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Abstract

Perturbative expansions have played a peculiarly central role in quantum field
theory, not only in extracting empirical predictions but also in investigations of the
theory’s mathematical and conceptual foundations. This paper brings the special
status of QFT perturbative expansions into focus by tracing the history of mathe-
matical physics work on perturbative QFT and situating a contemporary approach,
perturbative algebraic QFT, within this historical context. Highlighting the role
that perturbative expansions have played in foundational investigations helps to
clarify the relationships between the formulations of QFT developed in mathemati-
cal physics and high-energy phenomenology.
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1 Introduction

In applied mathematics one is often in a situation where exact solutions can be obtained in
an idealised limit α → 0, but empirically relevant α > 0 models resist analytic treatment.
The perturbative strategy is to set up a series expansion for quantities of interest, of the
form:

F (α) = a0 + a1α + a2α
2 + ..., (1)

in order to try to extract information about the α > 0 regime. In some very special cases,
it may be possible to determine the form of the series to all orders and associate a sum
with it (using methods like Borel summation in the case of an asymptotic expansion). In
the more usual case where the large-order behaviour is not under control, however, it is
still possible to use truncations of the series as a numerical approximation. In the context
of quantum field theory, truncations of a series expansion in the interaction coupling—a
parameter which describes the strength of interactions between quantum fields—are the
most important source of the empirical predictions tested in collider experiments.

Approximation methods of this kind are sometimes viewed as pragmatically necessary
for applications but irrelevant to investigations of the philosophical and mathematical
foundations of a theory. This dismissive view of approximation methods is problematic
on general grounds (de Olano et al., 2022), but in the case of QFT, where perturbative
expansions have played a peculiarly central role in the development of the theory, it is
especially implausible. There is no denying that weak coupling expansions shape the in-
terpretative glosses found in standard QFT pedagogy, with the concepts of the virtual
particle and the force mediating boson, to name a few prominent examples, being spelt
out in Feynman diagram language. However, even in foundationally orientated literature
on QFT, perturbative expansions loom larger than is often appreciated. While there is a
long history of attempts to develop non-perturbative characterisations of QFT in math-
ematical physics, exemplified by the axiomatic QFT and constructive QFT traditions,
the development of these frameworks has been strongly influenced by the perturbative
approach. Furthermore, there is also a long history of direct engagement with the mathe-
matical structure and conceptual foundations of QFT perturbative expansions themselves.
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This second strand of mathematical work on QFT has been largely neglected in the recent
philosophical and historical literature on QFT and is also not widely known in mainstream
theoretical physics. Our goal in this paper, therefore, is to bring this tradition into clearer
focus by surveying early foundational engagement with perturbative QFT and situating
a prominent contemporary approach, perturbative algebraic QFT (pAQFT), within this
historical current.

The first part of this paper (section 2) sketches the development of mathematical QFT
from the 1950s, structuring the story around the reception of various divergence difficul-
ties that arose within the perturbative formalism: ultraviolet divergences, the large-order
divergence of the renormalised series, infrared divergences, and the more obscure “surface
divergences”. The main claim is that we can see foundational work on QFT as dividing
into two strands in the 1950s, in response to the problems facing the perturbative formal-
ism: the axiomatic QFT road, which attempted to develop non-perturbative formulations
of the theory, and the causal perturbation theory road, which focused on clarifying the
mathematical underpinnings of the series expansion itself. The second part of the paper
(section 3) presents pAQFT as a continuation of this story, which brings these two strands
of development together again and vindicates the continuing significance of perturbation
expansions in contemporary work on the foundations of QFT. Highlighting the role that
perturbative expansions have played in investigations of the foundations of QFT helps
to clarify the relationships between the formulations of the theory found in mathemat-
ical physics and high-energy physics phenomenology and we conclude with some brief
reflections on this point.

2 Early Foundational Engagement with the Pertur-

bative Expansion

2.1 Ultraviolet Divergences

From the very beginning, attempts to quantise field theories were plagued by ultraviolet
divergences—divergent integrals which, when written in momentum-space, blow up in the
region of large momentum. Such integrals, in fact, originally cropped up in the quantisa-
tion of exactly solvable free (i.e. non-interacting) models. Ultraviolet divergent expressions
for the eigenstates of a quantum string were already obtained in Born, Heisenberg and
Jordan’s famous “Dreimännerarbeit” (Born et al., 1926), with the same behaviour being
found in the quantisation of the free electromagnetic field (Jordan and Pauli, 1928). These
original ultraviolet divergences were relatively calmly dealt with, however, as it was ar-
gued they could be eliminated by subtracting an infinite constant from the ground state
energy, a procedure which was eventually understood as following from the normal order-
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ing of the field operators (discussed further in section 3.1). Given this successful evasion,
when ultraviolet divergent integrals appeared in the second-order expansion coefficients of
the perturbation series in the interaction coupling established in Heisenberg and Pauli’s
founding paper on quantum electrodynamics (QED), it was initially unclear how bad the
problem really was. These perturbative ultraviolet divergences proved to be of a more
disturbing kind, however. Oppenheimer (1930) argued that the divergences in Heisen-
berg and Pauli’s perturbative scheme implied not only that the absolute values but the
differences between energy eigenstates were infinitely large, concluding that second-order
approximants obtained from their perturbation series were empirically incoherent.1

It was this problem with the second-order perturbative coefficients which sparked se-
rious worries about the basic consistency of interacting QFTs in the 1930s and 1940s,
already demonstrating the central role of the perturbative expansion in the foundational
appraisal of the theory. Bohr and Rosenfeld (1933)’s discussion of field measurements
seems to have convinced many that the source of perturbative infinities lay in the local
point-like nature of the QED interaction term. Accordingly, before the war, many of the
key theorists had been attempting to move away from a local field theoretic approach
to relativistic quantum theory, in one way or another. Heisenberg came to associate the
ultraviolet divergences with the need for a fundamental length which would cut-off arbi-
trarily high momentum modes and eventually put forward the S-matrix as an alternative
starting point for the dynamics of relativistic quantum theories (Blum, 2017). Meanwhile,
Dirac, Kramer, and Feynman in his early work with Wheeler, connected the ultraviolet
divergences in QFT perturbation theory to unresolved problems with the infinite self-
energy of point charges in classical electrodynamics, looking for new classical theories,
and new methods of quantisation, which would lead to an infinity-free quantum theory of
the electromagnetic interaction (Rueger, 1992).

After the war, a rather more conservative response to the ultraviolet divergences prob-
lem was developed, however. The work of Feynman, Schwinger and Tomonaga introduced
new, more perspicuous, formulations of the QED weak coupling expansion and demon-
strated that the ultraviolet divergences appearing in the coefficients could be systemat-
ically removed via a procedure which came to be known as renormalisation (Schweber,
1994). Freeman Dyson’s classic pair of papers Dyson (1949a,b) synthesised this work into
a coherent and predictively powerful formalism that forms the basis of the approach to
perturbative QFT one still finds in textbooks today.

Dyson set up the series expansion for the S-matrix, an operator mapping asymptotic
states at t → −∞ to t → +∞ (that had previously been introduced by Heisenberg, as
noted above). Separating the Hamiltonian into a free and interacting part, H = H0 + V ,

1The reception of the ultraviolet divergences problem in the 30s and 40s is a complex matter which
is treated only very briefly here. See Rueger (1992) and Schweber (1994), chapters 1 and 2, for more
detailed accounts.
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Dyson made use of the interaction picture (more on this below) to derive a series expansion
of the form:

S =
∞∑
n=0

in

n!

∫ ∞

−∞
dt1...

∫ ∞

−∞
dtnT [V (t1)...V (tn)], (2)

where T indicates that operator products appearing inside the brackets are to be time-
ordered, i.e. operators with earlier time arguments are to the right of operators with
later time arguments. We discuss the problem of providing a mathematically rigorous
definition of this time-ordered product in what follows, but naively implementing time-
ordering by multiplying by Heaviside functions in the time arguments leads to ultraviolet
divergent integrals of the same type found in the 1930s. This is where renormalisation
comes in. The key idea behind this procedure was that the ultraviolet divergent part
of the coefficients could be “subtracted” via the introduction of infinite counterterms,
leading to a redefinition of the dynamical parameters of the model. In the case of QED, it
proved to be sufficient to introduce renormalised versions of the finite number of dynamical
parameters appearing in the original Lagrangian (the theory is said to be renormalisable).

