get more information:“[W]e consider in the n cases another
factor, say a character C in each case of A, and have in n1 of the n cases a
closer description of the event, say AC1, giving the probability m1

n1
; n2 of

the n cases a closer description of the event, sayAC2, giving the probability
m2
n2

;" and so on through ACs, “where C1,C2, ...,Cs are determinates of the
determinable C" (33).

For concreteness, we might think of e as the event that a coin pulled
from a bag containing coins of various colors comes up headswhen flipped.
Suppose we know that all the coins of a given color have the same (known)
bias, but different colors correspond to different biases. Let A be the de-
scription according to which the coin was drawn from a bag in which the
average bias of the coins in that bag is 0.5 (i.e., the “average coin" from the
bag is fair), and letACi be a description that gives the color of the particular
coin being flipped. In this case, wemay think ofGa as the gamble that max-
imizes expected gain relative to the probability P(e | A) = 0.5 (since, if all
we know about a given coin is that it was drawn from the bag in question,
we will expect it to land heads-up with probability 0.5.) This is the gamble
we will choose in each of the n coin flips in α.

In β, we are informed, prior to each trial, of the color of the coin to be
flipped—given our background knowledge, this informs us of the bias of
the coin to be flipped. Suppose, for example, that AC1 says that the coin to
be flipped is red, where red coins are known to land heads-up with chance
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0.8, whileAC2 says that the coin to be flipped is blue, where blue coins land
heads-upwith chance 0.3. Suppose further thatwe set our probabilities for e
equal to these chanceswhen they are known. Then, in each of then1 cases in
which a red coin is flipped, wewill choose the gambleG1 (with an expected
value of m1

n1
k1+(1− m1

n1
)l1 = 0.8k1+ 0.2l1) which maximizes expected gain

relative to our color-informed beliefs, according to which the probability of
the coin landing heads is equal to P(e | A&AC1) = 0.8. Similarly, in the
n2 cases in which a blue coin is flipped, we’ll choose G2 (with an expected
value of m2

n2
k2+(1−m2

n2
)l2 = 0.3k2+0.3l2). In this case, our probability that a

given coin lands heads-upmay vary from trial to trial, and sowhich gamble
maximizes expected gainmay vary between trials, too. So, a rational agent’s
pattern of choices may differ between α and β.

Having established how an expectation-maximizer would choose in α

andβ, Hosiasson gives her first argument: if in both cases the frequencies of
the relevant outcomes are equal to their probabilities, we will in fact realize
more total good in β than in α. The argument proceeds by showing that the
sum of expected gains for each of the n trials, with expectation taken with
respect to the true empirical frequencies of each outcome, is necessarily no
smaller (and is possibly larger) in β than in α.

Hosiasson assumes in this argument that the probabilities with respect
to which we take the expected gain of each gamble are equal to the empiri-
cal relative frequencies of the relevant events. In the coin-flipping example
above, for example, this assumption would entail that P(e | A&AC1) is pre-
cisely equal to the proportion of flips of red coins that result in the coin
landing heads-up in the n1 cases in which a red coin is flipped. Similarly,
P(e | A) is assumed to be identical to the empirical relative frequency of
heads-up outcomes among all n flips.

Since in both α and βwe choose from among the same set of gambles in
each of then cases,Ga is an available option in every choice among gambles
wemake. So, since we knowwewill choose the expected value-maximizing
gamble in each case, we know that in any of the n cases in β, we will choose
a gamble other thanGa, call itGb, only if

mj

nj
kb+(1− mj

nj
)lb ⩾ mj

nj
ka+(1−

mj

nj
)la. That is, in any given individual choice in β, we will choose a gamble

other than Ga only if the expected value of choosing Gb is at least as great
as that of choosing Ga. It follows that, for all j,

mj

nj
kj + (1−

mj

nj
)lj ⩾

mj

nj
ka + (1−

mj

nj
)la,

12



and so
s∑

j=1
nj[

mj

nj
kj + (1−

mj

nj
)lj] ⩾

s∑
j=1

nj[
mj

nj
ka + (1−

mj

nj
)la].

Since we assumed that the probabilities guiding our choices are equal to the
empirical relative frequencies of the relevant events, we can think of the left-
hand side of the above inequality as representing the total amount of “good"
we will in fact realize by betting rationally in β, while the right-hand side
represents how much “good" we will realize by betting rationally in α. The
direction of the inequality indicates that we will gain more in β than in α. If
there is some b such that mj

nj
kb + (1− mj

nj
)lb >

mj

nj
ka + (1− mj

nj
)la, then the

inequality is strict. Informally: if in any case the extra information we have
in βmakes a difference to our choice (relative to what we would’ve chosen
in α), then, assuming probabilities to be equal to relative frequencies, we
gain strictly more in β than in α.

