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Abstract
The thesis of this short note is that post-intervention probabilities can be

considered to be certain conditional probabilities.

1 Acyclic causal models
Let us consider an acyclic causal model M of the sort that is central to causal
modeling (Spirtes et al. 1993/2000, Pearl 2000/2009, Halpern 2016, Hitchcock
2018). Readers familiar with them can skip this section.
M = ⟨S,F ⟩ is a causal model if, and only if, S is a signature and F =

{F1, . . . ,Fn} represents a set of n structural equations, for a finite natural number
n. S = ⟨U,V,R⟩ is a signature if, and only if, U is a finite set of exogenous
variables, V = {V1, . . . ,Vn} is a set of n endogenous variables that is disjoint
fromU, and R :U ∪V → R assigns to each exogenous or endogenous variable
X inU ∪V its range (not co-domain) R (X) ⊆ R. F = {F1, . . . ,Fn} represents a
set of n structural equations if, and only if, for each natural number i, 1 ≤ i ≤ n:
Fi is a function from the Cartesian productWi = ×X∈U∪V\{Vi}R (X) of the ranges
of all exogenous and endogenous variables other than Vi into the range R (Vi)
of the endogenous variable Vi. The set of possible worlds of the causal model
M is defined as the Cartesian product W = ×X∈U∪VR (X) of the ranges of all
exogenous and endogenous variables.

A causal modelM is acyclic if, and only if, it is not the case that there are m
endogenous variables Vi1, . . . ,Vim inV, for some natural number m, 2 ≤ m ≤ n,
such that the value of Fi( j+1) depends on R

(
Vi j

)
for j = 1, . . . ,m−1, and the value

of Fi1 depends on R (Vim). Importantly, dependence is just ordinary functional
dependence: Fi depends on R

(
V j

)
if, and only if, there are arguments w⃗i and w⃗i

′

in the domain Wi = ×X∈U∪V\{Vi}R (X) of Fi that differ only in the value from
R
(
V j

)
such that their values under Fi differ, Fi

(
w⃗i
)
, Fi

(
w⃗i
′
)
.
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Let Pa (Vi) be the set of variables X inU ∪V such that Fi depends on R (X).
The elements of Pa (Vi) are the parents of the endogenous variable Vi, that is,
the set of variables that are directly causally relevant to Vi. Let An (Vi) be the
ancestral, or transitive closure, of Pa (Vi), which is defined recursively as follows:
Pa (Vi) ⊆ An (Vi); if V ∈ An (Vi), then Pa (V) ⊆ An (Vi); and, nothing else is
in An (Vi). The elements of An (Vi) are the ancestors of the endogenous variable
Vi. A variable Y is a non-descendant of a variable X if, and only if, X and Y are
different and X is not an ancestor of Y.

A context is a specification of the values of all exogenous variables. It can
be represented by a vector u⃗ in the Cartesian product R (U) = ×U∈UR (U) of the
ranges of all exogenous variables. A basic fact about causal models is that every
acyclic causal model has a unique solution wu⃗ for any context u⃗. LetW0 be the
set of these “legal” possible worlds (Glymour et al. 2010). An acyclic causal
model determines a unique directed acyclic graph whose nodes are the exogenous
and endogenous variables inU∪V and whose arrows point into each endogenous
variable Vi from all of the latter’s parents in Pa (Vi).

Acyclic causal models provide a semantics for some counterfactuals. The
language includes atomic sentences of the form V = v which say that endogenous
variable V takes on a specific value v from its range R (V), as well as the Boolean
combinations that can be formed from these atomic sentences by finitely many
applications of negation ¬, conjunction ∧, and disjunction ∨. The variables must
be endogenous. Sentences of the form V ∈ S, for a subset S of R (V) with more
(or less) than one element are not allowed. The antecedent of a counterfactual
must by a finite conjunction X1 = x1 ∧ . . . ∧ Xk = xk of one or more atomic
sentences with distinct endogenous variables. The consequent must a Boolean
combination ϕ of atomic sentences. Among others, this means that we cannot
consider counterfactuals with a counterfactual in the antecedent or consequent.

