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Abstract

Climate change attribution involves measuring the human contribu-
tion to warming. In principle, inaccuracies in the characterization of
the climate’s internal variability could undermine these measurements.
Equally in principle, the success of the measurement practice could
provide evidence that our assumptions about internal variability are
correct. I argue that neither condition obtains: current measurement
practices do not provide evidence for the accuracy of our assumptions
precisely because they are not as sensitive to inaccuracy in the charac-
terization of internal variability as might be worried. I end by drawing
some lessons about “robustness reasoning” more generally.

0 Introduction

The science of climate change attribution involves measuring the human con-
tribution to warming.1 Like many measurements, attribution relies on estab-
lishing a baseline, or the state that the system would exhibit absent the phe-
nomenon being measured. In the case of attribution, the baseline is the natural
or “internal” variability of the climate system. Internal variability is generally
estimated using climate models, but the accuracy of the relevant estimates is
hard to confirm. We can’t directly measure internal variability, because there is
no climate system unaffected by climate change. Indirect measures—especially

1“Attribution” is often also used in the context of determining the causes of extreme
weather events. This second use won’t be my focus in this paper.
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those based on historical proxies—require risky extrapolations, particularly be-
cause it’s expected that the internal variability of the climate is also affected by
rising temperatures. At face value, then, internal variability is an impediment
to trustworthy measurement of anthropogenic climate change—as philosophers
such as Joel Katzav (2013) and Wendy Parker (2010) have explicitly argued.

Parker (2010, 1090–91) suggests that attribution studies could themselves
provide evidence for the accuracy of estimates of internal variability: were
we to show that these studies are successful, we would have reason to think
that their assumptions are (relatively) accurate (see also Katzav 2013, 437).
The evidence as of the late 2000s was not sufficient to support this kind of
argument, however. Parker draws particular attention to the inconsistency of
results within the field; once we move beyond gross qualitative similarities,
there is—or was—little that different attribution studies agree on. This paper
re-evaluates Parker’s conclusion: given that attribution science has changed
dramatically in the last decade—and that many of these changes have been
focused on internal variability (IPCC 2021, 429–30)—can we now say that the
results of attribution studies give us reason to think that estimates of internal
variability are accurate?

The answer is no. While the most recent attribution results are (remark-
ably) stable, we’re not justified in inferring that estimates of internal variability
are accurate. The reason why we’re not, however, is that research has indicated
that we would expect similar results even if the representations of internal vari-
ability were (quite) inaccurate. Contra the reasoning laid out above, therefore,
the last decade of research shows that internal variability is not quite the
impediment it has traditionally been assumed to be. After working through
the detailed argument for this conclusion, I discuss the implications for our
understanding of stability (or “robustness”) more broadly. As we’ll see, stabil-
ity plays many different roles throughout the case study, which might suggest
that there are many kinds of robustness. I argue the opposite: there is only one
logic of stable results. What matters is simply whether the hypothesis predicts
stability and its negation does not.

1 The logic of stable measurement

Consider a classical tube thermometer where the scale—the lines on the outside
of the tube that allow us to convert observed height of a column of fluid
to temperature—was designed using the ideal gas law. We might say that
measurements of temperature using this thermometer are theory-mediated in
the sense that the measurements can be expected to be accurate only if the
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ideal gas law is as well; if the ideal gas law is sufficiently inaccurate, the
thermometer should record the wrong temperature. If we have some way of
independently measuring temperature, therefore, we can use the behavior of
the thermometer to test the accuracy of the theory that it presupposes.

Of course, we are often in situations where we have no way of independently
measuring the quantities that interest us and so cannot evaluate the accuracy
of our assumptions by simply checking the success of the measurement. But
even in these cases we can often check the stability—sometimes “robustness” or
“agreement”—of the measurement across various permutations of background
conditions and assumptions. We can, for instance, design thermometers us-
ing different fluids and compare the results. If the assumptions are accurate
and the measurements successful, they should be stable. If—in addition—an
inaccuracy in the assumptions would lead to unstable results, then observing
stability is potentially powerful evidence for the accuracy of the assumptions.

This second condition is not guaranteed: whether a particular variation
should be expected to generate instability if the assumptions in question are
inaccurate depends on the details. Consider an example from George E. Smith
(2014), namely the measurement of the mass of the sun by way of the observed
acceleration of another body.2 Historically, this measurement relied on various
elements of Newtonian theory, such as the law of inertia. If the law of inertia is
sufficiently inaccurate, then a body can accelerate without being acted on by a
force, and thus the magnitude of acceleration is not a good proxy for either the
magnitude of the accelerating force or for the magnitude of the gravitational
mass generating that force. So: if the law of inertia is inaccurate, then any
measurement of the mass of the sun by way of the observed acceleration of
another body cannot be expected to be accurate either.

