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1. Introduction

Abstract

Metaphysicians as well as philosophers of science often turn to particle physics for
a description of the most fundamental entities in our universe. The common assump-
tion is that physics readily provides a clear account of both what those fundamental
building blocks are and how they come together to form more complicated objects,
and, conversely, how compound objects can be seen as being composed of those funda-
mental entities. I argue that this picture contains a major difficulty because quantum
theories allow for more than one metaphysically meaningful procedure to decompose
a system into parts, fundamental or otherwise. I will identify and interpret two such
procedures, mathematically given by the direct sum and the tensor product, and show
that they lead to different results for what the parts of a quantum system are. This
shows that there are conventional choices involved in finding the fundamental parts
of an object which have not yet been widely recognised by either metaphysicians or
philosophers of science. I take my findings to provide a sense in which, as a result,
particle physics on its own is not enough to determine the fundamental ontology of
the world.

1 Introduction

Metaphysicians, as well as philosophers of science, often turn to modern particle
physics for an account of the most fundamental entities in our universe. Tahko
(2018, p. 1) observes that many think “that particle physics aims to describe the
fundamental level of reality, which contains the basic building blocks of nature.”
Oppenheim and Putnam (1958, p. 9) put elementary particles at the very bottom
of their mereological hierarchy of material entities. Inman (2017, p. 75) claims that
“[t]hough the strong reductive letter of Oppenheim and Putnam’s account of the
mereological ordering of reality has been largely abandoned [...], many contemporary
philosophers are apt to endorse something similar in spirit” and points to Kim (1998,
p. 15) who asserts that “[t]he bottom level is usually thought to consist of elementary
particles, or whatever our best physics is going to tell us are the basic bits of matter
out of which all material things are composed” and that “[t]he ordering relation that
generates the hierarchical structure is the mereological (part-whole) relation.”

The common assumption is that particle physics readily provides an account of
what those fundamental building blocks are, how they come together to form more
complicated objects, and, conversely, how compound objects can be seen as being
composed of those fundamental entities. Even those who examine the mereology of
quantum theories in more detail, such as Calosi and Tarozzi (2014), tacitly assume
that matters are settled in physics regarding how to decompose a given system into
its fundamental constituents in the quantum realm.

I argue that the picture is more complicated: quantum theories allow for more
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1. Introduction

than one metaphysically meaningful procedure to decompose a system into subsys-
tems, fundamental or otherwise. In particular, I will explore two decomposition
procedures for quantum systems and show that they lead to different results for
a system’s constituents, thus giving rise to conflicting conceptions of fundamental-
ity. From this, I will conclude that fundamental physics on its own cannot provide
an account of the fundamental level of reality and that more interpretational and
metaphysical work needs to be done in order to arrive at such a description.

More concretely, I will argue that there are situations where the formal descrip-
tion of a given system in particle physics can be decomposed according to two very
different mathematical procedures: the tensor product decomposition identifies sub-
systems of the system with clusters of properties that are independent of each other
in the sense that a measurement on one of the clusters does not disturb measure-
ments on other ones.1 On the other hand, the direct sum decomposition describes
the compound system as a mixture of subsystems, each of which differs in one of
the fundamental properties particle physics predicts quantum systems to have, like
electric charge, or colour charge. For example, the simple model used to describe the
spin structure of a hydrogen atom can be viewed as either two independent spin-1
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degrees of freedom (the electron and the proton) or a mixture of a spin-0 system and
a spin-1 system, where the theory does not predict which of the two possibilities will
actually obtain. That is, the behaviour of a hydrogen atom is equally determined by
either two independent spin-1

2 systems or a mixture of a spin-0 and a spin-1 system.
These represent two very different ways of decomposing the system into its fun-
damental constituents with disagreeing results. In this way, the metaphysics of the
systems is underdetermined by the physics. Hence, metaphysicians and philosophers
of physics need to specify in more detail which of the conceptions of fundamentality
they refer to when claiming that particle physics describes the fundamental level of
reality, or we need an account of how two conflicting notions of fundamentality can
coexist. I view this as another way in which one cannot “read off” one’s metaphysics
from physics alone, as French (1998, p. 93) argues.

I will proceed as follows: in Section 2, I will first discuss the metaphysics of
fundamentality and extract what appears to lie at the core of various accounts,
namely a relational concept of metaphysical priority. Then, I outline the formal
description of the basic objects of inquiry of particle physics, quantum systems. The
two sections after that then rehearse the two ways such a quantum system could be

1There is a rich hierarchy of such independence notions that the tensor product satisfies, of
which I will only briefly mention a few below.
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2. Fundamentality and Quantum Systems

decomposed from a general perspective and examine how each can be justified as
corresponding to a relation characterizing ontological hierarchy. Section 5 will then
look at the framework of group representations, which is heavily employed in particle
physics and enables us to see exactly where the two notions of fundamentality will
clash. Using this, I will show in Section 6 that the two notions disagree on the
fundamental constituents that they ascribe to some systems and conclude that this
is in conflict with the expectation that particle physics can settle the question of
fundamentality for a naturalistic metaphysics.

2 Fundamentality and Quantum Systems

The term “fundamental” is used in a wide variety of senses in the metaphysics
literature, commonly2 denoting that something is “basic or primitive” (Tahko 2018,
p. 1). Most approaches to fundamentality are relational at their core: as Schaffer
(2010, p. 36) observes, “[a]nyone who is interested in what is fundamental [...] must
understand some notion of priority.” That is, fundamentality is connected to a
priority relation that holds between the more and less fundamental entities.

This relation is often taken to be that of grounding (see e. g. Cameron (2016),
Mehta (2017), and Schaffer (2009), or Bianchi and Giannotti (2021) for an account
of relational fundamentality based on ontic structural realism) although this is not
accepted by everyone (e. g. Wilson 2014). Some think that there can be multi-
ple such relations: Bennett (2017), for example, argues for a plurality of “building
relations” that apply in different circumstances. Others (e. g. Fine (2001) and Wil-
son (2014)) argue that fundamentality is a primitive notion not further analysable,
though it is still characterizable in terms of other relations. Whatever the details of
the account of fundamentality might be, common to most approaches—and the only
necessary assumption for my argument—is that they are based on some relation.
For simplicity, I refer to this relation as the priority relation—the reader is welcome
to substitute their favourite fundamentality relation if they wish.

This relation, in turn, can result from of a notion of (de-)composition of systems.
If a system is decomposable into subsystems, these subsystems are prior to the
compound system and can, thus, be regarded as more fundamental. In the following,
I will look at possible decomposition procedures in quantum theories and will argue
that they give rise to priority relations that can characterise fundamentality. Hence,

2For a survey of notions of fundamentality in metaphysics and philosophy of physics, see Mor-
ganti (2020a,b).
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2. Fundamentality and Quantum Systems

from the fact that there are different and often incompatible ways of decomposing a
given system into its constituents (fundamental or otherwise), I will conclude that
particle physics does not fix one account of fundamentality.