An atomic sentence V = v is true in M in u⃗ if, and only if, all solutions
to the structural equations represented by F assign value v to the endogenous
variable V if the exogenous variables in U⃗ are set to u⃗. Since we are restricting
the discussion to extended acyclic causal models which have a unique solution in
any given context, this means that V = v is true in M in u⃗ if, and only if, v is
the value of V in the unique solution wu⃗ to all equations in M in u⃗. The truth
conditions for negations, conjunctions, and disjunctions are given in the usual
way. The counterfactual X1 = x1 ∧ . . . ∧ Xk = xk � ϕ, or simply X⃗ = x⃗� ϕ,
is true in M = ⟨S,F ⟩ in u⃗, M, u⃗ |= X⃗ = x⃗ � ϕ if, and only if, ϕ is true in
MX⃗=x⃗ = ⟨SX⃗,F

X⃗=x⃗
⟩ in u⃗.
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The latter causal model results from M by removing the structural equation
for Xi and by freezing the value of Xi at xi, for each i = 1, . . . , k. Formally,
this means that S is reduced to SX⃗ = ⟨U,V \ {X1, . . . ,Xk} ,R ↾U∪V\{X1,...,Xk}

⟩, where R ↾U∪V\{X1,...,Xk} is R with its domain restricted from U ∪ V to U ∪
V \ {X1, . . . ,Xk}; as well as that F is reduced to F X⃗=x⃗ which results from F by
deleting, for each i = 1, . . . , k, the function FXi representing the structural equation
for Xi and by changing the remaining functions FY inF \

{
FX1 , . . . ,FXk

}
as follows:

restrict the domain of each FY from ×X∈U∪V\{Y}R (X) to ×X∈U∪V\{Y,X1,...,Xk}R (X);
and, replace FY by FX⃗=x⃗

Y which results from FY by setting X1, . . . ,Xk to x1, . . . , xk,
respectively.

2 Probability
Next let us consider a probability measure PrU over the power-set of R (U). To
avoid technical complications, assume that all variables take on at most finitely
many values. We can extend PrU to a unique probability measure PrM over the
power-set ofW by allocating the probability of context u⃗ to the unique possible
world wu⃗ that is legal inM and assigning probability zero to all possible worlds
that are illegal inM.

If the set of exogenous variables U is probabilistically independent in the
sense of PrM, which it is if, and only if, it is so in the sense of PrU, Pearl
(2000/2009: 30)’s causal Markov condition theorem applies: PrM satisfies the
causal Markov condition for the directed acyclic graph determined by M, i.e.,
each variable inU∪V is probabilistically independent of its non-effects or causal
non-descendants given its direct causes or causal parents. In this case the pair
⟨M,PrM⟩ is Markovian; it is semi-Markovian, if the set of exogenous variables
U is not probabilistically independent in the sense of PrM. The significance of
this theorem lies in connecting acyclic causal models to probability.

The post-intervention probability PrMX⃗=x⃗
relative to acyclic causal modelM

after intervening on the endogenous variables X⃗ and setting their values to x⃗ can be
defined to be the unique probability measure over the power-set ofW that extends
PrU in a manner analogous manner to PrM, viz. by allocating the probability of
context u⃗ to the unique possible world wX⃗=x⃗

u⃗
that is legal inMX⃗=x⃗ and assigning

probability zero to all possible worlds that are illegal in MX⃗=x⃗. It can also be
calculated from the pre-intervention probability PrM as follows (see Spirtes et al.
1993/2000: 51’s manipulation theorem): for any possible world w inW,
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PrMX⃗=x⃗
(w) = Pr ∗

(
⟦X⃗ = ⃗X (w)⟧

)
×

×

∏
Y∈U∪V\{X1,...,Xk}

PrM
(
⟦Y = Y (w)⟧ | ⟦ ⃗Pa (Y) = ⃗Pa (Y) (w)⟧

)
,

if the conditional probabilities in the latter product are all defined. Here, Y⃗ (w)
are the values of the variables Y⃗ in w, ⟦Y = Y (w)⟧ is the proposition over W
expressed by the sentence Y = Y (w), and the intervention-function Pr∗ takes on
value 1 for X⃗ (w) = x⃗ and value 0 for X⃗ (w) , x⃗. (In the interest of readability,
I do not distinguish between singletons of contexts or possible worlds and their
elements.) The post-intervention probability satisfies the causal Markov condition
for the directed acyclic graph determined by the acyclic causal modelMX⃗=x⃗ if the
pre-intervention probability satisfies the causal Markov condition for the directed
acyclic graph that is determined byM, i.e., if the set of exogenous variablesU is
independent in the sense of PrM.