Stability is a different question. If the law of inertia is inaccurate, for ex-
ample, we might expect that repeated measurements of the mass of the sun
by way of the observed acceleration of (say) Mars would be stable. If elliptical
orbits of the planets are just a kind of brute fact, to take one way that the
law of inertia could be wrong, we should expect that Mars will remain in the
same orbit indefinitely, meaning that we should get the same (wrong) result
for the mass of the sun across repeated measurements because the acceleration
will be the same. By contrast, measuring the mass of the sun by way of the
acceleration in generates in different bodies should yield unstable results when
the law of inertia is inaccurate. If the orbits are just brute facts, it would be
a remarkable coincidence for the acceleration of each planet to have the same

2My discussion here is the kind of simplification that arises out of cramming a monograph
into a few paragraphs, but should do for our purposes.
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relationship with (the inverse-square of) its distance from the sun.
As Smith stresses, the story does not end here, because astronomical work

on celestial bodies did not end once we had an estimate for the mass of the
sun. There were many more masses to be estimated, and the methods adopted
in these latter cases depended not just on Newtonian theory but on the earlier
results as well: to determine the mass of Jupiter (for example) we look at how
much the acceleration of other bodies (such as Mars and Saturn) deviates from
the new baseline defined by a model that includes only the effects of the sun’s
mass. And this means that the stability of measurements of Jupiter’s mass
provides evidence for the accuracy of the measurement of the sun’s mass, which
in turn provides further evidence for the accuracy of assumptions—like the law
of inertia—that underwrote the latter. Thus do successive measurements serve
to (repeatedly) close “loops” of reasoning that constrain our assumptions more
and more tightly.

The key lesson of this section: in evaluating the implications of stable mea-
surement results for the theoretical assumptions that those measurements rest
on, the crucial question is whether the failure of those assumptions would lead
to instability in the measurements. If so, then the observed stability is good
evidence for the accuracy of the assumptions. If not, it isn’t.

2 Stability and internal variability

In this section, I’ll examine the stability of attribution results and discuss the
implications for internal variability. In the next, I’ll consider the implications
for the trustworthiness of the attribution results themselves.

First, though, how do attribution studies actually work? Speaking broadly,
attribution studies are regressions: they take the signals of different possible
causes of climate change and assign each of them a weight based on how
well the resulting combination fits the observed data. Typically—though see
below—an estimate for internal variability is employed as a filter on the data
before the regression step, with the goal of isolating that part of the data
that is in fact the result of warming. The results of an attribution study are
the weights—i.e., the weight assigned to the CO2 signal is what tells us how
much CO2 has contributed to climate change over the relevant period. (For
discussion of the details, see Dethier (2022a) or Hammerling et al. (2019).)

It is difficult to assess the stability of attribution results. For one thing,
there’s no fixed period of evaluation for attribution studies, and there’s no prin-
cipled way of quantitatively comparing results covering (say) 1951-2010 and
1906-2005. Similarly, some attribution studies decouple the effects of aerosols
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1986-2005 1995-2014 2006-2015 2010-2019
Observed .69 (.52-.82) .86 (.67-.98) .94 (.76-1.08) 1.06 (.88-1.21)

Gillett et al. .63 (.32-.94) .84 (.63-1.06) .98 (.74-1.22) 1.11 (.92-1.30)
Haustein et al. .73 (.58-.82) .88 (.75-.98) .98 (.87-1.10) 1.06 (.94-1.22)

Ribes et al. .65 (.52-.77) .82 (.69-.94) .94 (.80-1.08) 1.03 (.89-1.17)

Table 1: The °C change in temperature relative to the period 1850-1900. The
first row is the observed change (IPCC 2021, 320). The other rows are estimates
for the warming attributable to humans (IPCC 2021, 442).

and greenhouse gases in their analyses, while others don’t and combine the
two into a single anthropogenic factor. As the estimates for the contribution
of greenhouse gases and aerosols are not independent, we cannot compare the
two studies by (say) summing the two factors together.3

Of course, climate scientists are sensitive to the potential value of stable
results in attribution. Virtually every study on the subject examines the de-
gree of stability across variation in the models employed in regressing climate
data. These examinations do not provide the kind of evidence that we’re look-
ing for here. For one thing, attribution is not stable across individual models:
while analyses based on individual models never provide evidence that climate
change isn’t attributable to humans, they often fail consistency checks or don’t
discriminate between anthropogenic and natural causes. For another, there’s
an important sense in which the results generated by individual models are
not properly seen as the outcome of a measurement process: individual models
are more analogous to individual data points; potentially indicative but not a
sufficient basis for analysis (Dethier 2022b). Examining stability across indi-
vidual models is thus more like examining the statistical properties of a data
set to confirm that the method or experiment is behaving as expected—and,
indeed, this is how (in)stability across individual models is normally used in
the science (see, e.g, Ribes and Terray 2013).