Given a priority relation, there are, then, two different ways considered in the
literature to define what is fundamental: On the one hand, one can say that x is
fundamental if and only if there is no (other) y that is prior to x—this is sometimes
referred to as the independence conception of fundamentality (e. g. in Tahko (2018)
and Bennett (2017, ch. 5)), but I will instead refer to this as non-decomposability
to avoid confusions with the notion of independence used in physics. On the other
hand, one can take x to be fundamental just in case it is a member of a set (often
called a minimal basis) B, which is such that for every other entity y ̸∈ B, there are
some b ∈ B which are prior to y (and which are the only objects prior to y). How
the two definitions are related is a topic of debate,3 but, again, note that both of
them employ a priority relation.

Applied to particle physics and using the terminology of (de-)compositions,
the “independence” conception of fundamentality corresponds to the claim that
elementary particles are not decomposable into even more fundamental particles in
that they don’t have structure which could be used to divide them up even further.
The notion that elementary particles form a minimal basis of the material world
corresponds to the claim that all of matter is composed of these particles, in other
words, that they feature as the “building blocks of reality.”

Both of these claims are frequently made in the literature; however, in the
following, I will argue that one is misled in thinking that particle physics readily
provides a conceptual account of them. I will examine two procedures that relate
descriptions of quantum systems to compositions of systems that can be thought of
as being prior to the compound system—one based on the direct sum, ‘⊕’, and the
other one applying the tensor product, ‘⊗’—and will show that each can be given a
relevant metaphysical interpretation. In the context of the mathematical framework
of group representations, it will be shown that these notions of fundamentality
disagree on the fundamental constituents of some systems.

Before we can continue, however, we need to clarify some technical concepts.
The basic theoretical framework which underpins particle physics is quantum the-
ory,4 which describes the kinematics and dynamics of (quantum) systems. For our

3See e. g. Leuenberger (2020), who argues that whether the two definitions agree on the entities
they designate as fundamental depends on other metaphysical commitments.

4I shall refer to non-relativistic quantum mechanics and quantum field theory both as quantum
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2. Fundamentality and Quantum Systems

purposes, a quantum system is described by a state space H, which is a complex,
separable Hilbert space, together with an algebra of observables A, standardly5 cho-
sen to consist of a suitable algebraic completion6 of a set of self-adjoint operators
on H—sometimes this will be the full algebra of bounded operators of H, denoted
by B(H). Whereas for the following two sections, the choice of algebra and Hilbert
space are somewhat more independent, we will restrict this in Section 5, and consider
H and A to be given by viewing the system as a representation of the symmetry
group of its degrees of freedom. Additionally, one could introduce dynamics to de-
scribe the evolution of the system in question over time. I shall not include this in
my considerations since if fundamentality cannot be determined even in the static,
non-evolving case, the situation will only become more complicated if the dynamical
behaviour of the system is considered as well.7

Together, these mathematical objects allow one to calculate expectation values
of observables in a given state, which are interpreted to represent the mean outcome
of the experiments associated with those observables, as well as transition proba-
bilities, which specify the likelihood of the system to transition from one state into
another. As a simple example, the Hilbert space H = C2, together with an algebra
A generated by the Pauli-spin-matrices, describe a spin-1

2 system with spin as its
only degree of freedom.8 This models, for example, the spin of an electron or proton,
or an abstract qubit.

Many metaphysical conceptions of what the fundamental entities of the world
might be are compatible with this characterization of a “system”: object ontologies,
for example, can take them to be descriptions of material entities. Alternatively,
there are constructions of Hilbert spaces that allow for interpretations that take
facts or propositions as the fundamental constituents of reality,9 and similarly one

theories and will be more specific if I need to pick either one of them.
5For generalizations, see Roberts (2018).
6Different choices for this completion might be justified—however, nothing in my argument

hinges on this choice.
7One might argue that only through including interactions in the picture one can find that some

systems are non-fundamental: for example, that the hydrogen atom is composed of a nucleus and an
electron can be shown by trying to “kick out” the electron from the bound state. While this might
be true in some cases, it does not pertain to my argument directly, which concerns the ambiguity
in decomposing a system of which one already has a theoretical description that acknowledges the
non-fundamentality of the system. That is, while the question of whether a system is fundamental
might depend on such dynamic considerations, once one recognises the composite structure of a
system, one still runs into the problem of underdetermination of how to decompose the systems.

8Note that in this case, the algebra of observables is the full algebra of (bounded) operators on
C2, that is, A = B(H) ∼= C2×2.

9See e. g. Jauch (1968) for a construction of the formalism starting with a system of propositions.
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3. Tensor Product Decomposition

can adopt other metaphysical views. Motivated partly by considerations about
symmetry groups that we will focus on in Section 5, many take structural realism
as their chosen ontology of quantum physics, like Esfeld and Lam (2011), French
and Ladyman (2003), Lyre (2004), and McKenzie (2020) or propose metaphysical
holism: Esfeld, Lazarovici, et al. (2017). Here, I shall use the term system to refer
to a broad variety of what fundamental entities could be, thereby remaining neutral
on the debate on the correct ontology of quantum theories. For example, regardless
of whether one considers quantum field theories to be about particles or fields, my
considerations apply in both cases, mutatis mutandis, although I will use the term
particles throughout. Again, the reader is welcome to substitute their favourite
ontology of quantum theories.

We are now ready to examine the decomposition procedures available in quan-
tum physics in general, starting with the tensor product in the next section and
continuing with the direct sum in Section 4.

3 Tensor Product Decomposition

The tensor product is introduced in first textbooks on quantum mechanics as the
standard way to model compound systems, it is one of the central notions in the
literature on entanglement,10 and it is widely used in constructions in quantum field
theory as well. I start by reviewing the formal construction and will then look at one
way to justify the tensor product as a metaphysically meaningful priority relation.

3.1 The Tensor Product

The tensor product for a quantum system can be formed for both Hilbert spaces and
algebras of observables. One way to obtain the tensor product H1⊗H2 of two Hilbert
spaces H1,H2 is to consider the Hilbert space which, as a vector space, is spanned
by vectors of the form ei ⊗ fj, where ei denote the basis vectors of H1 and fj denote
the basis vectors of H2. The inner product on the tensor product space is given by
the product of the individual inner products: ⟨u⊗x, v⊗y⟩H1⊗H2 := ⟨u, v⟩H1⟨x, y⟩H2 ,

where u, v ∈ H1 and x, y ∈ H2. For finite-dimensional complex vector spaces Cm

and Cn, their tensor product is isomorphic to the vector space Cmn, so for our
example of H1 = H2 = C2, we would find the tensor product of two spin-1

2 systems
to be C2 ⊗ C2 ∼= C4.

