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Abstract

We claim that scientists working with deep learning (DL) models exhibit a
form of pragmatic understanding that is not reducible to or dependent on expla-
nation. This pragmatic understanding comprises a set of learned methodolog-
ical principles that underlie DL model design-choices and secure their reliabil-
ity. We illustrate this action-oriented pragmatic understanding with a case study
of AlphaFold2, highlighting the interplay between background knowledge of a
problem and methodological choices involving techniques for constraining how
a model learns from data. Building successful models requires pragmatic under-
standing to apply modelling strategies that encourage the model to learn data
patterns that will facilitate reliable generalisation.
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1 Introduction

The predictive capabilities of contemporary deep learning (DL) models have gener-
ated widespread optimism at the prospect of using machine learning to enhance the
march of scientific progress in a diverse range of fields. Yet, DL models are opaque in
ways that make them difficult to understand (Creel, 2020; Lipton, 2018; Zerilli, 2022).
Their superior predictive accuracy thus appears to come at the cost of central aims
of scientific inquiry like explanation and understanding. This raises a concern that,
without clear explanations or understanding of how a model behaves, we lack rigor-
ous justification for relying on DL models in our epistemic activities. Perhaps, then,
all scientific DL is little more than a sophisticated kludge, “a piece of program or ma-
chinery which works up to a point but is very complex, unprincipled in its design,
ill-understood, hard to prove complete or sound and therefore having unknown limi-
tations, and hard to maintain or extend” (Clark, 1987: 278).



Recent work by philosophers of science aims to address this challenge by examin-
ing how scientists can gain understanding by using DL models (see e.g. Sullivan, 2022;
Tamir and Shech, 2023). This work tends to focus on how scientists can use DL mod-
els to furnish explanations by establishing an empirical link between model and target
phenomena. Such explanations depend on whether scientific evidence supports the
connection between a given phenomenon and relationships between features repre-
sented by data that a DL model exploits to make its predictions.

Our aim in this paper is to move beyond the narrow focus on explainability in dis-
cussions of DL models. On the view we develop, scientists working with DL models
exhibit a form of pragmatic understanding that is not reducible to or dependent on
explanation. We argue that such pragmatic understanding comprises a set of method-
ological principles that underlie DL model design-choices and secure their reliability.
While modellers themselves do not always make these methodological principles ex-
plicit, we argue that DL modelling practices reveal clear epistemic strategies that facil-
itate their success. We illustrate these strategies with a case study of AlphaFold2, a DL
model that predicts the three-dimensional structure of proteins from their amino acid
sequences. AlphaFold2 highlights the ways that various design choices depend on
an iterative interplay between domain-specific background knowledge of a scientific
problem and particular methodological choices involving general-purpose techniques
for imposing constraints on how a model learns from data. Building successful mod-
els requires pragmatic understanding, in our sense, to apply modelling strategies and
techniques that encourage the model to learn data patterns that will facilitate gener-
alisation. This pragmatic understanding provides scientists with principled epistemic
grounds for their modelling choices.

2 Pragmatic understanding: strategy, design, and method

While discussions of DL models tend to focus on explainability and explanatory un-
derstanding, we want to explore the notion of pragmatic understanding – or under-
standing how to do something. De Regt and Dieks (2005) introduced pragmatic un-
derstanding in terms of the effective use of intelligible theories to achieve explana-
tory understanding. But this notion has also been deployed to characterise a non-
explanatory notion of understanding that arises in contexts wherein opacity precludes
intelligibility and explanation. Lenhard (2006, 2009), for instance, develops an account
of pragmatic understanding involved in computer simulation modelling that does not
relate to the use of intelligible theories or to the aim of explanation. This is because the
kinds of simulations Lenhard studies are opaque, cobbled together by a complex ar-
ray of instrumental modelling choices. Instead, Lenhard argues simulation modellers
achieve a pragmatic form of use-based acquaintance with simulation models that al-
lows them to develop design-rules, make predictions, and build practical devices
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(Lenhard, 2006: 608-609). On this view, pragmatic understanding is action-oriented
and can develop “even when the dynamics [of a system] have not been grasped in
theoretical terms” (Lenhard, 2009: 171).