Once the ultraviolet divergences had been cured in this way it was possible to obtain
extremely accurate empirical predictions from truncations of the Dyson series. Indeed,
renormalised perturbation theory has produced some of the most accurate empirical pre-
dictions in the history of physics. It was less clear what this meant for the foundational
standing of QFT, however. Had the worries about the pathological short-distance be-
haviour of QED, and QFT more generally, been solved or merely skirted around for calcu-
lational purposes? We can see the 1950s as a period of critical reflection on what had been
achieved by the invention of perturbative renormalisation. It was in this moment that
some theorists came to see higher standards of mathematical rigour as an important pre-
condition for bringing some resolution to the persistent foundational worries surrounding
QFT, giving rise to a new current in high energy theory we will refer to as mathematical
QFT. There is some danger of anachronism here, as this is not a term that would have
been recognised at the time, and indeed the sharp disaplinary distinction between math-
ematical physics and phenomenology we see today did not yet exist in the 1950s.2 Still,
for the purposes of historical reconstruction, we find mathematical QFT to be a useful
umbrella term for the broad range of programs aiming at a more mathematically rigorous
treatment of QFT that emerge in this period.

Renormalisation had not, in fact, solved all of the problems associated with QFT per-
turbative expansions, never mind QFT as a whole, and in the following four sub-sections

2Rudolf Haag cites the 1957 conference on the “On Mathematical Aspects Of Quantum Field Theory”
in Lille as the “baptism of mathematical physics as a disipline distinguished from theoretical physics”
(Haag, 2010, 274). It is interesting to note that Julian Schwinger attended this conference, however,
evidencing how porous the boundaries between these sub-fields were in this period.
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Figure 1: A representation of the development of mathematical QFT in the 1950s–1970s,
emphasising that the axiomatic QFT and causal perturbation theory strands primarily
responded to different issues with Dyson’s renormalised perturbative expansion for the
S-matrix.

we use the continuing struggles with perturbative divergences problems of various kinds
to frame the early development of mathematical QFT. Sections 2.2 and 2.3 discuss the
large-order behaviour of the series expansion and the infrared divergent integrals which
also appear in the coefficients. It is argued that these issues played a role in pushing many
foundationally minded theorists away from perturbation theory and in search of a coherent
non-perturbative formulation of QFT. This ultimately gave rise to the operator algebra
approach to QFT and the Haag-Kastler axioms. The next two sections discuss another
less well-known strand of foundationally orientated work on QFT which focused on the
perturbative formalism itself. This tradition, which would come to be called causal pertur-
bation theory, originated in a critique of the dynamical assumptions underlying Dyson’s
derivation of the perturbative expansion, manifesting in so-called surface divergences (sec-
tion 2.4). It would go on to produce a new understanding of the ultraviolet divergence
problem and a mathematically rigorous reconstruction of the perturbative renormalisation
procedure (section 2.5).

The picture of early mathematical/foundational work on QFT which emerges from our
discussion then, is one of two parallel research programs: one non-perturbative (yet still
responding to problems that manifest within perturbation theory) and one perturbative.
This is illustrated in figure 1.
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2.2 Large-Order Divergences

Perhaps the most optimistic take on the foundational potential of the new renormalised
perturbation series was held by Freeman Dyson. Dyson saw his 1949 papers as the first
step in a programme which would use the renormalised expansion to put QFT on a firm
mathematical footing.3 A crucial component of this programme was the hope that after
the ultraviolet divergences had been handled, the expansion converged so that the sum
could be used to construct exact solutions to the QED field equations. While Dyson
was initially hopeful about the convergence of the perturbative expansion circa 1951 it
soon became clear that this rosy scenario was not realised; even after renormalisation the
perturbation series of QED, and probably any other realistic interacting field theory, was
divergent (for a more detailed account of these developments see Blum (2023)).

Dyson himself published a heuristic argument to that effect in 1952 (Dyson, 1952).
If the perturbation expansion of some quantity F (e2) in QED was to converge it would
have to be analytic in some finite radius of convergence in the complex plane. Thus, if it
was to converge for small positive values of e2, it must also converge for small negative
values as well. But, Dyson reasoned, QED with a negative interaction coupling would
have a potential which was unbounded from below. Since electrons and positrons would
attract in this model, the system would be unstable to the creation of arbitrarily many
electron-positron pairs. Dyson thus found it impossible to believe that F (e2) could be
analytic on the negative axis. In the language of complex analysis, there would thus
be a cut on the negative axis, meaning that the radius of convergence of the expansion
was zero. This verdict was soon bolstered by diagram counting arguments published by
Hurst and Thirring (Hurst, 1952; Thirring, 1953). At each order of perturbation theory
the number of Feynman diagrams which contribute to the series coefficients at each order
greatly increases, as loops can be inserted in more and more positions on the diagrams’
internal legs. Using the ϕ3 scalar theory as a toy model, these authors argued that the
number of diagrams at each order increases factorially, meaning that the growth of the
coefficients would eventually overpower the suppression effect from repeatedly multiplying
by a small expansion parameter.

While it had not been conclusively demonstrated that QFT perturbation series gener-
ically diverge, all indications seemed to point in this direction. Compared to the ultra-

3To give some more details of Dyson’s programme in this period, the goal was to use the renormalised
expansion to construct Heisenberg field operators, rather than just the asymptotic S-matrix (Dyson,
1951a). In order to achieve this he introduced the so-called intermediate representation, a representation
of the time-evolution of the theory which separated the high and low momentum field modes, with the
hope being that the high momentum part of the theory could be constructed via a convergent renormalised
series expansion Dyson (1951b,c). Interestingly, while Dyson’s intermediate representation was not taken
up in the 50s, Kenneth Wilson mentions it as an inspiration for his approach to the renormalisation group
(Wilson, 2002).
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violet divergences problem, the large-order divergence of the perturbative expansion did
not spark the same atmosphere of crisis and indeed we find a very quiet response to these
results in the succeeding literature. This is partially explained by the fact that, unlike the
ultraviolet divergences in the coefficients, the large-order behaviour of the series did not
threaten the predictivity of the perturbative approximation strategy. QED perturbation
theory was clearly at least an asymptotic series which displayed apparent convergence in
the leading terms of the series. Indeed, both the Dyson and the Hurst-Thirring arguments
suggested that the number of terms before the series started diverging was roughly the
inverse of the fine structure constant, so the QED expansion could be expected to produce
a converging approximation for the first 137 terms or so—far beyond what could ever
feasibly be calculated.4

The large-order divergence of the expansion arguably did have a crucial impact on the
development of foundational and mathematical work on QFT, however. In a retrospective
review of the development of axiomatic QFT Arthur Wightman wrote of this period:

“[A]re the renormalized series convergent or divergent? Although there is even
yet no proof in quantum electrodynamics, it is generally believed on the basis
of a study of simpler cases that they are divergent... Thus at this stage in
the development, which occured in the early 1950’s, the key problem was to
find some non-perturbative approach to the solutions of quantum field theory.”
(Wightman, 1976, 195).

Similarly, when Arthur Jaffe, a key architect of the constructive field theory programme,
gave a more rigorous demonstration of the divergence perturbative expansion of scalar
QFT models in the 1960s, the conclusion he drew was that “some approximation scheme
more sophisticated than perturbation theory must be used to investigate solutions of the
field equations” (Jaffe, 1965, 9). It seems clear, therefore, that the large-order divergence
problem put an end to Dyson’s dream of resolving the foundational problems of QFT
using perturbation theory alone, and provided a powerful impetus for early axiomatic
field theorists to develop a non-perturbative characterisation of interacting QFTs.5

4When it came to models of the strong nuclear interaction the expansion parameter was expected to be
much larger than QED’s, and consequently the fact that the expansion was likely only asymptotic had a
more direct phenomenological relevance—see de Olano et al. (2022) for some discussion. The large-order
behaviour of the series would also become important once more with the rise of perturbative quantum
chromodynamics (QCD) in the 70s and 80s, leading to a new wave of results on the large-order behaviour
of QFT perturbative expansions.

5The impression that the perturbative expansion was not powerful enough to resolve the foundational
problems of QFT was likely further bolstered by new putatively non-perturbative results which emerged
in the 1950s. Källén and Landau put forward new arguments for thinking that QED broke down in the
ultraviolet regime which seemed to be non-perturbative in nature and potentially more severe than the
(Källén, 1953; Landau and Pomeranchuk, 1955). These developments, and the broader context of debates
about the inconsistency of QFT in the 1950s, are discussed in Blum (2023).
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It might be tempting to identify this turn away from perturbation theory in the early
axiomatic QFT movement as the origin of the divide between the mathematical and phe-
nomenological wings of high energy theory. This would be misleading for a number of
reasons, however. Firstly, there were actually good phenomenological reasons to attempt
to escape the shackles of the perturbative expansion in the 1950s and 1960s, as most
theorists became increasingly sceptical about the possibility of usefully applying weak
coupling approximations to the strong nuclear interaction. For a time, at least, foun-
dational and empirical motivations aligned on this point, leading to perhaps surprising
interplay between axiomatic QFT and the heuristic dispersion relations based approach
to non-perturbative calculations which flourished in this period.6 Secondly, as we have
already intimated, axiomatic QFT was not the only programme that can be placed under
the heading of mathematical QFT and there was in fact a substantial amount of math-
ematical work on the perturbative expansion, as we will discuss further in sections 2.4
and 2.5. Finally, however, moving beyond perturbation theory does not mean ignoring
perturbative results entirely, and indeed we see substantial interplay between axiomatic
QFT and perturbation theory, as we touch on in the following section.