This is the first argument: assuming that an agent’s probability for each
event she considers is equal to the empirical relative frequency of that event,
then given that an agent acts to maximize expected “good," she will always
realize at least asmuch “good," and sometimesmore, in the setting inwhich
her probabilities are based onmore evidence (β) than in an otherwise iden-
tical setting in which her probabilities are based on less evidence (α).

Hosiasson is not satisfied that this argument gives an adequate response
to her central question. As the title of her paper indicates, Hosiasson’s goal
is to rationalize our preference for probabilities based on more evidence over
less-informed probabilities, and for Hosiasson there is no necessary con-
nection between probabilities and relative frequencies. In her first argu-
ment, Hosiasson takes the proposition that probabilities are equal to rela-
tive frequencies as a substantive assumption, and she clearly treats “taking
account of gains and expectations" as conceptually distinct from “foreseeing
frequencies" (34). So the first argument, insofar as its central result depends
on the assumption that probabilities of events are equal to their relative fre-
quencies, does not settle the matter, from Hosiasson’s perspective.

In developing her second argument, Hosiasson deals as far as possible
in “expectations and gains" alone, avoiding assumptions tying probabilities
to frequencies of events. This argument is meant to establish that

If we took for granted that the best way of acting in different
cases is to act so as to make the sum of mathematical expecta-
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tions as big as possible (without trying to explain this rule by as-
suming frequencies to be equal to probabilities), then we could
show that we act in a better way, if we take account, in particu-
lar cases, of probabilities relative to more data, without assum-
ing all frequencies to be equal to probabilities in the considered
group of cases. (35)

Hosiasson admits that even this argument will not entirely eliminate as-
sumptions about frequencies: “It is...sufficient to assume only that frequen-
cies of cases with different descriptions are equal to their probabilities; i.e.
...it is sufficient that ACj occurs in nj of n cases of A (its probability being
nj

n ) for j = 1, 2, ...,n" (35). The assumption that has been dropped is that
the probabilities of the possible outcomes of each trial are equal to their rel-
ative frequencies. More is said about this assumption—and, more generally,
about the role of frequencies in Hosiasson’s arguments—below.

Hosiasson’s second argument invites us to compare the sum ranging
over the expected values (in terms of good/gain) of each member of the se-
quence of n bets we make in α (on the implicit assumption that we expect
with certainty that in each bet we will choose so as to maximize expected
value) to the same quantity for β. In the case of α, we have

Eα = n[
m

n
ka + (1− m

n
)la]

= n[ka

s∑
j=1

nj

n

nj

mj
+ la

s∑
j=1

nj

n
(1−

nj

mj
)]

=

s∑
j=1

nj[
mj

nj
ka + (1−

mj

nj
)la]

Whereas for β, we have

Eβ =

s∑
j=1

nj[
mj

nj
kj + (1−

mj

nj
)lj].

By the same mathematical reasoning deployed in the first argument, we
have it that

Eβ ⩾ Eα

with strict inequality if the additional information inβmakes any difference
to the gambles we expect to pick.
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The role played by relative frequencies in both these arguments is puz-
zling. As we’ve seen, in setting up the arguments of Section 4, Hosiasson
characterizes probability in terms of subjective uncertainty and indicates
her sympathy with Ramsey’s “Truth and Probability." But for a Ramsey-
style subjectivist, the assumption that the bettor’s degrees of belief are equal
to the empirical relative frequencies of the events she bets on is hard to mo-
tivate. If Hosiasson’s interpretation of probabilities really is Ramsey’s5, in-
clude this argument?

Hosiasson is characteristically terse in “Probabilities Relative to Many
Data"; the text itself does not resolve, or even raise, this puzzle. One possi-
bility is that the inclusion of the first argument reflects the influence of Jan
Łucasiewicz, an influential student of Kazimierz Twardowski (as was Hosi-
asson’s doctoral advisor, Kotarbinski) and professor of philosophy at the
University of Warsaw from 1915 until 1939 (excepting a one-year break in
1919-20 to serve in the Polish government). Łucasiewicz defended a logical
conception of probability with a frequentist flavor. In Die Logische Grundla-
gen der Wahrscheinlichkeitsrechnung (1913), Łucasiewicz identified probabil-
itywith a non-standard notion of truth value. In his system, given a formula
p containing a free variable x ranging over a finite set V , the truth value of p
is given by the ratio |W|/|V |, where W is the set of all elements w of V such
p is made into a true sentence when w is substituted for x (see Niiniluoto,
328). As Ilkka Niiniluoto (1998) notes, when “translated into terms more
familiar in probability theory," it is clear that “his definition is equivalent to
saying that probability is the relative frequency of an attribute in a reference
class": “An indefinite proposition like ‘x is black’ corresponds to an attribute
(being black) of objects or events, and the range of variable x is the reference
class" (Niiniluoto, 328). Given Łucasiewicz’s considerable influence in the
intellectual milieu he shared with Hosiasson, we might speculatively inter-
pret the first argument as an effort to explicate the value of more-informed
probabilities in a way that would be compelling to those with views closer
to Łucasiewicz’s than Ramsey’s (leaving what Hosiasson herself regarded
as the stronger argument for later).