10See for a conceptual overview Earman (2015).
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3.2. Independence

The algebra of observables of this joint system can be constructed as the alge-
braic closure11 of the set of operators {A1 ⊗ I2 : A1 ∈ A1} ∪ {I1 ⊗ A2 : A2 ∈ A2},
where I1 and I2 are the identity maps on H1 and H2, respectively. Conversely, if
one constructs the tensor product algebra A1 ⊗ A2 there are natural embeddings
of the factor algebras into the tensor product given by ι1 : A1 → A, a 7→ a ⊗ 1A2

and similarly for A2, so that the choice above for algebras of observables agrees
with the standard tensor product of the factor algebras. Note also that there is
an isomorphism relating B(H1) ⊗ B(H2) ∼= B(H1 ⊗ H2). Thus, if the algebra of
observables consists of all bounded operators on H1 and H2, respectively, then the
tensor product of the algebras of observables will again be all the bounded operators
of the tensor product space.

Consider again our example of the Hilbert space H = C4 with the algebra of
observables consisting of all bounded operators, i. e. A ∼= C4×4. Then this system
could be viewed as modelling two spin-1

2 systems since C4 ∼= C2 ⊗ C2, and the
corresponding algebras would again be the full algebras of bounded operators on
each C2 subspace.

3.2 Independence

How can one interpret the tensor product decomposition of a given quantum system
into components? One way to arrive at this construction is the requirement that the
subsystems be what I shall simply call independent of each other. There are many
ways to spell out precisely what one means by the independence of subsystems, from
statistical to logical or operational independence. For an overview of such conditions
in the context of quantum theories see for example Hamhalter (1998) and Rédei and
Summers (2010).

The common idea is that subsystems of a compound system should be suitably
decoupled from each other to be identified as proper constituents of the compound
system. Hence, one tries to find clusters of properties (or, in the language of quantum
mechanics: subalgebras of the algebra of observables) such that a measurement
on one cluster does not disturb the results of measurements on another one. The
accounts of independence in the literature differ in spelling out what this requirement
should exactly amount to mathematically and conceptually. I will only mention two
such accounts: the commutativity of observables and the so-called split property.

11In the finite-dimensional case, this just means taking the algebraic closure of the set of op-
erators. In other cases, however, one has to choose a norm in which the set is supposed to be
closed—a complication that can be addressed, but I shall not be concerned with this here.
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3.2. Independence

One of the simplest conditions expressing independence used in the framework of
quantum theories is that the observables for each of the subsystems commute: that
is, for all A1 ∈ A1, A2 ∈ A2, it holds that [A1, A2] = 0, where A1,A2 are the algebras
of observables associated with the respective subsystems, embedded in the algebra of
the compound system. One can arrive at this requirement in multiple ways. Mala-
ment (1996, p. 5, footnote 5) for example shows that two observables commuting
is equivalent to the conditional probabilities, conditioned on the measurement of
the respective other observable, being equal to the non-conditional probabilities. To
illustrate, consider two observables A,B and the probabilities of the values of these
observables being in certain sets a, b ⊆ R, denoted by P (A ∈ a) and P (B ∈ b).
Consider now the probability P (B ∈ b|A ∈ a), i. e. the conditional probability of
the value of the observable B being in set b, given one already measured the system
with respect to observable A, and that value was in a. This can be calculated using
the so-called “Lüders rule”, and Malament shows that P (B ∈ b|A ∈ a) = P (B ∈ b)
is equivalent to the associated operators A and B commuting. That is, if (and only
if) the observables are commuting, the predictions of the theory for outcomes of
measurements of these observables are independent of each other in the sense that
even if one measures A, the resulting probability distribution for B will remain as
if one did not measure A and vice versa.

Unfortunately, the commutativity of the algebras of observables of the compo-
nent system in the compound system is not enough to guarantee that the compound
system is the tensor product of the component systems. One needs stronger condi-
tions on the algebras, and various such requirements are discussed in the literature.
I shall only mention the case of one of the strongest of these conditions12, the split-
property: two von Neumann algebras13 A1,A2, are said to satisfy the split property
just in case there exists a Type I factor F such that A1 ⊂ F ⊂ A′

2, where A′
2

denotes the commutator of A2, that is, all observables in A that commute with
all elements of A2. In the case where both A1 and A2 are Type I factor algebras,
which is the case in non-relativistic quantum mechanics or when we are dealing
with finite-dimensional Hilbert spaces, the split property implies that the smallest

12Discussed in both Summers (2009) and Earman (2015).
13A von Neumann algebra is an algebra of bounded operators on a Hilbert space that is closed in

the so-called weak operator topology (for finite-dimensional Hilbert spaces, any algebra of operators
is a von Neumann algebra). A central result for von Neumann algebras is that each such algebra
is isomorphic to a direct integral (a generalization of the direct sum) of so-called factors, which
are classified into three Types (I-III). Every full B(H) and any subalgebra of B(H) for a finite-
dimensional H is a Type I factor, and in the following, only such algebras are considered. See for
more details on this topic e. g. Haag (1996, Section III.2).
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3.2. Independence

algebra containing both A1 and A2, commonly denoted as A1 ∨ A2 is isomorphic to
the tensor product of the two (in the sense of von Neumann algebras).14 That is,
in this case, the compound system containing only the two component systems is
given by the tensor product.

Hence, in the cases of interest here, if two von Neumann algebras satisfy inde-
pendence in the form of the split property, then the compound algebra will be the
tensor product of the two. This motivates the tensor product as a construction from
the requirement of independence of components in a compound system. Conversely,
if one is given a system and one wants to find its components, then one can look for
those subalgebras, that are independent of each other in that they satisfy the split
property.

Note, that not every decomposition of a Hilbert space into a tensor product
can be given a physical interpretation. Additionally, such a decomposition is not
unique for a system: there could be several different ways how to view a given
Hilbert space as the tensor product of factor spaces. This notion is explored in the
literature on “virtual subsystems” in quantum information theory, see for example
Zanardi (2001).15 However, it should be noted that this is a different claim from
my main argument. Whereas virtual subsystems concern the non-uniqueness of
decompositions once one has chosen a fixed decomposition procedure (namely the
tensor product), I argue here that the tensor product is not the only way to look at
the decomposition of a quantum system in principle.