2.3 Infrared Divergences

Ultraviolet divergences are not, in fact, the only type of divergent integral expressions
that appear in the coefficients of QFT perturbation series. Theories featuring massless
fields, and especially gauge theories like QED, display so-called infrared divergences as
well—integrals in the series coefficients which blow up in the region of arbitrarily small
momentum (again, when Fourier transformed into momentum-space). Where the ultravi-
olet divergences are associated with the short-length scale structure of the theory, these
infrared divergences are associated with long-distance structure and the limit of infinite
volume. While infrared divergences did not spark the same level of angst about the con-
sistency of QED they too received serious attention in the 1930s (see Blum (2015) for a
historical analysis of this early period). Most influencially, Bloch and Nordsieck (1937)
argued that the infinitely many “soft”, i.e. low momentum, photons in asymptotic scatter-
ing states which gave rise to the infrared divergences could not be detected experimentally
and consequently the infrared divergent parts of the coefficients must cancel in the series
expansions of properly defined scattering cross sections—see Miller (2021) for a philosophi-
cal discussion. From a foundational perspective, however, many questions remained about
the origins and implications of this second class of divergences. One might argue that the

6As is evidenced by the curious 1961 volume “Dispersion Relations and the Abstract Approach to Field
Theory” which gathered together early axiomatic QFT papers with more phenomenologically orientated
works by Mandelstram, Pomeranchuk and others as if they were all contributions to a common programme
(Klein, 1961). Fleshing out these connections is a thus far unexplored historical problem.
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infrared divergences, rather than the more infamous ultraviolet divergences, actually had
a more direct impact on the development of axiomatic QFT—and especially the algebraic
approach. A brief discussion of this theme will allow us to highlight the interplay between
early axiomatic QFT and perturbation theory.

One of the earliest mathematical studies of QFT, that of Friedrichs (1953), already
manifested this focus on infrared divergences. Friedrichs was among the first to high-
light a crucial feature which differentiates QFT from non-relativistic quantum mechanics:
the existence of unitarily inequivalent Hilbert space representations of the commutation
relations.7 The presence of infinitely many degrees of freedom circumvents the Stone-
von Neumann theorem, a result which ensures that the Hilbert space representation of
the canonical commutation relations of a typical finite system is unique up to a unitary
transformation. Friedrichs explicitly linked the perturbative infrared divergences to the
presence of inequivalent Hilbert spaces arising from infinitely many outgoing soft photons.
Around the same time Van Hove (1952) and Haag (1955) also put forward results which
shed light on the infrared divergence issue. What came to be known as Haag’s theorem
established that the vacuum state associated with the free theory and the interacting
theory live in unitarily inequivalent Hilbert spaces. This suggested that the Fock space
representation employed in the standard perturbative formalism was the culprit and that
the infrared divergences arose from integrating over states in the “wrong representation of
the Weyl relations” (Wightman, 1976, 205). Many of the founding papers of the axiomatic
field theory tradition were thus concerned with developing a mathematically precise de-
scription of asymptotic scattering states without employing perturbative machinery. The
LSZ formalism was a crucial starting point here (Lehmann et al., 1955), with later works
by Haag (1958) and Ruelle (1962) framed in terms of shoring up the rigour of the LSZ
scattering theory. Already in these papers, one finds a focus on algebras of Hilbert space
operators associated with local space-time regions, hinting at an algebraic approach to the
theory.

This line of development starting from the infrared divergences problem was thus a key
precursor to what became known as algebraic QFT (AQFT). The axioms for relativistic
QFT put forward by Haag and Kastler (1964) were based on the notion of a C*-algebra,
a natural abstraction from concrete algebras of bounded self-adjoint operators on Hilbert
space. C*-algebras of observables A(O) are associated with closed regions O on Minkowski
space-time, with states identified with linear maps from elements of this algebra to the
numbers. One could then write down a series of axioms that this algebra net could
reasonably be expected to satisfy thereby obtaining a fully non-perturbative statement of

7The fact that infinite degrees of freedom led to inequivalent Hilbert space quantisations was noted
already by Von Neumann (1939). Besides Friedrichs, another early proponent of the significance of this
fact was Irving Segal, who advocated an algebraic approach to quantum theory long before Haag and
Kastler; see Segal (1947, 1959).
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the physical content of a QFT. One axiom which will be important for later discussion is
known as micro-causality:

Micro-causality. If O1 and O2 are two spacelike separated regions then
[A(O1),A(O2)] = 0,

enforcing the independence of spacelike separated observables.8 Another assumption of
the Haag-Kaster axioms was the existence of a unique Poincare invariant vacuum state
associated with each Hilbert space representation of the algebra. This allowed contact to
be made with the Wightman axioms, an alternative system of axioms developed in the
same period which had been used to prove general results like the spin-statistics and PCT
theorems (Streater and Wightman, 1964). A key advantage of the AQFT approach, how-
ever, was that the unitarily inequivalent Hilbert space quantisations of an infinite system
could be understood as representations of a common algebraic structure, thus providing an
ideal framework for describing infrared phenomena like superselection (Doplicher et al.,
1971, 1974)—unsurprisingly given the roots of this approach in the infrared divergence
problem.

These brief remarks only scratch the surface of the early development of axiomatic
QFT, which currently lacks a dedicated historical treatment. These preliminary points
about the relevance of the infrared divergences problem are sufficient to establish that
a complete historical account of the axiomatic approach will certainly have to take the
back and forth between perturbative and non-perturbative treatments of the theory into
account. The goal of the axiomatic programme was to go beyond perturbation theory
rather than throw it away entirely, and early axiomatisers were often quite explicit in their
attempts to abstract general properties from the features of the perturbative expansion—
Haag (1955) checks his earliest set of axioms are satisfied in the perturbative setting, and
Wightman is also clear that the singularity properties of the interacting field operators
are conjectured on the basis of the behaviour of n-point functions in perturbation theory
(Wightman, 1976).

In the end, axiomatic QFTs mission to go beyond the perturbative expansion was at
best a rather partial success, however. While some general structural results and qualita-
tive accounts of infrared phenomena could be extracted from the new axiomatic systems,
difficulties remained with connecting them to empirically successful models. In the late
60s a sub-programme known as constructive field theory emerged, dedicated to verifying
the existence of interacting models of the Wightman and Haag-Kastler axioms.9 While

8The idea that a causality condition of some kind needed to be added to Poincare covariance was
prevalent across a wide range of theoretical approaches to relativistic quantum theory in the 50s and
60s, as evidenced by Bogoliubov’s causality condition discussed in section 2.4. This broader context is
discussed in Blum and Fraser (2023).

9Later on, the Osterwalder-Schrader axioms for QFT on euclidean space would become the primary
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there were some impressive achievements constructing 2-dimensional interacting models,
interacting theories on 4-dimensional Minkowski space-time, and specifically the gauge
theories making up the standard model, remain beyond our grasp even today. Further-
more, while there was widespread hope that perturbation theory might be circumvented
as the primary predictive approach to QFT in the 1950s and 1960s (as mentioned in sec-
tion 2.2) the asymptotic freedom of non-abelian gauge theories, and the acceptance of
QCD as the theory of the strong nuclear force triggered a new renaissance of perturbation
theory in the 1970s and 1980s. Contrary to some theorist’s expectations the perturbative
expansion continued to be the primary tool for analysing empirically relevant models and
a quantitative non-perturbative approach to interactions did not emerge.

2.4 Surface Divergences

We have seen that the axiomatic QFT tradition strove to move beyond the perturbative
expansion and develop a new non-perturbative language for the theory. There was another
parallel strand of mathematically orientated work on QFT, that also goes back to the
1950s, which instead attempted to clarify the mathematical structure of the perturbative
expansion itself. One prominent programme in this second branch of mathematical QFT
is what came to be called causal perturbation theory. The following two sections sketch
the development of this approach (a more detailed account is found in Blum and Fraser
(2023)).