By developing design-rules that allow scientists to build devices that help them
achieve their epistemic and practical ends, scientists exhibit a form of understanding
that is not necessarily theoretical or explanatory. By building and using these models,
scientists can develop their learned familiarity with them into epistemic strategies
(Knuuttila and Merz, 2009: 158) for dealing practically with systems of interest. Such
epistemic strategies underpin the development of procedures and practices that help
scientists achieve their aims. In a slogan, scientists pragmatically understand things
because they know how to build them (Dretske, 1994). When dealing with complex,
black-box systems for which suitable theories or explanations are not forthcoming, we
may be better off trying to develop the kinds of design-rules and epistemic strategies
that are characteristic of pragmatic understanding.

We suggest that this action-oriented form of pragmatic understanding should be
thought of in terms of method-learning. Method-learning captures a particular form of
pragmatic understanding because it concerns the ways in which scientists learn how
to achieve their aims effectively and successfully, structuring their activities in rela-
tion to their ends. There is understanding in how the scientists do things successfully,
by developing design-rules and epistemic strategies based on their methodically per-
formed activities. We thus think of a method as capturing a pattern exhibited in an
activity that accounts for the general success of that activity. It provides a strategy or
procedure that, if followed, helps scientists tend towards success in achieving their
aims. A method is, in this sense, “a course of action, or a way of reasoning, in view of
an aim” (Cartwright et al., 2023: 18).

By developing fruitful methods, scientists can improve their chances of succeeding
in their performance of some activity or improve their capacity to reason towards
some end. In this way, methods provide ways of learning about and interacting
with a system of interest that are not necessarily tied to theory or explanation. They
thereby provide grounds for a form of action-oriented pragmatic understanding in
cases where a system may be resistant to understanding through explanation. Cru-
cially, such methods may not always be transparent to the scientists working with
them. Rather, they are practically articulated in the patterns of successful performance
of activities, structuring those performances so that they tend towards success.

Methods are practically articulated in our successful epistemic activities, even if
we are not fully aware that we are relying on those methods. The success of these
epistemic activities and subsequent method-learning can provide us with principled
reasons for relying on DL models even in the absence of explanation or theory. We
return to this idea in more detail in Section 4. To first demonstrate our case for this
form of pragmatic understanding, we look at the case of AlphaFold2, before returning
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to some broader lessons for the epistemology of science.

3 AlphaFold2: a case study of design-rules for deep learning

We characterise deep learning in science as an instrumental practice that aims to
achieve coherence through the practical articulation of stable design-rules for building
reliable models. Design-rules for deep learning take shape in the identification of spe-
cific inductive biases associated with robust performance on certain kinds of learning
problems. An inductive bias refers to any preference or constraint over the range of
functions a model can learn. Inductive biases ensure that a model tends to learn some
patterns rather than others. Pragmatic understanding of inductive biases is necessary
for building reliable models. Given a finite amount of training data, the only way to
muster robust generalisation over new, unseen inputs is to encode a set of preferences
and assumptions about the solution we are after (cf. Wolpert, 1996).

There are a range of different ways to encode inductive biases into a DL model. A
handful of these methods include architectural constraints, explicit regularisation, im-
plicit regularisation associated with different optimization methods, self-supervised
pre-training, or choices of prior distributions in a Bayesian network. The relation-
ship between model design choices and inductive biases is among the most central
concerns of contemporary machine learning research. The empirical and theoretical
investigation of inductive biases thus marks a core facet of the ongoing refinement of
design-rules for building effective DL models.

In what follows, we use AlphaFold2 as a case study highlighting the practical artic-
ulation of instrumental design-rules. AlphaFold2 is a DL model designed by a group
of AI researchers at Google DeepMind that accurately predicts the three-dimensional
(3D) structure of folded proteins from their amino acid sequence (Jumper et al., 2021).
Proteins start out as linear chains of amino acids called polypeptides. These chains
fold spontaneously into complex 3D shapes, known as tertiary structures, which de-
termine protein function. The folding process involves local interactions forming
secondary structures, such as alpha-helices and beta-sheets along with variable side
chains, before finally settling into a stable tertiary structure. Despite vast knowledge
of amino acid sequences, experimental mapping of protein structures remains lim-
ited, particularly in determining tertiary structures essential for understanding pro-
tein function and designing interventions.