More promising for present purposes are cross-study comparisons. Unfor-
tunately, these are rare. The only non-cursory example I’m aware of is found
in the most recent IPCC report, which offers a like-for-like comparison of three
cutting-edge studies: Gillett et al. (2021), Haustein et al. (2017), and Ribes
et al. (2021). The results are displayed in table 1 and are stable in at least
two important senses. First, they’re stable in a sense given by Smith and Seth
(2020, 138): the relevant error bounds from the different studies consistently
overlap (indeed, the best estimates given by each study fall within the error

3There are further practical problems. A systematic review would require re-examining
and perhaps re-analyzing data sets that I, at least, have been unable to acquire.
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bounds of each of the others). Overlapping error bounds allows each study to
be accurate within their stated margin of error; insofar as we have good reason
to think that the margins of error are accurate, results that are stable in this
respect are much more powerful than results that are not and that thus require
us to assume that at least one of the error bounds is inaccurate.

Second, they’re stable in a sense outlined by Dethier (2021): they deliver
what is effectively the same answer to the major theoretical questions in the
area. In attribution, the major theoretical question is whether humans are
the primary driver of observed climate change. The estimates for observed
climate change delivered by the most recent IPCC report are given in the
first row of table 1; they are indistinguishable in both estimate and error bars
from the estimates for attributable warming delivered by the different studies.
Regardless of which study we choose to rely on, humans are responsible for
essentially all of the observed warming since the industrial revolution.

While these results are stable, this stability does not provide good evi-
dence in favor of the accuracy of estimates of internal variability, precisely
because we would still expect stability were the estimates inaccurate. It’s true
that the three studies estimate internal variability in different ways: Haustein
et al. (2017) use CMIP5 models, Gillett et al. (2021) CMIP6 models, and
Ribes et al. (2021) fit a model that mixes processes with “short” and “long”
memories to the difference between empirically observed temperatures and the
CMIP6-generated trend line. It’s also true that they make use of estimates of
internal variability in dramatically different ways. Gillett et al. (2021) employ
the traditional approach to attribution developed by Hasselmann (1993) and
use internal variability as a filter on the data to isolate the signal. Ribes et al.
(2021) adopt a Bayesian methodology in which model simulations are used
as priors and internal variability plays a role only in the updating step. And
so far as I can tell, Haustein et al. (2017) employ internal variability only in
the context of generating the uncertainty bands around their best estimate.4

So there’s substantial variation in these three studies with respect to internal
variability. Nevertheless, we shouldn’t expect this kind of variation to result in
unstable estimates for the human contribution to warming because empirical
studies such as Imbers et al. (2013, 2014) and Sippel et al. (2021) have shown
that attribution results are in fact relatively insensitive to different represen-
tations of internal variability.

We’ll focus on Sippel et al. (2021), which asks the simple question “what

4At time of writing, I have been unable to verify the nature of the methods employed in
Haustein et al. (2017) to my satisfaction. If their discussion is indicative, it would represent
a dramatic break from the traditional approach.
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if internal variability were larger than we thought?” They operationalize this
question in two main ways: (1) by simply doubling (the primary empirical or-
thogonal functions of) internal variability and (2) using estimates for internal
variability generated by the highest-variability simulations. They report their
results in terms of the minimum percentage of 1980-2019 warming attributable
to external forcings. Depending on the regression technique employed, doubling
internal variability results in best estimates for this minimum percentage be-
tween roughly 55% and 80% (Sippel et al. 2021, fig. 6b). Similarly, assuming
that internal variability lines up with the top 5% of simulations—note, not that
it is at p = .05 level, but that it falls in the top 5% of the sample—generates
a minimum percentage that falls between roughly 45% and 75% (Sippel et al.
2021, fig. 6a). They then combine the two by doubling internal variability and
assuming that it lines up with the top 5% of simulations. In this extreme sit-
uation, some methods fail to rule out the hypothesis that external forcings
have no effect. The method most similar to that employed by Gillett et al.
(2021) still yields a minimum percentage of around 20%, while the preferred
methodology of Sippel and coauthors yields one in the low 50s.