While the large-order divergence of the perturbation series suggested that it could not
provide a complete characterisation of the mathematical structure of QFT, the perturba-
tive formalism still had its own internal foundational issues which remained unresolved.
Furthermore, since perturbation theory had so far been the only successful calculation
scheme in QFT, these problems were, from a certain point of view, more natural targets
for mathematical clarification. As N. N. Bogoliubov, one of the founding figures of the
causal perturbation theory approach remarked, focusing on the perturbative expansion,

“best corresponds to the actual modern state of field theory, where up to the
present various formal expansions in powers of the smallness of the interaction
cannot be removed and where all fundamental results were obtained with the
help of these expansions” (Bogoliubov, 1955).10

Where the axiomatic QFT program was, in a way, quite revolutionary in its ambitions
to develop a new non-perturbative language for QFT, causal perturbation theory can be

focus of constructive field theory, with analytic continuation properties being used to establish the con-
nection with Minkowski space-time. See Jaffe (2000) for a discussion of the development of constructive
field theory which covers the rise of euclidean methods.

10Thanks to Kseniia Mohelsky for translating this Russian language source.
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thought of as a more reformist operation, attempting to shore up the conceptual un-
derpinnings and mathematical rigour of the tried and tested perturbative treatment of
interactions.

One of the key ideas driving the causal perturbation theory approach was a critique of
the dynamical assumptions Dyson had adopted in his derivation of the series expansion
of the S-matrix. The post-war formulation of perturbative QED had been based on the
so-called interaction picture. In this representation of the time evolution, the Hamiltonian
of a field theory is split into a free and interacting part, H = H0 + V , and states are
taken to evolve under the interaction Hamiltonian alone with the remaining free time
evolution shifted into the operators. Schwinger and Tomonaga had independently pointed
out that one could formulate a fully covariant evolution equation in the interaction picture
by considering variations with respect to a space-like hypersurface σ:

i
δΨ(σ)

δσ(x)
= VΨ(σ). (3)

Dyson (1949a)’s derivation of the perturbative expansion for the S-matrix had been based
on iteratively integrating this equation.

We have already mentioned one reason to worry about the cogency of this scheme.
Haag’s theorem implies that a unitary transformation linking the free and interacting
theory could not in fact exist (as Haag (1955) pointed out explicitly). Here, we focus on a
lesser-known problem with the interaction picture dynamical framework which manifests
within the perturbative expansion coefficients themselves. It turns out that generalizing
from the asymptotic S-matrix, and working with a perturbative expansion of Dyson’s time-
evolution operator at finite times leads to yet another sort of divergence in the coefficients,
variously called boundary, surface and Stueckelberg divergences (in the admittedly scant
literature which discusses this issue at all).

The statement of this issue goes back to Stueckelberg (1951), Ernst Stueckelberg being
the original architect of the causal perturbation theory approach. Stueckelberg (1951)
posed the question of how one could extend the description of scattering afforded by
Dyson’s expansion of the S-matrix to finite times—essentially relaxing the idealisation
of treating incoming and outgoing scattering states at temporal infinity. He proposed
modifying the S-matrix framework by introducing a “switching function”, f(x), that takes
a value of 1 in some finite space-time region and is zero elsewhere, thus “turning on the
interaction” in a finite region only. One could, therefore use a generalised S-matrix,
S(f(x)), to represent a scattering event that takes place in a finite space-time region, with
the usual asymptotic S-matrix being recovered in the limit f → 1. Stueckelberg pointed
out that implementing the Schwinger-Tomonaga interaction picture equation at a finite
time was equivalent to turning on the interaction discontinuously, i.e. taking the switching
function to be a Heaviside function of the space-time arguments. This, he pointed out,
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led to a new type of divergence in the perturbative coefficients which were not removed
by renormalisation—the so-called surface divergences.11 His solution was to use a smooth
switching function to turn on the interaction, but Stückelberg reasoned, this would mean
moving away from the Schwinger-Tomonaga differential equation as the basis for deriving
the perturbative expansion.

The solution to this problem proposed by Stueckelberg and his collaborators was to de-
rive a weak coupling expansion for the S-matrix starting from a causality condition rather
than a time-evolution equation (Stueckelberg and Rivier, 1950a,b). This alternative to
Dysonian perturbation theory was largely ignored in the west but was taken up by the
Soviet mathematician and physicist, Nicolay Bogoliubov. Whereas Stueckelberg had been
a contemporary of Feynman, Schwinger and Tomonaga, and often styled his approach as
a rival theory, Bogoliubov saw in it the potential for a rational reconstruction of the con-
ventional perturbative formalism, motivated primarily by concerns about mathematical
rigour. Where Stueckelberg had struggled to provide a mathematically precise formula-
tion of his causality condition, Bogoliubov made use of the switching functions he had
introduced to do so. Suppose we have two switching functions f1 and f2, such that the
support of f2 is not in the past with respect to the support of f1. Bogoliubov’s causality
condition is then:

S(f1 + f2) = S(f2)S(f1), (4)

This condition can be read as ruling out the possibility of retro-causality, i.e. the possibility
of the results of a latter period of scattering affecting the results of an earlier period of
scattering. It is thus, at least on the surface, a conceptually distinct notion of relativistic
causality from the micro-causality condition of AQFT, which is naturally read as ruling
out superluminal influence (we will see in section 3.2 pAQFT brings some clarity to the
relationship between these two causality conditions).

The method of constructing the series expansion advanced by Bogoliubov was to start
with an abstract expansion of the form:

S(g) =
∑
n=0

1

n!

∫
Sn(x1, ..., xn)f(x1)...f(xn)dx1...dxn, (5)

where the Sn coefficients are so far unspecified. By imposing his new causality condition,
along with the unitarity and Lorentz invariance of the S-matrix, one obtained a relationship
between the coefficients at each order:

Sn(x1, ..., xn) = Sm(x1, ..., xm)Sn−m(xm+1, ..., xn), (6)

11For a detailed reconstruction of this problem see Blum and Fraser (2023).
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where the points {x1, ..., xm} are in the past with respect to the points {xm+1, ..., xn}.
Starting from a stipulation of the form of the first-order term:

S1(x) = iV (x), (7)

which essentially amounts to selecting an interaction potential for the model, one could
iteratively construct the higher-order terms in the series to all orders and reproduce the
basic form of the Dyson series; that is, one ends up with series coefficients consisting of
time-ordered products of V .

There is one important difference between the series expansion derived from Bogoli-
ubov’s causality condition and the conventional Dyson series, however. Ultraviolet diver-
gences arise in the expansion coefficients due to singularities associated with coincident
spacetime arguments—i.e. x1 = x2 = ... = xn. In the conventional approach, this can be
seen as flowing from the implementation of the time-ordered product via a discontinuous
Heaviside function. Starting from Bogoliubov’s causality condition, on the other hand,
left the form of the series coefficients at these problematic coincident points unspecified
since it only makes a statement about the ordering of temporally separated events. Con-
sequently, Stueckelberg, Bogoliubov, and later on Epstein and Glaser, took the causal
derivation of the perturbative expansion to provide a superior starting point for a more
rigorous treatment of the ultraviolet divergences problem, as we discuss in the following
section.

2.5 Ultraviolet Divergences, Again

Another major point of contention with the conventional formulation of perturbative QFT
was the mathematical rigour of the renormalisation procedure. While it had clearly been
predictively successful, even its inventors acknowledged that the way it was implemented
was mathematically dubious. In the conventional approach, one initially writes down a
divergent integral expression and then introduces a regulator (such as an ultraviolet cut-
off) which induces convergences. “Bare” parameters were introduced, ultimately being
identified with a series with infinite coefficients to be subtracted by equally problematic
infinite counterterms when the regulator was removed. There was a pressing question
about how to make mathematical sense of this procedure.

It was within the causal perturbation theory program that these worries about the
mathematical foundations of perturbative renormalisation were most explicitly addressed,
and a precise formulation of the ultraviolet divergence problem was finally achieved. Gain-
ing a more thorough understanding of the problem of ultraviolet divergences would hinge
on utilising ideas from the theory of distributions. Independently of Arthur Wightman,
who employed distribution theory in his non-perturbative axiomatisation of QFT (Streater
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and Wightman, 1964) mentioned in section 2.3, Stueckelberg and Bogoliubov used distri-
bution theory to explain why ultraviolet divergences occur in the perturbative coefficients,
and to recast the renormalisation procedure as a process of providing a proper definition
for products of singular distributions appearing in the expansion.