AlphaFold2’s startling success on one of biology’s most intractable problems thus
catapulted the model into headlines following its decisive victory at CASP14. Here we
discuss several design decisions that are key to AlphaFold2’s success, including the
adoption of a modified self-attention mechanism, the choice of attention function, and
the implementation of 3D-equivariant update operations. These choices all depend
on relating background knowledge of a target system to general-purpose inductive
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biases that place desirable constraints on learning.

3.1 Self-attention for learning co-evolutionary correlations

One critical factor in AlphaFold2’s success lies in the distinctive strengths of the trans-
former architecture. First introduced by Vaswani et al. (2017), transformer-based mod-
els are responsible for the most dramatic advances in contemporary natural language
processing and generative AI. These models are built around a mechanism known as
self-attention. In short, the transformer uses self-attention to learn what parts of an
input are likely to be most important for predicting the next word in a sentence.

Self-attention first arose as a technical solution to the challenge of learning to track
long-range semantic and syntactic dependencies found in a body of text. Self-attention
allows the network to evaluate how each word in a sequence of text informs the mean-
ing of every other word in the sequence. Transformers do this using three types of
activation patterns called keys, queries, and values. Queries represent the term whose
meaning we want to consider in view of the context. Keys provide information about
all the other words in the input that could influence the meaning of the query term.
Values represent how the meaning of the query term would change based on each
key. These keys, queries, and values are organised into matrices called Q, K, and V,
and the network then computes an attention function over these matrices. Each output
sequence is a linear combination of the values weighted by an attention matrix com-
puted from the attention function. This attention matrix helps weigh the importance
of different words in the sequence when understanding the meaning of a particular
word.

In a transformer, there is an adjustable parameter associated with each query-key-
value triplet in an attention layer. This allows the model to learn independently which
query-key interactions between words tend to have the most significant impact on the
meaning of an input sequence irrespective of their location in that sequence. Before
training, the model treats all potential interactions as equally relevant. Transform-
ers thus differ from other popular architectures like convolutional neural networks
that are biassed towards local interactions in a fixed region of the input space. In
effect, transformers excel at learning to track long-range dependencies in sequence
data because they do not incorporate prior inductive biases towards interactions of a
particular distance or scale.

AlphaFold2 uses self-attention to take advantage of the biological principles un-
derlying a common bioinformatics technique known as multiple sequence alignment
(MSA). MSA helps detect correlations in protein sequences by exploiting the evolu-
tionary conservation of structure over sequence mutations. Picture a scenario where
a folded protein contains a positively charged lysine and a negatively charged gluta-
mate close together. The Coulombic force between these amino acids contributes to
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the stability of the protein’s overall structure. If the lysine mutates to become neg-
atively charged, it puts pressure on the glutamate to also mutate into a positively
charged state to preserve stability. MSA assembles a collection of related sequences to
identify these sorts of correlations. The basic idea is that correlations between amino
acids that are far apart along the polypeptide chain reveal possible contact points on
the folded protein. These contact points are crucial predictors of the 3D protein struc-
ture. Long-range sequence dependencies are thus instrumental in predicting tertiary
structures. Hence, modellers could leverage self-attention as an effective strategy for
extracting predictive patterns from polypeptide chains.

AlphaFold2’s main trunk, which Jumper et al. (2021) calls the Evoformer, consists of
two modified transformers running in parallel that operate over both an MSA gener-
ated from an input sequence (hereafter, the MSA transformer) and a pairwise matrix
of intra-sequence residue correlations (hereafter, the pair transformer). Both trans-
formers share information about learned dependencies in their respective inputs by
including additional update steps that create pathways for information to flow be-
tween them.

The motivation for this architectural choice lies in pragmatic understanding of self-
attention as a generic mechanism for learning long-range sequential dependencies.
The DeepMind team used their background knowledge of prediction methods in bioin-
formatics to identify long-range sequence dependencies as important predictive mark-
ers of protein structure, which enabled them to make an informed decision about the
right architectural constraints to use.