In sum, considering the fact that the tensor product is often used by physicists
to model the relation of a compound system to its subsystems, and since this can
be understood conceptually as arising from the independence of the component
systems, I take the tensor product to give rise to a priority relation in the sense
of Section 2. This gives rise to a meaningful notion of fundamentality in quantum
physics: a compound system can be broken into its fundamental components by
considering tensor product factors as associated with independent systems, and, if it
cannot be broken down any further it should be considered fundamental. Conversely,
fundamental systems can be composed into compound systems by using the tensor
product construction.

14See for example theorem 4.1 in Summers (2009, p. 8), together with the fact that for Type I
factors the tensor product of von Neumann algebras agrees with the algebraic tensor product used
here.

15That these systems might not be so “virtual” after all is suggested in contexts of quantum
optics, see for example Reck et al. (1994).
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4. Direct Sum Decomposition

4 Direct Sum Decomposition

The other construction, which I claim is suitable to give rise to a metaphysical prior-
ity relation characterizing a notion of fundamentality, emerges in systems featuring
so-called superselection rules. For our purposes,16 these are systems where the al-
gebra of observables is, in a specific way, a proper subset of the full algebra of all
bounded operators on the Hilbert space, i. e. cases in which A ⊊ B(H). In these
circumstances, the Hilbert space will decompose into a direct sum of superselection
sectors, which one can then interpret as components prior to the compound system.

In the following, I will outline the technical construction first and then present
a way to interpret and motivate it. Then, in Section 5, I will give another justifi-
cation using the mathematical framework of group representation theory, which is
motivated forcefully by its use in the Standard Model of particle physics. This will
allow us to get to the most powerful formulation of my argument in Section 6: we
will see that the two decomposition procedures can actually disagree on the very
same systems.

4.1 The Direct Sum

The direct sum of two Hilbert spaces H1 ⊕ H2 = H is given by the Hilbert space
whose basis is the disjoint union of the bases of the summands. That is, if ei are the
basis elements of H1 and fj are the basis elements of H2, then H is spanned by the
elements {e′

i, f
′
j}, where the dash denotes that even if some eq = fl, they are taken

to be distinct elements in the direct sum space. The vectors in the sum vector space
can then be written as x = ∑

i cie
′
i + ∑

j kjf
′
j, although one usually uses the notation

ei ⊕ fj instead of e′
i + f ′

j. The inner product of this space is extended accordingly
as the sum of the inner products of the component spaces. For finite-dimensional
Hilbert spaces Cm,Cn, this means that Cm ⊕ Cn ∼= Cm+n, that is, the dimension
of the direct sum is the sum of the dimensions of the summands. The algebras of
observables of the sum vector space arise naturally as the direct sums of the algebras
of the summand spaces; in the finite-dimensional case, the operators are realised as
block matrices.

It is important to remember that the description of a quantum system is always
given by a Hilbert space and an algebra of observables, together. Consider again the
toy example of H = C4. This space can be viewed as the direct sum C4 ∼= C2 ⊕ C2

16See Earman (2008) for an outline of different ways to define superselection and philosophical
considerations thereof.
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4.2. Superselection and Mixed States

of H1 = H2 = C2. However, even if one considers the two summand spaces Hi to
be equipped with algebras of observables that contain all bounded operators of C2

(which, of course, are just all two-by-two matrices), then the direct sum of those
algebras of observables would still not be the full algebra of four-by-four matrices.
Put differently, if the quantum system is modelled by the Hilbert space H = C4

equipped with an algebra of observables that contains all bounded operators of C4,
then the direct sum construction is not available as a decomposition of quantum
systems. Hence, this decomposition, similar to the case of the tensor product,
is not available in all situations. However, we will see that this decomposition
is always available if one restricts the class of systems to the ones being given by
group representations, which, as Section 5 argues, is a very natural choice in particle
physics.

Note also that the tensor product space C2 ⊗ C2 ∼= C4 formally is the same
vector space as the direct sum of the two spaces, C4 ∼= C2 ⊕ C2. However, the
basis vectors of the direct sum are given by the disjoint union of the summand
bases, i. e. C4 ∼= ⟨e1, e2, f1, f2⟩ whereas, in the tensor product space, the basis
is C4 ∼= ⟨e1 ⊗ f1, e1 ⊗ f2, e2 ⊗ f1, e2 ⊗ f2⟩. Hence, the relationship between the
compound space and the component spaces is entirely different in the two cases.

4.2 Superselection and Mixed States

How can one interpret this construction physically? As mentioned in the introduc-
tion to this section, the situations17 in which this decomposition is available are
those in which superselection occurs. In these cases, the algebra of observables is a
proper subset of all bounded operators of the Hilbert space, missing, in particular,
those operators that would superpose states from different superselection sectors or
transform a state contained in one of the sectors into a state from a different sector.
The sectors are subspaces, and together they exhaust the whole Hilbert space.

If the Hilbert space and algebra of observables arise from the direct sum of two
Hilbert spaces and associated algebras respectively, then it is easy to see that in
general superselection occurs: all observables in this case are of the form A1 ⊕A2 for
A1 ∈ A1, A2 ∈ A2 where A1,A2 are the algebras of observables of the two component

17For the following mathematical characterizations of these notions, we shall restrict ourselves
to basic quantum mechanics, explicitly excluding quantum field theory—the mathematics for the
latter case is considerably more difficult, but the conceptual conclusions for our purposes remain
largely the same. See Earman (2015, Section 2) for an outline of the differences for superselection
rules, and Ruetsche (2004, Section 3) in the case of mixed states. I am also only considering here
what Earman (2015) calls “weak superselection”, ignoring other senses of superselection.
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4.2. Superselection and Mixed States

systems. Since they act separately on the direct sum components of vectors, that is
(A1 ⊕A2)(ψ1 ⊕ψ2) = (A1ψ1) ⊕ (A2ψ2), components from different subspaces cannot
be mixed by such observables. States that are, nevertheless, given by superpositions
from different sectors are examples of what one calls mixed states.18

Systems in mixed states built from states in different sectors suggest an in-
terpretation in terms of being non-fundamental: in a sense, they are “forbidden”
combinations of different component states of a system. Although the interpreta-
tion of mixed states is a topic of philosophical debate, I will follow Ruetsche (2004,
Sect. 3) and outline some that are often brought forward in the contexts that are
relevant to our discussion here.19 Systems that allow for superselection are usually
interpreted as mixtures of component systems and model situations in which either
the exact state of the system is not specified20 or there are multiple systems in an
ensemble, each in a unique state. That is, on the former interpretations, the mix-
ture models the state of a system before a measurement of a property that is not
known to allow for superpositions (such as the charge quantum numbers), but the
exact value of that property is unknown. A mixed state on this account represents
a system before a measurement that could distinguish in which sector that system
is. The latter interpretations take mixed states to model an ensemble of systems,
each in a definite state, with the mixed state describing the whole ensemble. Baker
and Halvorson (2010, p. 103) interpret the direct sum X ⊕ Y of two systems, each
considered to have a determined quantum charge, as modelling “a mixture of possi-
ble charges, so that [the system] may have either charge X or charge Y ; the theory
doesn’t tell us which”. That is, the compound system X ⊕Y is interpreted as being
decomposable into the two more fundamental systems X and Y , and the theory does
not explicitly tell which of the two possibilities is realised. Whatever interpretation
one favours, on all of them the system itself is compound and the components of the
mixture are structures metaphysically prior to and required for the very definition
of the compound system. Thus, one can interpret the compound system as being
decomposable into the constituents given by this procedure.