The notion of a distribution, or generalised function, was relatively new in mathematics
at this time, having been formalised in its modern form by Laurent Schwartz (Schwartz,
1951). It is possible to uniquely associate an ordinary locally integrable function, f(x),
with a functional that takes test functions, ψ(x) (which are required to satisfy certain
conditions) to the numbers:

Tf : ψ(x) →
∫ ∞

−∞
f(x)ψ(x)dx. (8)

The idea is to consider a more general class of functionals on the space of test functions
D(Rn).

{T : D(Rn) → C | T is linear and continuous}. (9)

This includes all of the functionals associated with integrable functions, the regular distri-
butions, but also contains additional objects; the singular distributions. The archetypical
example of the latter is the Dirac delta ‘function’ which can be identified with the distri-
bution:

Tδ : ψ(x) →
∫ ∞

−∞
δ(x)ψ(x)dx = ψ(0), (10)

A key difference between distributions and ordinary integrable functions is that their
products are not generally well-defined. The square of the Dirac delta distribution, for
instance, is ill-defined and in general, giving meaning to products of distributions with
overlapping singularities requires care.

In a remarkable, but cryptic article, Stueckelberg and Petermann (1953) explicitly ad-
vanced the claim that the ultraviolet divergences in perturbative quantum field theory
arise due to the naive multiplication of singular distributions since the Feynman prop-
agator has a singularity at the origin (i.e. for coincident spacetime arguments). They
say that the central mathematical problem of perturbative QFT is therefore to provide a
proper definition for the products of distributions which appear in the series coefficients.
Bogoluibov and his school also advanced this distribution theoretic recasting of the per-
turbative renormalisation procedure. Bogoliubov and Parasiuk (1957) set out a way of
thinking about the problem which is very similar in spirit to the approach of contemporary
practitioners of perturbative algebraic QFT. They say that one can start by construct-
ing a product of propagators on a restricted space of test function which vanish at the
origin, thus temporarily sidestepping the problem posed by the singularities. This is the
information which can be extracted from Bogoliubov’s causality condition, since, as we
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noted above, it does not fix the form of the perturbative coefficients at coincident points.
The problem is then one of defining the extension of this product to the full space of
test functions—we will see that Bogoliubov and Parasiuk’s framing of the renormalisation
procedure is essentially the same as that adopted in pAQFT (section 3.2).

Both Stueckelberg and Petermann (1953) and Bogoliubov and Shirkov (1959) claim
that the products of distributions appearing in perturbative QFT can be given a proper
mathematical definition, but it is not unique; the solution is instead a class of distributions
which differ via the addition of Dirac delta distributions and their derivatives at the origin
coincident points. This ambiguity is equivalent to the freedom to subtract an arbitrary
finite part and define different renormalisation schemes in the conventional approach to
perturbative renormalisation. The causal perturbation theory approach thus provided a
mathematical reconstruction of the perturbative renormalisation procedure, based not on
the subtraction of infinities but on the fixing of ambiguities flowing from the multiplication
of singular distributions in the time-ordered product. It was actually Stueckelberg and
Petermann (1953) who first posited a group of transformations between these alternative
ways of fixing the renormalisation ambiguity and Bogoliubov and Shirkov who coined and
popularised the term renormalisation group. While this is little appreciated today, the
renormalisation group concept has its origins in the causal perturbation theory programme;
see Fraser (2021) for a detailed historical analysis.

While Stueckelberg and Bogoliubov had all of the basic ingredients of the causal per-
turbation theory formalism set out in the 1950s, it would be some decades before the
details were filled in with full mathematical rigour. It was the papers of Epstein and
Glaser in the 70s which really brought the programme to fruition, forming the central
reference point for later mathematical physics work on perturbative QFT (Epstein and
Glaser, 1973). Adopting Bogoliubov’s causality condition, Epstein and Glaser carried
out the project of constructing distributional products occurring at each order iteratively
without ever dealing with an ultraviolet divergent expression. In later decades the causal
perturbation theory approach was further developed and refined. Günter Scharf extended
the Epstein and Glaser’s approach to gauge theories, showing that it was possible to fully
reconstruct the perturbative expansions of QED and QCD in the causal approach (Sharf,
1989). Where Epstein and Glaser had used a method of distribution splitting to provide
a proper definition for the time-ordered products appearing in the expansion, Steinmann
(1971) and Stora (1993) laid the groundwork for an alternative approach based on Bogoli-
ubov’s original suggestion of defining the distributional products via a method of extension
(more on this in section 3.2). Stueckelberg and Bogoliubov’s ideas about the perturbative
renormalisation group were also made more rigorous, with the existence of a map between
different ways of fixing the ambiguity in the distributional products coming to be known
as the main theorem of renormalisation (Popineau and Stora, 2016).

The proceeding discussion of the history of foundational work on perturbative QFT is
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rather preliminary and many gaps in the story remain to be filled in. One important de-
velopment we have not mentioned, for instance, is the BPHZ formalism. This framework
was designed to rigorously prove that the ultraviolet divergences could be systematically
removed to all orders of perturbation theory, and while it has both formal and histori-
cal overlap with the causal perturbation theory approach it also has its own story that
is yet to receive a proper historical treatment. Still, we have said enough to establish
the existence of a well-developed tradition of mathematically orientated work on QFT
perturbation theory. For several decades, causal perturbation theory and axiomatic QFT
developed more or less independently from each other. This can partially be explained
by the fact that they adopted different responses to the problems of conventional renor-
malised perturbation theory: causal perturbation theory carrying out a repair operation
on the conventional formalism, with axiomatic QFT attempting to transcend the limita-
tions of the perturbative approach. Still, connections between these two branches have
been made in contemporary work in mathematical physics, as will be discussed in detail
in the following section.

3 Perturbative Algebraic Quantum Field Theory: A

Contemporary Perspective

3.1 Origins: Generalising the Haag-Kastler Axioms

At the turn of the 21st century causal perturbation theory and axiomatic QFT were
brought together in an approach called perturbative algebraic quantum field theory (pAQFT).
This framework offers a view of the role of perturbation theory in contemporary work on
the foundations of QFT. The key move of this approach is to consider a generalisation
of the standard algebraic axiomatisation of QFT. Where the Haag-Kastler axioms had
taken C*-algebras to be the basic objects, in pAQFT one considers algebras of formal
power series (i.e. series where one does not care about convergence), which form a weaker
topological *-algebra structure that does not satisfy all of the properties of a C*-algebra.12

This more permissive construal of what a QFT is allows one to use the rigorous versions
of the perturbative expansion developed in the causal perturbation theory approach to
construct interacting models of axioms.

This marrying of the algebraic and causal perturbation theory traditions was, in fact,
preceded and facilitated by another line of generalisation of the Haag-Kastler axioms:

12A topological *-algebra is an algebra equipped with an involution (a linear operation *, with the
properties that A∗∗ = A, (AB)∗ = B∗A∗ and 1∗ = 1) such that both the involution and the algebra
operations are continuous in the given topology.
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their extension to QFT on curved space-times.13 By the 1990s, understanding QFT on
curved space-time had become a pressing problem, spurred on by groundbreaking work on
black hole thermodynamics. The algebraic approach to QFT turned out to be very well
suited to the generalisation to curved space-times, since the construction of the algebras
of observables is local, i.e. the observables themselves behave, to a large extent, as if
they were in flat Minkowski spacetime. Global aspects of the theory are included in the
specification of a state. In QFT on Minkowski spacetime, the natural choice of a state
is the vacuum. On generic curved spacetimes, however, a distinguished state with all
the good properties of the Minkowski vacuum might not exist. The main advantage of
starting from the Haag-Kastler axioms here was that, where the Minkowski vacuum state
plays a seemingly inextricable role in the Wightman axioms for relativistic QFT, AQFT
separates the construction of the local algebra from the construction of a state making the
generalisation to a curved space-time setting much easier to achieve.