Even if this speculative suggestion is right, it leaves unexplained the as-
sumption relating the probabilities and empirical frequencies of the ACjs
in the second argument. It seems clear that Hosiasson does not need that

5While the text of “Probabilities Relative to Many Data" does not clearly settle this ques-
tion, Hosiasson has been read as an early exponent of subjectivism in the philosophy of
probability, as highlighted above.
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assumption to get the desired inequality. In fact, probabilities for the ACjs
do not show up anywhere in Hosiasson’s equations. The sum of expected
gains for β simply takes the total expected gain for choosing, in all of the
trials in which ACj obtains, the expectation-maximizing gamble Gj to be
equal to a fixed value nj multiplied by the expected gain of choosing Gj in
a single trial in whichACj obtains. No expression of the form “P(ACj)" ap-
pears anywhere. This suggests an interpretation on which Hosiasson’s bet-
tor already knows howmany trials will satisfy each ACj when she calculates
expected gains in anticipation of the gambling problem. Hosiasson does
not make clear whether this is the interpretation she had in mind. But the
absence of reference to the probabilities of the ACjs outside the quotation
expressing the assumption that those probabilities be equal to their empir-
ical relative frequencies makes it difficult to identify the role she intended
that assumption to play in her second argument.

The reliance on assumptions about empirical frequenciesmarks a differ-
ence between Hosiasson’s and Good’s resolutions to the value of evidence
problems—all the probabilities that appear in Good’s argument are inter-
preted as subjective degrees of belief. But of course, the mathematics at the
heart of their arguments is not affected by different interpretational choices.

Besides the different approaches to the interpretation of the probabil-
ities that appear in their results, there are some other differences between
Good’s andHosiasson’s arguments. The central result in Hosiasson’s paper
concerns a special, highly structured decision problem (though she sug-
gests that “we could try to justify our desire for closer [i.e., more informa-
tive] descriptions in other more complicated cases in a similar way" [34]).
Good’s result is more general. Another difference, of course, is that Good’s
result is proved as a theorem of Savage’s decision theory, which would not
be developed until after well after the publication of “Probabilities Relative
to Many Data."

What I want to highlight is that, despite these differences, Hosiasson’s
argument is substantially similar to Good’s. Like Good, Hosiasson offers
a resolution to the value of evidence problem appealing to a principle of
practical rationality. And although Hosiasson did not have the benefit (as
Good did) of writing after significant development of decision theory as
a mature discipline in its own right, her argument is developed within a
proto-decision-theoretic framework. For Hosiasson, as for Good, the rea-
son we should prefer to act on the basis of probabilities based on more
rather than less evidence is that, other things equal, the expected utility
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of making a more informed choice is always greater than or equal to the
expected utility of making the same choice with less information. Since for
both Hosiasson and Good rationality requires one’s preferences to go by
expected utility (Hosiasson’s “mathematical expectation"), it follows that,
other things equal, we violate a norm of rationality if we do not prefer act-
ing on the larger evidentiary basis to acting on the smaller. This is a kind
of pragmatic solution: as Hosiasson notes, “The answer...this paper gives,
i.e. taking gains or mathematical expectations into account, could be con-
sidered an epistemological answer only from a pragmatistic point of view"
(36).

It is notable that Good suggests that the primary contribution of “On
The Principle of Total Evidence" lies in highlighting the relationship be-
tween Ayer’s problem and practical rationality: “Perhaps the main value of
the present note is that it makes explicit the connection between Carnap’s
principle of total evidence and the principle of rationality [ i.e., the princi-
ple that rational choice maximizes expected utility], a connection that was
overlooked by seventeen distinguished philosophers of science [ i.e., Ayer
and the discussants of his paper at the Colston conference]" (321). It is strik-
ing that Hosiasson, like Ramsey, saw Good’s central point more than thirty
years before the publication of “On the Principle of Total Evidence."
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