18Formally, mixed states are defined on the algebra of observables as those states, which can
be written as a non-trivial convex combination of other states—but I shall not get into too deep
technical details here. For our purposes, it suffices to think of mixed states as those arising from
superpositions of states in different superselection sectors. See, again, both Earman (2015) and
Ruetsche (2004) for details.

19For a more detailed review see Ruetsche (2004). We are here only dealing with cases of what
she calls “ordinary quantum mechanics”.

20That is, not specified for whatever reason—mixed states are sometimes used to model situations
in which the specific state is not known, or in which one wants to be ignorant about it.
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One response to this interpretation of the direct sum as a decomposition pro-
cedure of physical systems might be to point out that states in a direct sum can be
mixed states, but they do not need to be: the system could also be in a pure state
contained in one of the superselection sectors, and then there is no interpretation
in terms of ensembles or mixtures. I think this is not relevant to the case brought
forward here on the level of the state space and algebra of observables the system is
still structurally conceived as a mixture. Thus, this description is either inaccurate
(and thus should be improved before assessing the metaphysical implications of it)
or the system at hand has the structure of a compound system.

5 The Standard Model and Group Representa-
tions

In the previous sections, I have introduced two different possible decomposition
procedures in quantum physics: a system might turn out to be the tensor product
of independent subsystems, or it might be a direct sum and represent a mixture of
component systems. In some cases, though, the notions are somehow separate and
apply in different circumstances. For example, if the algebra of observables is the full
algebra of bounded operators, then there cannot be a direct sum decomposition. One
might respond, that in practice it will be clear which one a system is: a compound
of independent subsystems or a mixture of possibilities.

First, note that this is not an objection to my argument: it still holds that quan-
tum physics does not give rise to a unique notion of fundamentality because it does
not feature a unique decomposition procedure. The two accounts of decomposition
that I present here are conceptually vastly different, so it is still interesting to look
at how naturalistic metaphysical conceptions of fundamentality should incorporate
this fact. However, I will show in the following that within the framework of group
representation theory, which is one of the foundations of modern particle physics,
the two notions disagree in a very strong sense: I will discuss how a system can
be decomposed via both the direct sum as well as the tensor product constructions
in the same circumstances, with different constituent systems arising. This, then,
is a clear problem for the hope for a simple and unique priority relation for the
metaphysics of fundamentality arising directly from particle physics.

In this section, we will look at the Standard Model of Particle Physics and see
how the direct sum decomposition arises naturally from the ontology of the the-
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ory: the first two subsections will introduce the mathematical framework of group
representation theory, and subsection 5.3 then covers how so-called irreducible rep-
resentations arise naturally as the fundamental entities of particle physics on the
direct sum decomposition. In Section 6 I will finally show how the two decomposi-
tions disagree and discuss some philosophical consequences of this incompatibility.

5.1 The Standard Model

The Standard Model of particle physics comprises a set of theories that together
predict several different types of elementary particles,21 neatly arranged according to
a few properties such as mass, spin, electric charge and other “generalised charges.”
Each elementary particle is characterised by the values of these properties: the
electron, for example, is a spin-1

2 particle with an electric charge of −1, weak isospin
of −1

2 , weak hypercharge of −1, a mass of about 9.11 × 10−31kg and a colour charge
of 1. Mathematically, these quantum numbers correspond to labels of so-called
irreducible representations of symmetry groups, so the colour charge of the electron
1 is not the natural number 1, but the label of the one-dimensional representation
of the global colour gauge group, and similarly for the other charges.22 It is in this
sense that one can say that the ontology of the Standard Model is determined by
these symmetry groups and their representations.

This account is the basis for a widespread “definition” of elementary particles,
summarised here by Ne’eman and Sternberg:23

Ever since the fundamental paper of Wigner on the irreducible rep-
resentations of the Poincaré group, it has been a (perhaps implicit) defi-
nition in physics that an elementary particle ‘is’ an irreducible represen-
tation of the group, G, of ‘symmetries of nature’.

21The counting depends a bit on the author: Griffiths (2008, p. 50) counts 61 including the
then-to-be-discovered Higgs particle; Thomson (2013, Ch. 1) describes the more usual 12 fermions
and five bosons. The differences are due to whether one considers certain particles as states of one
unified particle or as separate particles proper—an issue that certainly deserves more attention,
but is not in the scope of this paper.

Furthermore, despite using the term “particle” a few times in this section—because it is how
those systems in particle physics are standardly denoted—I do not want to commit to any further
consequences one might attach to this notion. For a recent overview of the discussions around
particles in quantum theories see for example Fraser (2021) and for an overview of arguments
against a particle interpretation in quantum field theory see Kuhlmann (2010, Ch. 8).

22For an alternative account of why the quantum numbers or charges have to be labels of
representations see Baker and Halvorson (2010). However, no part of my argument depends on
the differences.

23Ne‘eman and Sternberg (1991, p. 327), quoted in Roberts (2011, p. 51).
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This account of particles has been widely discussed in the philosophy literature, see
for example Kantorovich (2003) and McKenzie (2014). The paper that Ne’eman and
Sternberg refer to, Wigner (1939), however, does not deal with elementary particles
as such but is focused on a related mathematical problem: the classification of all
unitary representations of the Poincaré24 group. The motivation that Wigner gives
for this endeavour is that unitary representations of the spacetime symmetry group
can, to a certain extent, replace the equations of motion for quantum systems that
are placed in such a relativistic spacetime.25 Hence, he argues, by enumerating
all possible unitary representations of the spacetime symmetry group, one gets a
classification of all equations of motion, i. e. all possible dynamics in relativistic
spacetime. Wigner proves in the paper that in order to find all possible unitary
representations of the Poincaré group, it suffices to find the irreducible unitary
representations (or short: irreps), as they serve as the building blocks for all other
representations. Then, he shows that the irreducible representations of the Poincaré
group can be classified by only two parameters: m ∈ R, σ ∈ 1

2Z, which thus can be
used as labels for the representations and are physically interpreted as the mass and
spin of the particle described by the representation.26

This is a short characterization of what is often referred to as “Wigner’s concep-
tion of particles”.27 The other parameters of elementary particles in the Standard
Model, like charge and colour-charge, arise similarly from other symmetry groups,
called internal symmetries. In the following, I shall describe in more detail how
one extends Wigner’s account to the other properties of elementary particles and
will give a brief account of why representations in general, and irreps in particu-
lar can characterise those physical systems. We will see that quantum systems in
particle physics can be modelled by group representations, which provide both the
Hilbert space as well as the algebra of observables—instead of specifying H and A
separately.