3.2 Triangle attention as a geometric constraint

As mentioned above, AlphaFold2’s pair transformer computes self-attention on a pair-
wise matrix of residues along an input sequence. The idea is to produce a summary
description of the protein structure in terms of pairwise distances between individual
amino acids. This pairwise representation then feeds into the structure module, which
predicts the final 3D tertiary structure. The pair transformer involves a distinctive up-
date pattern that enforces crucial constraints on how AlphaFold2 learns this summary
description.

The pair transformer performs a modified version of axial attention. Transformer-
based architectures require that modellers specify an attention function. Vaswani et al.
(2017: 3-4), for instance, used scaled dot-product attention.Dot-product attention is
optimised for relatively small, one-dimensional inputs like chunks of text. But its
memory use explodes quadratically with the size of input. This computational bur-
den creates significant practical difficulties when scaling up the workable input size.
Multidimensional inputs like images only make this problem worse.

To work around these practical constraints, Ho et al. (2019) developed “axial atten-
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tion” to deal with high-dimensional tensor data such as images. Axial attention works
by computing self-attention along a single axis of an input tensor. So, if the input is
a two-dimensional array, axial attention computes self-attention over a single column
or row along that array. Stacking these axial attention layers allows a transformer
to compute self-attention over the entire input while significantly reducing computa-
tional complexity. Axial attention thus carries an affinity for grid-like data structures,
making it a natural choice for computing self-attention over stacks of amino acid se-
quences in an MSA.

Jumper et al. (2021) arranged the axial attention updates in the pair transformer
in terms of triangle shaped graphs involving three different nodes, which they aptly
name “triangle attention” (Jumper et al., 2021: 586). For a given triplet of residues
ijk, this operation treats each residue as a node in a graph and the distance between
them as the corresponding edge. Each graph is arranged like a triangle with residues
i, j, and k as the vertices. Triangle attention also adds an extra logit bias term to
the axial attention function, which serves to compensate for the ‘missing’ third edge
of the triangle. So, when i is the query node, triangle attention updates the edge ij
with the values given by all other possible edges ikn (where kn is an arbitrary residue
in the sequence) that share the same starting node modulated by the bias term bjk
representing the third edge of the triangle (see Suppl. Material for Jumper et al., 2021:
18).

There’s a simple yet ingenious idea underlying this seemingly quite complex ver-
sion of self-attention. The ‘third edge’ bias term is a clever way of enforcing a much
needed geometric constraint on learning of pairwise residue distances. For a pairwise
summary description of amino acid residues to be representable as a single, coher-
ent 3D structure, those pairwise distances need to consistently obey basic principles
of Euclidean geometry. In effect, triangle attention acts an inductive bias that forces
pairwise distances learned by the pair transformer to obey the triangle inequality on
distances, which says that the sum of any two sides of a triangle is greater than or
equal to the length of the third side.

This design choice depended on the modellers’ ability to identify a necessary con-
straint on learning given their epistemic aim and to devise strategies for implementing
that constraint in a working model. Triangle attention thus illustrates how moddellers
exhibit pragmatic understanding.

3.3 3D-Equivariant Updates for Learning Structure

Alphafold2 implements end-to-end structure prediction by passing the outputs of
both MSA and pair transformers through what they call the “structure module,” which
maps the output of the Evoformer stack to concrete 3D atomic coordinates. The struc-
ture module operates on a graph representation of the 3D polypeptide backbone, treat-
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ing it as a series of Nres independent rotations and translations with respect to a global
frame of reference. In short, the model treats each amino acid along the backbone as
a triangle-shaped rigid body. All of these bodies start out squished together at the
origin point in space—the authors call this “black-hole initialization” (Suppl. Material
for Jumper et al., 2021: 23). The structure module then performs a series of param-
eterized transformations and rotations on these rigid bodies. We can think of these
transformations as affine matrices—a mathematical method of representing transla-
tions and rotations of points in a field—that define Euclidean transformations from a
residue’s local frame to coordinates in the global frame.

The structure model learns to parameterize these transformations. It does this with
another variant of self-attention that DeepMind calls “invariant point attention (IPA)”
(Jumper et al., 2021: 587). IPA augments each query-key-value triplet with 3D point
coordinates in a way that achieves two things. First, IPA produces those 3D points
within the local frame of each residue such that the final value becomes invariant to
global rotations and translations. Second, the 3D queries and keys impose a strong
spatial inductive bias on the attention function that helps iteratively refine the struc-
ture. After each attention operation, the structure module then computes an update
to the translation and rotation of each backbone frame.