Note that, for every context u⃗, as well as any two interventions on endogenous
variables X⃗ and Y⃗:

PrMX⃗=x⃗

(
wX⃗=x⃗

u⃗

)
= PrU

(
u⃗
)
= PrMY⃗=y⃗

(
wY⃗=y⃗

u⃗

)
That is, the post-intervention probability PrMX⃗=x⃗

re-allocates the probability of
context u⃗ away from the unique possible world wu⃗ that is legal in M to the
unique possible world wX⃗=x⃗

u⃗
that is legal in MX⃗=x⃗. This means that the post-

intervention probability PrMX⃗=x⃗
is what Lewis (1976: 310) calls the image of

the pre-intervention probability PrM on X⃗ = x⃗ (modulo the fact Lewis 1976
works with sentences rather than propositions). This imaging probability is the
pre-intervention probability of counterfactuals� with antecedent X⃗ = x⃗ which
validate conditional excluded middle, PrM

(
⟦X⃗ = x⃗� ·⟧

)
.

What I just described is a special case of Pearl (2000/2009: ch. 3)’s do-
operator, which turns pre-intervention into post-intervention probabilities, except
that it is defined also if no acyclic causal model is assumed and one is given merely
a directed acyclic graph (possibly with double-arrows) and probability measure
satisfying the causal Markov condition for it. Pearl (2017) aims at enriching the
set of sentences for which the do-operator is defined. (Pearl 2017 also notes the
close relationship between intervening and imaging, though arrives at this result
in a slightly different way.) In the present context of acyclic causal models, this
aim amounts to enriching the set of antecedents for which the interventionist or
structural counterfactuals from section 1 are defined.
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Specifically, Pearl (2017) wants to allow for interventions on disjunctions (to
calculate the expected utilities of disjunctive actions, among other things). This is
exactly what causality models (Huber ms) allow for, which comprise the structure
of acyclic causal models, but go beyond this structure. Pearl (2017)’s assessment
that interventions on disjunctions require more structure than is present in acyclic
causal models is water on the mills of the proponent of acyclic causality models.
(I thank Sander Beckers for pointing me to Pearl 2017.)

Recall how we can calculate the post-intervention probability PrMX⃗=x⃗
from the

pre-intervention probability PrM, if, for Y ∈ U∪V\{X1, . . . ,Xk}, the conditional
probabilities

PrM
(
⟦Y = Y (w)⟧ | ⟦ ⃗Pa (Y) = ⃗Pa (Y) (w)⟧

)
are all defined. The latter need not be the case. ⟦ ⃗Pa (Y) = ⃗Pa (Y) (w)⟧ receives
probability zero from PrM if we intervene on ⃗Pa (Y) and set them to values that
they do not take on in any possible world that is legal in M. I assume that
whichever precautions are taken to side-step this issue also apply to the following
considerations. (In the present context, one can always consult the acyclic causal
model, but the issue is more pressing when all one has is a directed acyclic graph
and a probability measure that satisfies the causal Markov condition for it.)

These conditional probabilities take on only the extreme values 1 and 0 for
endogenous variables Y; non-extreme conditional probabilities strictly between 0
and 1 are reserved for exogenous variables Y. We can rewrite the relevant equation
in the following way that I have not seen elsewhere (perhaps because it holds for
acyclic causal models, but, unlike the manipulation theorem, not also for pairs of
directed acyclic graphs and probability measures such that the latter satisfy the
causal Markov condition for the former). For any possible world w inW,

PrMX⃗=x⃗
(w) = PrM

(
⟦U⃗ = ⃗U (w)⟧

)
×

×

∏
Y∈V

PrM
(
⟦Y = Y (w)⟧ | ⟦U⃗ = ⃗U (w)⟧ ∩ ⟦X⃗ = x⃗⟧

)
.