24In the paper, Wigner refers to what one nowadays calls the “Poincaré group” as the “inhomo-
geneous Lorentz group,” whereas the “homogeneous” Lorentz group is what is known today simply
as the Lorentz group.

25The short argument is that the Poincaré group includes the time-translations of a system
which, of course, need to agree with the dynamics of the system and vice versa. I shall not deal
with the details of this here but refer to Roberts (2022, Ch. 4).

26Note, that not all possible irreps are physically meaningful, cf. Sternberg (1995, p. 147f).
27For a more detailed overview see e. g. Kuhlmann (2010, pp. 87ff.).
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5.2 Symmetries and Representations

Symmetry groups are used in mathematics to describe the structure of objects by col-
lecting transformations that leave that structure invariant. The above-mentioned
Poincaré group P is the symmetry group of Minkowski spacetime, which is the
mathematical representation of spacetime according to special relativity, that is,
R4 equipped with the Lorentz metric, often written as R1,3. P contains the trans-
formations of R1,3 that leave the Lorentz distance between two spacetime points
invariant: it comprises translations in space and time, rotations in space, parity
and time reversal, and so-called Lorentz boosts, which describe the transition of
a reference frame at rest to one moving at a constant speed. Similarly, the group
of unitary operators on a Hilbert space U(H) contains the operators that preserve
the Hilbert space structure (that is, the linear vector space structure and the inner
product).28 Hence, if H is used to model a quantum system, U(H) can be viewed
as the symmetry group of the quantum system itself.

Consider now a quantum system with spatio-temporal degrees of freedom, that
is, a position in spacetime. Those degrees of freedom cannot be arbitrarily imple-
mented in the state space because they must respect the structure of spacetime itself.
That is, one expects the symmetries of spacetime to be reflected in how the spatio-
temporal degrees of freedom are implemented in the Hilbert space representation of
the quantum system. This leads to the demand that the symmetries of spacetime
shall not alter the basic structure of the quantum system under consideration. In
other words, one expects the symmetries of spacetime to correspond to symmetries
of the quantum system.

Mathematically, this connection between spacetime and quantum symmetries
is expressed by way of unitary group representations:29 A group representation is a
homomorphism from a group G to the operators on a vector space, and if this vector
space is a Hilbert space and all operators in the image of the map are unitary, it
is called a unitary representation: π : G → U(H). That is, π realises the abstract
symmetry transformations in G as concrete unitary operators on H.

28In fact, also anti-unitary operators preserve the full Hilbert space structure. However, only
the unitary operators form a group, and if one uses projective representations (see below), the
distinction becomes void. For a more thorough explanation of why one disregards anti-unitaries
see e. g. Roberts (2022, Section 3.4).

29Actually, the relevant representations are not the unitary ones but the projective represen-
tations. This is a technical subtlety that does not bear any conceptual significance but would
complicate this treatment significantly. As is customary in philosophical treatments of this mat-
ter, I thus stick to unitary representations.
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Requiring H to carry a representation of the Poincaré group thus gives one the
means to say formally that a system has spatio-temporal degrees of freedom, that
is, a position in spacetime. Conversely, if one has a quantum system whose Hilbert
space carries a representation of the Poincaré group, then some of the symmetries
of this quantum system can be readily interpreted as being implementations of the
spacetime symmetries, connected to how the spatio-temporal degrees of freedom
of the system are implemented in H.30 Thus, we arrive at what Roberts (2022,
Chapter 2) calls the representation view: a quantum system has spatio-temporal
degrees of freedom if and only if its Hilbert space carries unitary representations of
the Poincaré group.31

One can extend this to internal degrees of freedom (or quantum charges):32 the
structure of the spaces in which they take their values should be preserved in the
description of a quantum system. For example, colour charges take values in a space
whose structure group is SU(3), so one expects a representation of SU(3) on the
Hilbert space of any quantum system that is said to have colour charges. Just as in
the case of spatio-temporal degrees of freedom, one thus says that a quantum system
has a given degree of freedom if and only if its Hilbert space carries a representation
of the symmetry group of the space in which this degree of freedom takes its values.
One might call this the general representation view.

Carrying a unitary representation has two main consequences for the description
of a quantum system. On the one hand, it implements the assumption that a
system has certain degrees of freedom, as just discussed. On the other hand, it fixes
a property that remains invariant under the symmetry transformations, namely
the possible representations the Hilbert space carries—a property, which, obviously,
cannot be changed by application of a symmetry transformation on that space.33

Hence, if one can label all the unitary representations of a group, then one can label
the various quantum systems having those degrees of freedom and use these labels
as the quantum numbers describing the structure of a system—as we have already
seen in the case of the Poincaré group, where the labels are identified as mass and

30Note, that this argument can also be run in the converse direction: by systematizing the
invariance behaviour of physical systems we can infer the symmetries of spacetime, see also Roberts
(2022, Ch. 5).

31Or the Galilean group, for a non-relativistic spacetime setting; see Castellani (1998) and Lévy-
Leblond (1963).

32Cf. Roberts (2022, p. 179).
33Technically, these invariants can be identified with the eigenvalues of so-called Casimir opera-

tors that commute with all other symmetries in a given representation—and in the case of irreps
below, will be multiples of the identity.
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spin; in the case of internal symmetry groups, one gets the other quantum charges,
like colour charge. This shows how the quantum numbers are not ordinary numbers
but labels of group representations.34

Hence, by specifying the quantum numbers of a system, one determines a Hilbert
space H, together with a set of unitaries π(G) ⊆ U(H) on it. However, a group
representation can provide more structure: one can also construct a corresponding
algebra of observables from the group representation structure. To be more precise,
one can look at the group’s Lie algebra,35 whose generators will give rise to self-
adjoint operators via the lie algebra representation,36 which in turn can be used
to generate an algebra of observables. This way, the available observables derive
directly from the global structure group defining the system’s available degrees of
freedom. Hence, I take the general representation view to imply that the labels of
a symmetry group fully specify the structure of a quantum system: the available
states (the Hilbert space) as well as the algebra of observables, which thus consists
of all and only of combinations of observables that are determined by the assumed
degrees of freedom. That is, the choice of the algebra of observables is restricted
if one considers the description of the quantum system to arise from the group
representation of its degrees of freedoms’ symmetry groups. In the following, we
will thus view a quantum system as a group representation, and not just as the
more arbitrary choice of a Hilbert space H and algebra of observables A.