Note that these scenarios are not supposed to be realistic: doubling inter-
nal variability is essentially an exercise in stress-testing different attribution
methods, not a way of evaluating a scenario that might actually obtain. And
for our purposes, the main upshot of these studies is that even if our estimates
of internal variability are inaccurate, we should expect attribution results to be
relatively stable. After all, these studies indicate that we would have to be very
wrong about internal variability before we started to see major differences in
attribution results—before we would expect to see results that were unstable
in the senses outlined above. It turns out that attribution isn’t that sensitive
to the details of the representation of internal variability—at least not when
we restrict our attention to realistic or relatively probable errors.

As a consequence, we should expect that attribution results will be (rela-
tively) stable across the kinds of differences examined in this section even if
they rest on inaccurate assumptions about the nature of internal variability.
Reasoning that parallels that outlined by Smith in the astronomical context is
thus untenable here: we cannot reason from the stability of the measurement
of the human contribution to climate change to the accuracy of assumptions
about internal variability.
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3 Stability and attribution

The conclusion at the end of the last section is a negative one, but there are two
elements of the analogy to the astronomical case that remained unexamined.
First, we have not considered the implications of stable attribution estimates
for the measurements themselves: does stability give us a reason to trust these
measurements even if it doesn’t give us a reason to trust the assumptions that
they rest on? Second, we have not yet considered the possibility of results that
depend on estimates for the human contribution to warming in the same way
that measurements of the mass of Jupiter depend on estimates for the mass
of the sun. If such measurements exist and are stable or independently con-
firmable, they may provide evidence for the accuracy of attribution results in
the same way that the stability of the measurement of Jupiter’s mass provides
evidence for the accuracy of the measurement of the sun’s mass.

Both of these additional elements do in fact provide some evidence in favor
of the accuracy of attribution results. Take the stability of attribution results
themselves first. The studies discussed in the last section provide us with
evidence that even relatively large errors in the estimate of internal variability
will not lead to substantively different estimates for the human contribution to
climate change. The reasoning here is simple. Previously, we were worried that
inaccuracies in the estimate of internal variability would lead to inaccuracies
in the estimate of the human contribution to warming. The studies discussed
above survey the realistic ways that our estimates about internal variability
could be wrong in a relatively thorough way—if the attributions results were
inaccurate because of a misrepresentation of internal variability, we would
expect that we would see more instability in these studies. Stability thus gives
us reason to think that the attribution results are in fact accurate.

Now consider results that depend on attribution results. At first pass, there
is nothing analogous to the case of the mass of Jupiter in climate change at-
tribution. Attribution studies do not proceed in the piecemeal fashion of New-
tonian astronomy; prior attribution results are not directly implicated in later
studies.5 At least so far as I am aware, no attribution study has presupposed a
prior estimate of (e.g.) the anthropogenic contribution to warming in estimat-
ing the solar contribution, and we would need stability across varied studies
of this sort to motivate an analogy to the astronomical case.

Things are more complicated on closer examination, however. Since the
early days of attribution, it has been common for climate scientists to use attri-

5They may be implicated indirectly, by serving to guide or shape research. Unfortunately,
the epistemic consequences of this kind of influence is outside the scope of the present paper.
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bution results to estimate other key climate variables, particular the transient
climate response (TCR), which measures how the climate reacts to increases
in CO2 concentration. These estimates presuppose the accuracy of attribution
results: roughly, they estimate TCR by dividing their estimate for the contri-
bution of CO2 to warming by an estimate for the amount of CO2 that’s been
emitted since the beginning of the industrial period. Crucially, there are other
means of estimating TCR; we can compare the attribution-based estimates to
these alternative estimates with the hope of finding the kind of stability that
would indicate that our estimates are correct.

IPCC (2021) gives two examples of studies that adopt this method—
Schurer et al. (2018) and Ribes et al. (2021)—which report estimates of 1.8°C
(9-95% band of 1.2-2.4) and 1.84°C (± .51) respectively. IPCC (2021, ch. 7)
surveys a variety of other estimates, such as those delivered by theory (2.0°C
[1.6-2.7]), instrumental records (1.9°C [1.3-2.7]), and the observed response to
volcanic eruptions (1.9°C [1.5-2.3]). Once again, there is a noteworthy level of
agreement to be found among these different estimates.

To reiterate the lessons from above, insofar as our aim is using the stability
of TCR estimates as evidence for the accuracy of not just the attribution-
based estimates of TCR but the attribution results themselves, we need to
show that we would expect less stability were attribution results inaccurate.
Schurer et al. (2018, 8658) gives us some reason expect less stability: examining
the variability in TCR results when the attribution step relies on a single model
rather than the multi-model mean indicates that different values for the human
contribution to warming will result in moderately different estimates for TCR.
These results are less definitive than we might like, however. They indicate
that we should expect somewhat worse agreement between attribution-based
estimates for TCR and other lines of evidence were the assumptions of the
former inaccurate, but both the strength of this expectation and how much
worse remain up in the air.