The basic concepts of AQFT on curved spacetime, later referred to as locally covariant
quantum field theory (LCQFT), were laid during an Oberwolfach workshop in Septem-
ber 2000,14 where the main discussants included Romeo Brunetti, Chris Fewster, Klaus
Fredenhagen, Stefan Hollands, Bernard Kay, and Rainer Verch, and shortly afterwards
appeared in a series of seminal papers: (Brunetti et al., 2003; Hollands and Wald, 2001,
2002). As locally covariant quantum fields are in fact normally ordered, constructing them
requires one to deal with ultraviolet divergence issues. Normal ordering can be thought
of as the first step in renormalisation, where one tries to define local field operators. On
Minkowski spacetime normal-ordering amounts to putting all the creation operators on
one side and all the annihilation operators on the other. This procedure can also be for-
mally thought of as subtracting “an infinite constant” from what would be the “naive”
product of those field operators. Another way to think about this procedure is to use the
point-splitting prescription. For example, to define Φ2(x) one considers the limit:

lim
y→x

(Φ(x)Φ(y)− w(x, y)1) ,

where Φ(x), Φ(y) are field operators (or more precisely operator-valued distributions) w
is an appropriately chosen distribution that cancels out the singularity of Φ(x)Φ(y) at

13Note that the historical origins of pAQFT have not been systematically studied and these brief
comments about the role of QFT on curved space-times should be read as preliminaries to such an
investigation. Interestingly, the idea of connecting the causal perturbation theory and algebraic approach
to QFT was suggested much earlier by Il’in and Slavnov (1978). While this does not seem to have been
taken up at the time it suggests that the pieces were in place to connect causal perturbation theory and
AQFT much earlier. Whether the focus on QFT on curved space-times at the turn of the century was
merely a catalyst or played a more fundamental role in the development of pAQFT is a matter for further
study.

14In fact, a major focus of this workshop was on how general covariance could be implemented in the
context of renormalised perturbative QFT.
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the coinciding points limit. The resulting normally-ordered field operators are also called
Wick polynomials. One way to describe these objects abstractly, using algebras, is to use
the construction known as the Borchers-Uhlman algebra (see Hack (2015)). Here we will
follow the approach of Dütsch and Fredenhagen (2001) and treat Wick polynomials as
smooth functionals on the space of field configurations.

An important conceptual step to make, in order to include objects like Wick polyno-
mials into the AQFT framework was to weaken a key assumption of the Haag-Kastler
approach, namely that the local algebras of observables must form C∗-algebras. Instead
one considers a more general class of involutive topological algebras ; Involution, denoted
by ∗, allowing one to define conjugates of operators and the topology allowing one to
talk about convergence. The main concepts of AQFT, though originally formulated for
C∗-algebras, can actually apply in this more general setting, allowing much of the ma-
chinery of AQFT to be extended to the curved space-time setting and, as we shall see,
to perturbative models. It is worth pointing out that there are also costs associated with
this generalisation, however, since some of the structural results achieved by traditional
AQFT rely on the stronger properties of C*-algebras and therefore cannot be recovered
in this more general setting (more on this point in section 3.3)

Let us state three axioms of AQFT that carry over to both curved spacetimes and
perturbative models. As in the original Haag-Kastler approach, we associate algebras of
observables A(O) with spacetime regions O, however, these algebras are now only required
to be topological *-algebras and O are relatively compact regions of a general spacetime
manifold M . We require the following three axioms to hold:

A 1 Isotony. If we have a smaller region O1 contained in a larger region O2, then
A(O1) ⊂ A(O2).

A 2 Micro-causality. Let O1 and O2 be two spacelike separated regions, i.e. no causal
(timelike or null) curve can connect them. Then [A(O1),A(O2)] = {0}, i.e. operators
localised in spacelike separated regions commute.

A 3 Time-slice. Let N be a region containing a Cauchy surface for the region O (i.e.
a hyperspace such that every causal curve intersects it exactly once). Then A(O) =
A(N ), i.e. the algebra of the given region can be reconstructed from the algebra of
a time-slice within that region. This is the quantum version of the well-posedness of
the initial value problem.

Assumptions about the vacuum state, often included in the list of Haag-Kastler axioms,
are simply omitted.

Locally covariant QFT greatly clarified how to make sense of free QFTs on curved
space-times but as with traditional AQFT there was a problem with incorporating inter-
actions. pAQFT was developed essentially in parallel with the LCQFT framework and
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always intended to work on curved backgrounds as well as the more familiar Minkowski
space setting (as can be seen from a careful study of (Brunetti et al., 2009)). The ad-
ditional step we need to make to embrace perturbation theory is to further weaken the
assumption of what A(O) should be. To make sense of perturbation theory in a mathe-
matically rigorous way, we allow A(O) to be the algebra of formal power series (i.e. as
series considered independently of any notion of convergence) with coefficients in topo-
logical involutive algebras. It is then possible to construct interacting models satisfying
axioms A 1 - A 3 by adapting the rigorous version of the perturbative expansion developed
in the causal perturbation theory programme. Crucially, where early axiomatic QFT had
rejected perturbative methods at least partly because of the likely non-convergence of the
series the pAQFT approach shows that it is possible to do a surprising amount by simply
bracketing the convergence question and working with formal power series. pAQFT can
thus be understood as adopting a different, more deflationary, response to the large-order
divergence problem discussed in section 2.2.

3.2 The Construction of Perturbative Models

This section describes how models of the weakened algebraic axioms can be constructed
using the perturbative expansion. More detailed and comprehensive accounts can be found
in Fredenhagen and Rejzner (2015) and Rejzner (2016).

To give a qualitative outline, the model construction method described here uses two
mathematical principles to define two types of product:

� Deformation. We start with a Poisson algebra of classical observables (specifically,
functionals of classical field configurations). Quantisation is achieved by a deforma-
tion of this algebra’s product. We will use this approach to define a non-commutative
*-product appropriate for a space of formal power series. This product acts as the
involution operator for the algebra and defines the relevant commutation relations.

� Extension. Following causal perturbation theory, the problem of ultraviolet diver-
gences in the series expansion is understood as one of providing a proper mathe-
matical definition for the time-ordered product. Consequently, this product also
needs to be defined on our space of observables. This is achieved via a process of
extension: one first defines the product in a domain of less singular objects, before
extending the product to the full physically relevant space.

The first step is to specify the spacetime M that we want to work on. It is assumed
that this spacetime is globally hyperbolic, i.e. of the form Σ × R, where Σ is a Cauchy
surface. Such spacetimes do not have closed causal curves, so, intuitively speaking, it is
impossible to travel or to send information back in time. Next, we fix the space of field
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configurations E that we wish to consider. This could be, for example, C∞(M,R) for the
free scalar field or more generally a space of sections of some vector bundle over M . For
simplicity of exposition, we will restrict ourselves here to the case of a scalar field φ(x).

Classical observables of the theory can be described as real-valued functions on E , i.e.
a classical observation assigns a number (the result of the measurement) to a given field
configuration. For mathematical convenience we assume our observables to be smooth
functionals on E and with the quantisation in mind, we want them to be complex-valued,
so elements of C∞(E ,C). Among all functionals, we distinguish the ones that are local.
This means that they can be written as

F (φ) =

∫
M

α(φ(x), ∂φ(x), . . . , ∂kφ)dµ(x) ,

where α is a smooth function, dµ is a distinguished invariant measure induced by the metric
of our spacetime and ∂k denotes the k-th order derivative of φ, where we suppressed all
the spacetime components of such derivatives. We see that a local functional essentially
depends only on values of the field φ and its derivatives up to order k at the same point.
We can multiply local functionals together to obtain functionals called multilocal.

When it comes to dynamics we work with a modified version of the Lagrangian formal-
ism, in anticipation of utilising ideas from causal perturbation theory later on. Section 2.4
introduced a generalised version of the S-matrix S(f), but one can also introduce switch-
ing functions f(x) into the Lagrangian formalism itself (as was in fact originally done by
Bogoliubov (Bogoliubov and Shirkov, 1959)). Let D ≡ C∞

c (M,R) be the space of smooth
compactly-supported functions on M (our test functions). A generalised Lagrangian is a
map D ∋ f 7→ L(f), where L(f) is a local functional. In practice, one takes the usual
Lagrangian density and smears it with f(x). For example, the Lagrangian of the free
scalar field is:

L0(f) =
1

2

∫
M

(
∇νφ∇νφ−m2φ2

)
fdµ .

Switching functions play a number of roles in the pAQFT approach. As in causal pertur-
bation theory, we will use the support of these functions to formulate statements about
the causal properties of the generalised S-matrix (though we will ultimately use the sup-
port of local functionals for this purpose rather than referring to the switching function
directly). The switching functions also get rid of both the surface and infrared divergences
that would appear in the perturbative coefficients. Perturbative infrared divergences occur
only in the limit f(x) → 1, and as Dütsch and Fredenhagen (1999) point out, this limit
is not actually required for constructing local algebra nets, however.15 pAQFT can thus

15Furthermore, the f(x) → 1 limit may not even make sense in a curved spacetime setting so there may
actually be physical reasons not to take this limit.
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also take a deflationary view of the infrared divergence problem, though this does mean
losing contact with results in asymptotic scattering theory developed in the traditional
axiomatic approach.