In sum, the ontology of the Standard Model is captured by the relevant sym-
metry groups. The Poincaré group describes spatio-temporal degrees of freedom,
giving rise to the quantum charges of mass and spin; the internal symmetry groups
U(1) and SU(2) together describe the electroweak degrees of freedom and give rise
to weak isospin and weak hypercharge; and the internal symmetry group SU(3) de-
scribes colour-related degrees of freedom characterizing the colour quantum number.
It is in this way that the “symmetry group of nature” provides a “definition” of the

34Note the connection between the charge and the degrees of freedom: saying that the electron
has colour charge 1 expresses that the electron is in the 1-representation of SU(3), from which it
follows that it does not have any colour-related degrees of freedom; whereas a quark, which is in
the 3-representation of SU(3), does indeed have colour degrees of freedom.

35The Lie algebra of a Lie group is an algebra associated with the group, representing infinitesimal
group transformations near the identity. See Fuchs and Schweigert (1997, Ch. 4) for essential
definitions.

36A Lie algebra representation is, similarly to a group representation, a structure-preserving map
into the operators of a Hilbert space. There is a one-to-one correspondence between unitary group
representations and Lie algebra representations for so-called simply connected groups. SU(n) are
all simply connected, for the Poincaré group and U(1) there are separate arguments as to why one
gets operators representing the measurable properties associated with the degrees of freedom of a
quantum system from the symmetry transformations.
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different types of elementary particles.

5.3 Irreducible Representations as Fundamental Systems

Note that one can define the direct sum of group representations analogously to
the case of Hilbert spaces and algebras of observables: given π1 : G → U(H1) and
π2 : G → U(H2), their direct sum is a new representation, Π: G → U(H1 ⊕ H2)
where g 7→ π1(g) ⊕ π2(g). Note that in general U(H1) ⊕ U(H2) ⊊ U(H1 ⊕ H2). We
will define the tensor product of group representations similarly in Section 6.

Then, a unitary37 representation π : G → U(H) is called irreducible (or, as
already mentioned, an irrep) just in case there are no proper non-trivial subspaces
of H that are invariant under the operators in π(G), that is, if there are no subspaces
that themselves would furnish a representation of G. Irreps have a significant role
within the class of all unitary representations of a given group: as mentioned above,
Wigner showed that the irreps of P function as basic building blocks for all other
unitary representations of P . To be more precise, he found that any representation of
the Poincaré group is isomorphic to a direct sum of irreps. The Peter-Weyl theorem38

proves the same for another important class of groups, the so-called compact Lie
groups—all the internal symmetry groups that come up in particle physics are of this
type. That is, all relevant symmetry groups in particle physics have the property
that any of their unitary representations can be decomposed into a direct sum of
irreps.

Hence, irreps can be considered fundamental amongst the representations of a
given group according to one of the metaphysician’s definitions of fundamentality, as
discussed in Section 2: they are the basic building blocks of all other representations
of that group, with respect to a priority relation given by the composition based on
the direct sum of group representations. It is also easy to see that irreps can further
be considered fundamental according to the second account of fundamentality, in
that they cannot be the direct sums of other representations and hence are not
decomposable into more fundamental particles.

If one combines this formal sense of fundamentality with the general represen-
tation view set out in the subsection before, one gets the following: every kind of
quantum system in particle physics is given by a group representation (irreducible
or reducible). By the above-mentioned theorems by Wigner and Peter-Weyl, any

37The definition holds for any group representations. However, we restrict our attention to
unitary ones.

38See e. g. Sternberg (1995, p. 179).
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such system is decomposable into a direct sum of irreps. Hence, every system in
particle physics is either irreducible or decomposable into a direct sum of irreps.
On the representation view, those components correspond to component systems
carrying the specified degrees of freedom. Overall, one can say that the decomposi-
tion into a direct sum supplies one way of a decomposition of physical systems into
their fundamental constituents. Following “Wigner’s definition”, those fundamental
components are the elementary particles.

Note that the resulting notion of decomposition is relative to the choice of
the symmetry group G. This might be viewed as an advantage in that it allows
for a bespoke notion of fundamentality depending on what properties of systems
one is interested in—for example, one can capture the idea that something is not
decomposable with respect to specific properties, while still being decomposable
with respect to a larger set of properties. On the other hand, one could see this as
a disadvantage because it does not guarantee, strictly speaking, an ultimate notion
of fundamentality—one can always introduce a larger symmetry group, which will
lead to a new set of irreps.

However, I view this more as an expression of the fact that physicists might
in the future discover that systems, which were previously considered fundamental,
turn out to actually be compound systems. This was the case with atoms, which were
once thought to be what their name suggests—indivisible—but are now considered
to be compound systems composed of various “elementary” particles. With respect
to a “full” symmetry group, describing—in the words of Ne’eman and Sternberg—all
“symmetries of nature”, the notion of fundamentality would be ultimate in the sense
of including all possible properties that can be used to discern parts of systems. I
do not want to take a position here on whether such a full group is discoverable. For
our purposes, it is enough to conclude that the theorems by Peter-Weyl and Wigner
provide a decomposition procedure given by the direct sum of irreps, that explains
the particle ontology of the Standard Model and is distinct from the decomposition
procedure arising from the tensor product construction.

Overall, it was shown in this section that, based on the representation view, a
quantum system in particle physics can be described by a unitary representation of
the structure groups of the degrees of freedom that the system is assumed to have,
which in turn specifies the state space and algebra of observables of the system.
This allows a decomposition of the system into a direct sum of irreps, which thus
can be interpreted as the fundamental components of that system since the irreps
cannot be decomposed any further on the direct sum decomposition account.
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6 Incompatible Decompositions

In the previous section, I showed how the direct sum of group representations arises
naturally in the context of the Standard Model of particle physics. Now, we shall
also apply the tensor product construction to group representations and then see
how these two decomposition procedures can disagree. I start by defining the tensor
product for group representations and then look at the example of the addition of
angular momenta from elementary quantum mechanics. I will, however, present it
slightly differently from how it is usually done in textbooks to highlight the dis-
crepancy between the two possible decompositions. I will conclude the section with
some philosophical considerations which follow from what has been discussed so far.

Similar to the direct sum of group representations, the tensor product of group
representations π1,2 : G → B(H1,2) is given by the representation Π: G → B(H1) ⊗
B(H2) such that Π(g) = π1(g) ⊗ π2(g). This construction agrees with the ordinary
tensor product of Hilbert spaces. However, the algebra of observables obtained
from the tensor product of the group representations is distinct from the tensor
product of the individual algebras of observables. In general, it won’t be the case
that if πi(G) = B(Hi) that the algebra of the compound system will again be
the all bounded operators, i. e. Π(G) ̸= B(H). This is a crucial difference to the
simple tensor product algebras of observables as it will lead to situations where both
decompositions discussed above are available on the same system; this will happen
if the tensor product is a reducible representation, which generally is the case.