This series of computations makes each block of the structure module an equivari-
ant operation. This shift from invariant operations to equivariant ones is subtle but
important. The outputs of invariant operations are insensitive to arbitrary shifts in the
input. Equivariant operations, on the other hand, keep track of arbitrary shifts. Equiv-
ariance is thus a form of symmetry that preserves shifts in the input with correspond-
ing shifts in the output. This is important for two reasons. First, it reduces the space of
possible solutions in the global frame. Since the model operate over 3D coordinates,
even a minute rotation results in unique computational object. But molecules like
polypeptides don’t have a unique orientation in space. Rotating a structure doesn’t
change its identity. Equivariance ensures that 3D coordinates overdetermine structure
predictions in this way. Second, equivariance is a necessary property for performing
valid operations over 3D rotations and translations. Shifts in the input space need
to result in corresponding shifts in the output. Enforcing equivariance is thus crucial
since the structure module needs to keep track of each preceding rotation and trans-
formation in the frame at each subsequent processing block.

So, IPA involves using attention to learn the optimal parameters of a series of 3D
equivariant transformations on rigid bodies against a frame of reference. IPA thus en-
forces necessary geometrical constraints without imposing any physical laws. Herein
lies the real expressive power of the model. Whereas prior work used top-down, rule-
based physics engines to to resolve physical inconsistencies in distance predictions,
AlphaFold2 resolves the structure by learning the values of free parameters on geo-
metric transformations directly from data.
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There is a clear kind of epistemic strategy at work here. The DeepMind team iden-
tified 3D-equivariance as a necessary symmetry and subsequently developed IPA to
implement that symmetry in the learning process. This demonstrates the kind of me-
thodical design choice that characterises pragmatic understanding.

4 Deep learning design principles as a method: being principled by being me-
thodical

With our case detailed, we now want to draw the discussion back to some general
epistemological lessons. Our aim is to get clearer on precisely how to evaluate the
understanding possessed by scientists working with DL models. As the case above
shows, the practical articulation of methods in the activities of scientists working with
DL models provide a host of epistemic strategies and procedures that provide prag-
matic understanding, making DL model-based practices principled and intelligent.
This understanding through method gives modellers principled epistemic grounds
for the choices that they make despite the lack of explanatory understanding.

We can begin now to reflect more generally on method-learning and its epistemic
significance. Useful methods are important for securing the reliability of our knowl-
edge claims (Cartwright et al., 2023). But we want to take a step further, arguing that
methods also provide understanding. Our suggestion draws on Dewey’s (1916; 1938)
wide-ranging theorising about scientific inquiry and the role of method in inquiry

Dewey argues that developing fruitful methods is an important part of scientific
knowledge production. Such methods arise “organically” out of our successful activ-
ities, rather than being formulated prior to inquiry. As Dewey argues, in past suc-
cessful activities “[w]e see that a certain way of acting and a certain consequence are
connected, but we do not see how they are. [...] We [must] analyze to see just what lies
between so as to bind together cause and effect, activity and consequence”. Only when
we investigate the relationship between our actions and their consequences do we
discover and make explicit “the thought implied in cut and try experience” (Dewey,
1916: 145; our italics). These connections provide us with a way of uncovering the
understanding implicit in successful activities. The patterns that we uncover that are
implied in successful epistemic activities provide grounds for understanding the con-
nections between what we do and what the outcome of our actions are. These patterns
provide an understanding of how to perform such activities successfully, if we were
to explain why they did succeed or if we wanted to try to perform them again or im-
prove them. In making these patterns explicit, we codify particular norms for how
to do things by producing methodological principles for the construction of fruitful
practices.