Some properties of the free classical theory are important to discuss. One defines the
Euler-Lagrange derivative of L0 as follows:

⟨dL0(φ), ψ⟩
.
=

〈
L0(f)

(1)(φ), ψ
〉
,

where f ≡ 1 on supp(ψ) and ψ ∈ D and the pairing ⟨., .⟩ is given by pointwise multiplying
and integrating over all M . Since L0 is local, dL0(φ) can be expressed as a differential
operator, i.e.

dL0(φ) = Pφ .

For the free scalar field P = −(□ + m2), where □ is the d’Alembertian, i.e. the wave
operator. Operators of this type have some very nice properties, in particular, the existence
of unique retarded and advanced Green functions ∆R/A. This means that we can specify
the initial data in a small time slice, in the neighbourhood of a Cauchy surface and this
data can either be propagated to the future (by applying the retarded Green function)
or to the past (by applying the advanced Green function). These causal properties of
distinguished Green functions play a crucial role in what follows.

One of the difficulties with the formulation of classical field theories on curved space-
times is the desire to keep covariance. In classical mechanics, the dynamics can be formu-
lated by specifying the Hamiltonian of the theory and introducing the canonical bracket on
the space of functions on the phase space, which is a Poisson bracket. When generalising
to field theory, we note that in order to obtain a Hamiltonian, one needs to use a partic-
ular foliation into Cauchy surfaces. This is not very covariant, so we prefer to remain in
the Lagrangian framework. The remaining problem of introducing an appropriate Poisson
structure has been solved by Peierls in Peierls (1952). It is defined as follows:

{F,G}(φ) .=
〈
F (1)(φ),∆G(1)(φ)

〉
,

where F,G are local functionals on E and ∆
.
= ∆R−∆A is the Pauli-Jordan function. The

Peierls bracket can be understood as the difference between the retarded and advanced
response of observable G to perturbing the action L0 by adding F to it. As (∆A)T = ∆R,
∆ is antisymmetric. Another important feature of {., .} is that it is well defined for all local
functionals, not just on the space of solutions to the equations of motion. We say that it is
defined off-shell (as opposed to making sense only on-shell). The Peierls bracket involves
taking derivatives of functionals, so in general F (1)(φ) and G(1)(φ) are distributions, i.e.
could be singular. Since ∆ is also a distribution, the product of F (1)(φ), G(1)(φ) and ∆
is not necessarily well-defined on arbitrary smooth functionals. It is, in fact, well-defined
on multilocal functionals, but this class is not closed under the bracket, i.e. {F,G} is
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not necessarily multilocal. There exists, however, a slightly larger space of functionals F ,
which is closed under the bracket Dütsch and Fredenhagen (2001).

Now that the classical system is characterised we can move on to quantisation. As
previously announced, this will be achieved by means of a deformation of the Poisson
algebra of functionals that we have just introduced (the bracket is the Peierls bracket and
the product is the pointwise product · of functionals). The goal here is to introduce a
non-commutative product ⋆ on the space of formal power series F [[ℏ]], such that:

F ⋆ G
ℏ→0−−→ F ·G , 1

iℏ
(F ⋆ G−G ⋆ F )

ℏ→0−−→ {F,G} .

A first attempt at defining such a product is the Moyal exponential formula

e
i
2
ℏ
〈
∆, δ2

δφ1δφ2

〉
F (φ1)G(φ2)

∣∣
φ1=φ2=φ

.

This formula would satisfy the two properties listed above, but it does not work for general
F and G, since ∆ is too singular. The solution is to add to i

2
∆ a symmetric distribution

(so that it does not affect the commutator), which would make the singularity structure
better. Fortunately, such modification is possible for the spacetimes of interest (though it
is not unique). We introduce

∆+ =
i

2
∆ +H ,

where H is chosen so that the singularity structure of ∆+ allows for applying the Moyal
formula to local functionals. We define the star product as:

F ⋆ G := e
ℏ
〈
∆+, δ2

δφ1δφ2

〉
F (φ1)G(φ2)

∣∣
φ1=φ2=φ

.

The resulting product plays the role of the operator product of quantum theory. It is the
product that defines the relevant commutation relations and will generate our *-algebra.

In order to construct interacting models we need to define another product on our space
of functionals: the time-ordered product. Recall that causal perturbation theory introduced
the generalised S-matrix S(f(x)). We now generalise one step further and consider S-
matrices S(F ) associated with the local functional F . The support of the functional F
will play the same role as the support of the switching function in implementing a causal
factorisation property of the sort introduced by Bogoliubov. We want to identify these
generalised S-matrices with a series of time-ordered products Tn:

S(F ) =
∑
n=0

1

n!
Tn(F, . . . , F ) . (11)

Note that we do not require the functional F to live on the space of solutions, so this is
essentially the off-shell analogue of equation (5).
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As we have seen, the problem of ultraviolet divergences arises from a naive treatment of
the singular distributions that occur in these time-ordered products. Accordingly, we first
start by defining these time-ordered products on a smaller class of less singular function-
als than the local functionals. The regular functionals are smooth compactly-supported
functionals whose derivatives are smooth, i.e. F (n)(φ) is a smooth function on Mn for all
n ∈ N and all φ ∈ E . For such functionals, we can introduce the time-ordered product:

F ·T G := e
ℏ
〈
∆F , δ2

δφ1δφ2

〉
F (φ1)G(φ2)

∣∣
φ1=φ2=φ

, (12)

where ∆F := i
2
(∆R + ∆A) + H is the Feynman propagator. One can also write the

time-ordered product as
F ·T G = T (T −1F · T −1G) ,

where

T := e
ℏ
〈
∆F , δ2

δφ2

〉
is the time-ordering operator.16

Here is where the singularity structure of the Feynman propagator starts playing a
crucial role. Because the Feynman propagator ∆F is much more singular than ∆+, formula
(12) cannot be directly applied. However, it does allow one to construct the n-fold product
of n local functionals F1, . . . Fn, as long as their supports are pairwise disjoint, so for such
functionals, we can define

Tn(F1, . . . , Fn) .

This is where the concept of extension comes in. Causal perturbation theory is exactly
the right tool to extend such Tns to their renormalised counterparts that are defined
on arbitrary local functionals. Originally, such extensions were done by using causal
splitting of distributions (Epstein and Glaser, 1973; Scharf, 1995), however, a more modern
approach involves distributional extensions using the Steinmann scaling degree, following
(Steinmann, 1971). For the more modern rendering of that idea see for example Brunetti
and Fredenhagen (2000). As was discussed in section 2.5 a time-ordered product can
be defined but it is not unique, with the ambiguity in defining the extension to local
functionals being governed by the Stueckelberg-Petermann renormalisation group. The
notion of the renormalisation group has in fact been clarified within the pAQFT approach,

16This operator is in fact closely related to the path integral. Formally, we have that

(T F )(0) =

∫
F (φ)dµ∆F (φ) ,

where dµ∆F (φ) is the Gaussian measure with covariance i∆F and the integral is the standard path integral.
This connection to more conventional path integral approaches to QFT provides a powerful starting point
for formulating general conjectures starting from pAQFT.
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with the relationship between the Stueckelberg-Petermann and Wilsonian renormalisation
groups spelt out in mathematically precise terms (Brunetti et al., 2009).17

To take stock, we now have two products to work with: the non-commutative ⋆ and the
commutative ·T (time-ordered product). So far, however, our construction has proceeded
using the free Lagrangian L0 and has proceeded off-shell. We now want to construct
interacting models, i.e. observables of the theory with Lagrangian L0 − V . This, of
course, is where the perturbative expansion comes in. The generalised S-matrices of the
interacting theory are identified with time-ordered exponential series with respect to V ,
which are not required to converge:

S(V ) = e
iV/ℏ
T .

Interacting observables are obtained using the Bogoliubov forumula:

RV (F ) = S(V )−1 ⋆ (S(V ) ·T F ) ,

where the inverse is with respect to ⋆ and F is a given classical functional. They are
generated by the relative S-matrix :

SV (F ) := S(V )−1 ⋆ S(V + F ) .

We now have all the pieces in place to demonstrate that models satisfying our weakened
axioms A1-A3 have been constructed. One can define the algebra associated to a region
O ⊂M as the algebra generated by S(F ), where F ∈ Floc, with respect to the product ⋆.
This assignment automatically satisfies the isotony axiom A1. Causal factorisation holds
for this algebra, so for F1 with the support not later than F2 (i.e. such that the support
of F1 does not intersect the future of the support of F2), we have (independently of the
choice of F ):

S(F2 + F + F1) = S(F2 + F ) ⋆ S(F )−1 ⋆ S(F + F1) .