I will again refer to the familiar example of the system that is described by the
Hilbert space C4. Assume that it carries a reducible representation of SU(2), the
group characterising the structure of quantum systems with angular momentum.39

It now turns out that there are two ways this representation could be broken down
into irreps: either into the tensor product of two spin-1

2 representations (both being
C2 with the full algebra of operators as observables) or into the direct sum of a
spin-0 and a spin-1 system. That is, if one is handed a quantum system whose
Hilbert space is C4 and whose algebra of observables has a specific form, together
with the information that this quantum system has a SU(2)-structured degree of
freedom, one has two possible ways to distinguish constituents of this system: on
the one hand as two independent spin-1

2 subsystems, and on the other hand as the
mixture of a spin-0 with a spin-1 system. Neither the formalism nor any observable

39This information suffices to fix both the Hilbert space as well as the algebra of observables
since there is only one reducible representation of SU(2) on C4.
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in the algebra can tell which one is the “correct” decomposition.
The connection to the addition of angular momenta40 becomes apparent when

considering the total angular momentum of an electron in an atom, which is de-
scribed as a degree of freedom with structure group SU(2). It has two contributions:
the spin of the electron itself and the orbital angular momentum arising from it being
bound to the nucleus of the atom. These are two independent degrees of freedom,
both described by SU(2). Hence, modelling the system as the tensor product of two
spin-1

2 system is appropriate. However, the total angular momentum of the system
is not fully determined: it can either be that of a spin-0 or that of a spin-1 system,
depending on whether the two angular momentum vectors are aligned or not. That
is, from this point of view, one is dealing with a mixed system, the constituents of
which are a spin-0 and a spin-1 system. Hence, this system, depending on which
fundamentality relation one takes, is either composed of two spin-1

2 systems or a
spin-0 and a spin-1 system. Physical considerations alone cannot straightforwardly
give a unique answer to the question of what the fundamental constituents of this
system are.

That the two decompositions will disagree in other cases too is easy to see,
at least for systems described by finite-dimensional Hilbert spaces: the dimension
of a tensor product space equals the product of the dimensions of the constituent
spaces, whereas the dimension of the direct sum equals the sum of the dimensions
of the summands. For some structure groups there even exist formulas to calculate
the different decompositions, commonly known as the Clebsch-Gordan formulas:41

consider again the case of SU(2). We already saw that the irreps can be indexed by
half-integer numbers, so formally one can write 1

2 to refer to the spin-1
2 representa-

tion. Exploiting the fact that one thus can use half-integer numbers to refer to the
irreps, one can formally write the Clebsch-Gordan Formula in the case of SU(2) for
X, Y ∈ 1

2N:42

X ⊗ Y ∼=
|X+Y |⊕

Z=|X−Y |
Z,

where Z increases in steps of 1. That is, the tensor product of irreps X and Y

is isomorphic in the sense of group representations to the direct sum of irreps Z,
where Z ranges from |X−Y | to |X+Y | and where X, Y, Z are now taken to be just

40See, e. g. Griffiths (1994, Section 4.4.3, pp. 165ff)
41As seen before, such a decomposition is possible for any compact Lie group. Explicit formulas

and calculations exist for several special cases relevant to particle physics, most notably SU(n).
42See for this case Baker and Halvorson (2010, p. 103) or more generally Larkoski (2019, Section

3.3).
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ordinary numbers from the half-integers. For our example of two spin-1
2 systems,

or, equivalently, a spin-0 and a spin-1 system, the formula reads 1
2 ⊗ 1

2
∼= 0 ⊕ 1. All

representations involved here—X, Y and all of the Z—are irreducible.
It is important to note that the above analysis does not merely say that the

mathematical formalism is ambiguous as to how the physical system “actually”
breaks down into subsystems, and a proper physical inspection will show whether
one is dealing with a system that is either a mixture of its fundamental constituents
or consists of independent fundamental components. Note, that one does not have
any other means to inspect the system other than via measurements modelled by
the observables in the algebra of observables. So assuming that the mathematical
framework is both correct and complete, we can follow that both decompositions
are equally possible.

One response to this could be to conclude that these considerations merely show
that the same mathematical framework can be used to describe different physical
situations, like both sound waves and electromagnetic waves can be described by
the same wave equations. In the same way, one might argue, the two decomposition
procedures above describe two different physical situations that just happen to be
described by the same Hilbert space and algebra of observables. Nevertheless, the
situation in particle physics is different from other cases: in the latter situation,
there are other physical and metaphysical ways to differentiate the systems—for
example, by observing that the waves propagate in different materials. In the case
of particle physics, however, the group representation (including the Hilbert space
and the algebra of observables) is supposed to be a complete description of the
physical system. Hence, if one takes the theory as it is, there is no additional
information about the systems to be gained that could distinguish the cases.

I wish to close with some remarks on how one could react to this argument. The
minimal conclusion to take away, indeed, is that fundamentality in fundamental
physics is not as easy as one might think when just pointing to particle physics
as an explication of how the world “is made up of fundamental building blocks.”
My argument has shown that conventional choices are involved in composing and
decomposing systems in quantum theories. As mentioned above, this is a worry
orthogonal to the already existing choices one faces if one has settled on the tensor
product as the preferred decomposition procedure, as is discussed in the literature
on virtual subsystems.43

In this sense, I agree with critics of the slogan that one has to simply “read off
43See, again, Zanardi (2001).
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one’s metaphysics from one’s physics,”44 since it is clear that a bare mathematical
formalism does not uniquely determine the metaphysics. However, the nature of
the argument also shows that such metaphysical projects need to be based on what
physics tells us, agreeing with pushes for a “naturalised” ontology like Ladyman and
Ross (2007).

7 Conclusion

I have argued that contrary to popular opinion, particle physics does not provide
an account of “the fundamental” because one cannot uniquely determine the funda-
mental constituents of the systems described by particle physics. This was shown by
discussing two possible ways of decomposing a quantum system: the direct sum and
the tensor product. In the context of group representations, a widely used framework
within particle physics, the contrast is especially stark: the same system is decom-
posable into different “fundamental” constituents, depending on the decomposition
procedure one chooses. This shows that there is an element of convention and choice
necessary to determine the basic building blocks of a concrete object in the material
world. This goes against the idea that particle physics simply presents us with an
account of the fundamental and shows another way of the underdetermination of
metaphysics by physics.
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