The kind of pragmatic understanding exhibited by scientists working with DL mod-
els successfully provides them with standards for being principled, even when they do
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not live up to the standards of theoretical explanation. Past successes provide norms
for future inquiry:

We know that some methods of inquiry are better than others in just the
same way in which we know that some methods of surgery, farming, road-
making, navigating or what-not are better than others. [...] They are the
methods which experience up to the present time shows to be the best
methods available for achieving certain results, while abstraction of these
methods does supply a (relative) norm or standard for further undertak-
ings. (Dewey, 1938: 108)

Dewey’s views are thus not only helpful in providing a connection between method
and understanding, but also in further explicating how pragmatic understanding can
assuage the worry that DL models may be mere kludges, unprincipled and ill-understood.
Past successful activities practically articulate methods from which scientists can ex-
tract principles to guide them in learning what to do.

Past successes provide the grounds for the articulation of methods. These meth-
ods establish design-principles and epistemic strategies for future work and model-
building, which enable scientists to be principled by being methodical. They can gain
a method-based form of pragmatic understanding that allows them to progress in
their tasks even when explanations are lacking. This is not to say that theoretical un-
derstanding would not be useful in these cases, but that in the current state of play,
pragmatic understanding is a very valuable epistemic good that allows us to treat DL
models as more than mere kludges.

One might worry that this kind of pragmatic understanding is only valuable for the
purpose of achieving theoretical or explanatory understanding at the end of properly
conducted inquiry (see Parker 2014 and Lenhard 2019, ch. 4). However, in light of the
rise of epistemically opaque and complex tools like those discussed in our case above,
we cannot take for granted that pragmatic understanding is only valuable to such an
end. In fact, it may be the best we can achieve in these cases, providing a form of
genuine understanding despite the opacity of the systems being used and studied

To this, one may object that, as Sullivan (2022) argues, opacity is simply not an obsta-
cle to explanatory understanding. Instead, Sullivan argues that it is link uncertainty—
“a lack of scientific and empirical evidence supporting the link that connects the model
to the target phenomenon”—that precludes explanatory understanding. If so, then
perhaps there’s no need to look towards pragmatic understanding in the first place.
Even so, we think that it would be fruitful to reorientate discussions of understanding
in DL-based science away from explanatory understanding to pragmatic understand-
ing. We think that pragmatic understanding performs a different and perhaps more
epistemically fundamental function that is not fulfilled by explanatory understanding
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alone. Towards the end of her paper, Sullivan discusses cases where “there are no
explanatory questions the model can answer or [where the] models are mere predic-
tive tools” (2022, 129). We think that method-learning plays a crucial epistemic role
in grounding the choices and design-decisions that scientists make when construct-
ing DL models in such cases. Hence, we claim that such cases can involve pragmatic
understanding even where there is no explanatory understanding to be had.

5 Conclusion

In an influential paper entitled “Understanding Deep Learning Requires Rethinking
Generalization,” Zhang et al. (2017) present several experiments which they use to ar-
gue that traditional, theoretical approaches from statistical learning theory fail to ex-
plain why overparameterized DL models generalise as well as they do in practice. In
the years since, a large breadth of work has taken to using empirical studies, “design-
ing systematic and principled experiments” that aim to understand how DL models
achieve their remarkable results (Zhang et al., 2021: 114). This work displaces mathe-
matical approaches that aim to establish guaranteed upper bounds on generalisation
error with empirical analyses of inductive biases (Goyal and Bengio, 2022), effective
capacity for learning rules (Zhang et al., 2017; Zhou et al., 2023), implicit regularisa-
tion (Neyshabur et al., 2015), and performance over data distribution shifts (De Silva
et al., 2022; Hupkes et al., 2022; Singh et al., 2021). We suggest that this empirical
trend reveals a discipline grappling with a self-conscious attempt to make explicit the
methods and design principles already implicit in their practice. DL models exhibit
interesting and unexpected behaviour. Through “cut and try” experience, practition-
ers have learned various epistemic strategies and design-rules for harnessing these
behaviours in service of their epistemic aims. These strategies involve pragmatic un-
derstanding marked by a kind of method that is practically articulated through pat-
terns of successful modelling activities. The empirical work just mentioned aims to
systemise this body of pragmatic understanding into a well-grounded theory that ex-
plains the capacities of DL models. We think this nicely illustrates the sense in which
pragmatic understanding as method-learning is a significant epistemic achievement
that can even underwrite future growth in explanatory understanding and theoretical
knowledge.
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