Still, when we survey all of the evidence considered in this section, the
picture is fairly clear: estimates of the human contribution to climate change
are accurate to within their relevant confidence bounds. There are (of course)
ways that we could be wrong and ways that this evidence could be misleading.
But these results are not so sensitive to estimates of internal variability that
it’s reasonable to distrust them on that basis. On the contrary, the evidence
available indicates that our estimates for internal variability could be quite
inaccurate without seriously undermining attribution results.

9



4 The many faces of robustness

My focus in this paper has been stability. I could easily have spoken of “robust-
ness” instead, which is largely used as a cognate term. To parrot I.J. Good
(1983), however, there are more views about the nature of robustness than
there are philosophers who work on the subject. Indeed, many philosophers
think that there is more than one kind of robustness—a position most famously
argued for by Woodward (2006).

One of the lessons of our case study in attribution science is that this
view, at least so flatly stated, is wrong.6 There is only kind of robustness or—
better—there is only one logic of stable results. What Woodward and others
get right is that the details matter: not every case is similar, and the mere
existence of stability tells us nothing. On the contrary, stable results confirm
a hypothesis when (and to the extent that) the hypothesis predicts stability
and its negation predicts the opposite.

Consider again the examples of stability that we examined above.

• Measurements of the sun’s mass by way of its effects on other bodies.
Newtonian theory predicts stability; were the theory (sufficiently) inac-
curate, we’d expect instability. Stability confirms the theory.

• Measurements of Jupiter’s mass by way of its effects on other bodies.
We expect stability if the measurement for the sun’s mass is accurate,
instability if it’s not. Stability confirms the assumption.

• Measurements of the human contribution to warming that use internal
variability in different ways. We expect stability regardless of whether
estimates of internal variability are accurate. Stability doesn’t confirm.

• Measurements of the human contribution to warming using different val-
ues for internal variability. If the measurements are in error because the
estimate for internal variability is inaccurate, we’d expect instability; if
the mis-estimation of internal variability is not a problem, we’d expect
stability. Stability confirms that the measurements are not inaccurate
due to internal variability.

• Measurements of TCR by way of methods that both do and don’t rely
on attribution results. If the attribution results are accurate, we’d ex-
pect stability; if they’re not, we might see instability. Inconclusive, but
somewhat positive.

And three we didn’t explicitly discuss:

6I’m unconvinced that Woodward (2006) should actually be interpreted so flatly, but
much of the subsequent literature seems to read him this way.

10



• Measurements of Jupiter’s mass by way of its effects on other bodies.
Newtonian theory predicts stability; were the theory (sufficiently) inac-
curate, we’d expect instability. Stability confirms the theory.

• Measurements of TCR by way of methods that both do and don’t rely on
attribution results. If the TCR results are accurate, we’d expect stability;
if they’re not, ???. Inconclusive.

• Measurements of TCR by way of methods that both do and don’t rely
on attribution results. If estimates of internal variability are accurate,
we’d expect stability; if they’re not, we’d still expect stability. Stability
doesn’t confirm.

The reasoning for each of these latter conclusions follows from one of the earlier
examples.

This list illustrates some, but certainly not all, of the many faces of robust-
ness. As we can see, stable results may or may not confirm. Indeed, a particular
set of stable results may be confirmatory with respect to one question, but not
confirmatory with respect to another. And while we’ve treated confirmation
as a simple binary, the real world is much more complicated: stability across
measurements of Jupiter’s mass may offer powerful evidence in favor of the
truth of Newtonian theory but only weak evidence in favor of the accuracy of
the estimate of the sun’s mass. Nevertheless, in each of these cases the logic
is exactly the same. The question is always whether (and to what extent) the
hypothesis predicts stability and its negation predicts the opposite. The point
generalizes beyond these cases as well. Indeed, it’s a simple consequence of ba-
sic Bayesian principles identified by Myrvold (1996): where there is stability to
be found, what matters confirmation-wise is just what the different hypotheses
have to say about it.

5 Conclusion

In this paper, I’ve argued for three distinct conclusions. First, that the stability
of attribution results does not provide evidence for the accuracy of our assump-
tions about internal variability. Second, that the same stability does provide
evidence for the accuracy of those results—a conclusion at least partly sup-
ported by the stability of TCR results. Third, that while stability has many
different implications, it has only one logic.
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