Using this, we can now prove that the causality axiom A2 holds for our net of algebras.
Indeed, for F1 and F2 with spacelike supports, we have both F1 not later than F2 and F2

not later than F1. Hence, in this case (setting F = 0):

S(F2) ⋆ S(F1) = S(F2 + F1) = S(F1) ⋆ S(F2) ,

so S(F1) and S(F2) commute. This establishes the connection between the Bogoliubov
causality condition and the algebraic “microcausality” principle adopted by Haag and

17There remains the question whether the renormalised Tns can be seen as n-fold products coming from
some binary product. This question was answered affirmatively by Fredenhagen and Rejzner (2013). We
will keep denoting this, now renormalised, time-ordered product by ·T , with the corresponding T . The
idea to treat the renormalised time-ordered product as a binary product opened up many new possibilities
since one can drastically simplify the algebraic structure of the theory.
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Kastler: in the pAQFT setting the former implies the latter. The time-slice axiom is
related to the dynamics of the theory and thus requires us to go on-shell by requiring our
functionals to be in the space of solutions, or, equivalently, after taking an appropriate
quotient of our algebra of S-matrices. After this is done it can be shown to hold (Chilian
and Fredenhagen, 2008).

3.3 Beyond the Perturbative Expansion

The proceeding section shows that once the Haag-Kastler axioms have been sufficiently
weakened a plethora of perturbative interacting models can be shown to exist, including
the 4-dimensional gauge theories on Minkowski space-time that make up the standard
model of particle physics. This addresses a central problem facing the axiomatic QFT
tradition; the difficulty of constructing realistic interacting models of the proposed systems
of axioms. We should stress, however, that pAQFT also has important limitations and
does not simply render the older non-perturbative approach to axiomatic QFT redundant.

For one thing, pAQFT inherits the phenomenological limitations of the perturbative
approach to QFT. While the rise of non-abelian gauge theories sparked a renaissance of
perturbation theory, it also became clear that there were aspects of these models that
could not be described perturbatively. Key phenomena like quark confinement are not
expected to have a perturbative description and the strong coupling regime of QCD is
generally expected to be dominated by contributions to observable quantities which are
non-analytic in the coupling and thus invisible to the perturbation approximation. The
perturbative models constructed in pAQFT thus do not capture all of the physical con-
tent of realistic gauge theories. Furthermore, from a mathematical physics perspective,
motivations remain for pursuing the stricter notion of a QFT as a net of C*-algebras.
One reason for this is that many of the successes of traditional AQFT, especially general
structural results and qualitative accounts of infrared phenomena mentioned in section 2.3,
depend on the stronger properties of C*-algebras and therefore cannot be recovered in the
pAQFT setting. Under this heading, the Doplicher-Haag-Roberts theory of superselection
(Doplicher et al., 1971, 1974), and modular theory (Takesaki, 1970), loom large. Finally,
from an philosophical point of view, it is difficult to understand how a formal power series
could provide a complete characterisation of a physical system, driving the intuition that
there must be some richer structure underlying the expansion.

There is thus a continued motivation to pursue constructive field theory in the tradi-
tional sense; that is to try to construct interacting models in the non-perturbative C*-
algebra setting. Recently, Buchholz and Fredenhagen (2020) have proposed a way to use
the intuitions gained from pAQFT to make this further step. The idea is relatively simple.
One considers first the C∗-algebra generated by a family of unitaries S(F ) labelled by local
functionals F . These unitaries can again be identified with generalised S-matrices. Next,
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one quotients this algebra by relations that correspond to relations appearing in pAQFT.
Working by analogy, one requires that:

S(F2 + F + F1) = S(F2 + F )S(F )−1S(F + F1) ,

if the support of G is not later than the support of F . One also requires a relation that
can be seen as the unitary version of the Schwinger-Dyson equation, namely that:

S(F ) = S(Fψ + δL0(ψ)) , ψ ∈ D

where L0 is the generalised Lagrangian of the free theory,

Fψ[ϕ]
.
= F [ϕ+ ψ] , δL0(ψ) := L0(f)

ψ − L0(f) ,

for any f ∈ D satisfying f ≡ 1 on suppψ. Note that δL0 is the difference quotient version
of dL0, so this equation tells us something about the dynamics of the theory. Another
important relation, dubbed the unitary anomalous master Ward identity in Brunetti et al.
(2023), allows one to study how classical global symmetries of the theory can be broken
upon quantisation. This is quantified by means of the anomalous Noether theorem. The
same paper also introduces the non-perturbative version of the Stückelberg-Petermann
renormalisation group, which acts on the C∗-algebra of generalised S-matrices.

This recent work can be understood as another instance of a methodological strategy
we saw in the historical part of the paper: working results out concretely using the pertur-
bative expansion before exporting them to a non-perturbative context. This, once again,
reinforces the significance of the perturbative expansion, even for the most intractable
foundational questions about QFT.

4 Conclusion

Let us summarise the historical picture which emerges from the preceding discussion.
During the 1950s and 1960s, a distinctively mathematical approach to QFT emerged,
based on following a higher standard of mathematical rigour and using tools from pure
mathematics to illuminate foundational questions about the theory. Mathematical QFT
split into (at least) two largely independent strands of development, which can be thought
of as responding to different issues with the formalism of renormalised perturbation theory:
axiomatic QFT, which tried to develop a non-perturbative language for QFT, and causal
perturbation theory, which instead clarified the mathematical structure of the perturbative
approach. In recent decades, these two arms of mathematical QFT have been brought
together by pAQFT; this is illustrated in Figure 2. Note that this should not be read
as implying that pAQFT resolves all of the problems motivating axiomatic QFT as was
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Figure 2: Continuation of Figure 1, depicting perturbative algebraic QFT (pAQFT) as
bringing the earlier strands of axiomatic QFT and causal perturbation theory together.

discussed in section 3.3—rather pAQFT brings causal perturbation theory and axiomatic
QFT together in the sense that it establishes relationships between the results established
on either side of the divide.

In addition to mediating between these two previously disconnected strands of math-
ematical QFT, pAQFT plays another important role in relating the results of axiomatic
QFT to particle physics phenomenology, which is still largely based on the perturbative
approximation scheme. We conclude with some brief comments about this aspect.

One of the apparent difficulties with approaching QFT from a foundational point
of view is the existence of different formulations of the theory employed in mainstream
theoretical physics and mathematical physics. This has been seen as posing a dilemma:
which version of the theory ought we to start with when asking questions about what QFT
is telling us about the physical world? In the philosophy of science literature this framing
of the situation has been dramatised in a debate between Wallace (2011) and Doreen
Fraser (2011), with Fraser arguing that axiomatic QFT is the correct starting point for the
purposes of philosophical interpretation on grounds of their superior mathematical rigour
and unificatory power, while Wallace arguing that the conventional empirically successful
approach to the theory which ought to be our focus. The tradition of mathematical work on
the perturbative expansion we have highlighted in this article (encompassing both causal
perturbation theory and pAQFT) arguably tells against a sharp distinction between the
physicist’s and mathematician’s version of QFT, as it can be understood as establishing a
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link between axiomatic QFT and the conventional perturbative treatment of interactions.
It allows us to formulate the predictively powerful perturbative approximation methods
driving particle physics phenomenology in a mathematically rigorous way and, via pAQFT,
situates perturbatively characterised gauge theories within the algebraic QFT framework.

In other words, the gap between the physicist’s and mathematician’s versions of QFT
is not as wide as has sometimes been thought. Relationships between the various formula-
tions of the theory are now quite well understood. This suggests that the choice between
axiomatic and conventional QFT may be something of a false dilemma. What this might
mean for how philosophers can most fruitfully engage with QFT is a discussion for another
time.
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tifié. Physica, 18(3):145–159, 1952.

John Von Neumann. On infinite direct products. Compositio mathematica, 6:1–77, 1939.

David Wallace. Taking particle physics seriously: A critique of the algebraic approach to
quantum field theory. Studies in History and Philosophy of Science Part B: Studies in
History and Philosophy of Modern Physics, 42(2):116–125, 2011.

A. S. Wightman. Hilbert’s sixth problem: Mathematical treatment of the axioms of
physics. In Browder, F.E., Ed., Mathematical Developments Arising from Hilbert Prob-
lems, Symposia in Pure Mathematics, volume 28, pages 147–240. American Mathemat-
ical Society, Providence, 1976.

35



Kenneth G. Wilson. Interview with Kenneth G. Wilson, conducted by Physics
of Scale collaborators: Babak Ashrafi, Karl Hall, and Sam Schweber. available at:
https://wayback.archive-it.org/9060/20230418062736/https://authors.library.

caltech.edu/5456/1/hrst.mit.edu/hrs/renormalization/Wilson/index.htm,
July 2002.

36