In fact, this holds even if the set of exogenous variables fails to be independent
in the sense of PrM. The conditional probabilities in the product still take on
only the extreme values 1 and 0 for endogenous variables, including X1, . . . ,Xk;
non-extreme conditional probabilities strictly between 0 and 1 are still reserved
for exogenous variables. This brings to the fore that, in acyclic causal models,
the exogenous variables are causally sufficient for the endogenous variables in the
sense that a specification of the former – plus the endogenous variables intervened
on, if any – determines a specification of the latter.
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Among others, this highlights that, in acyclic causal models, any genuinely
probabilistic feature of causation among endogenous variables (that is not due
to probabilistic features of the intervention) derives from probabilistic features
among exogenous variables (see Papineau 2022, ms). It highlights also that, in
acyclic causal models, both pre- and post-intervention probabilities satisfy the
following causal determination condition, even if the set of exogenous variables
is not independent in the sense of any of these probabilities.

Causal Determination Condition Each exogenous or endogenous
variable is conditionally independent of its causal non-descendants or
non-effects given all of the exogenous variables, as well as all of the
endogenous variables intervened on, if any.

The causal determination condition holds in acyclic causal models for the exact
same reason as the causal Markov condition holds in acyclic causal models with
independent exogenous variables (Pearl 2000/2009: 30, Pearl & Verma 1994: 792,
Steel 2005: 22): in an acyclic causal model, the value of every variable is uniquely
determined by a specification of the values of all exogenous variables plus the
endogenous variables intervened on, if any.

The causal determination condition has a consequence for causal inference.
Consider exogenous variables U1, . . . ,Um and endogenous variables V1, . . . ,Vn

and assume that they are governed by some acylic causal model or other, but it
is not specified which one. Now consider what in statistics is called a marginal
distribution over these variables:

Pr := Pr (U1, . . . ,Um,V1, . . . ,Vn)

If we “observe” X⃗ = x⃗ – i.e., if we receive the information that X⃗ = x⃗ is true
(and no further information) – we condition on X⃗ = x⃗ to obtain the following new
marginal distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk)

By contrast, if we intervene on the endogenous variables X⃗ and set their values
to x⃗ – i.e., if we receive the information that X⃗ = x⃗ has been made true (and no
further information) – we condition on X⃗ = x⃗ and that we are still in the same
context, whichever one it is, to obtain the following new conditional distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk,U1, . . . ,Um)
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This conditional distribution has the same conditions U1, . . . ,Um, no matter which
acyclic causal model is true. We can use it to obtain a new marginal distribution
in the following manner, where the sum ranges over all specifications u1, . . . ,um

of the values of the exogenous variables U1, . . . ,Um, respectively:

Pr x⃗ :=
∑

u1,...,um

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk,u1, . . . ,um) Pr (u1, . . . ,um)

If we focus on the causal Markov instead of the causal determination condition,
we obtain the following conditional distribution:

Pr (U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk,Pa (X1, . . . ,Xk))

The latter has different conditions Pa (X1, . . . ,Xk), even though X1, . . . ,Xk are
fixed, depending on which acyclic causal model is true. To determine it, further
causal assumptions are needed. If the acyclic causal model M is given and Pr
is the pre-intervention probability PrM, we get the post-intervention probability
PrMX⃗=x⃗

in this manner, where the sum now ranges over all specifications pa of
the values of the direct causes or causal parents Pa (X1, . . . ,Xk) of the variables
X1, . . . ,Xk intervened on:

PrMX⃗=x⃗
=
∑

pa

Pr
(
U1, . . . ,Um,V1, . . . ,Vn | x1, . . . , xk, pa

)
Pr
(
pa
)

Here is why. Rule 2 (action/observation exchange) of Pearl (2000/2009: sct.
3.4)’s do-calculus implies that, for any specification uv− of the values of UV− :=
{U1, . . . ,Um,V1, . . . ,Vn} \ ({X1, . . . ,Xk} ∪ Pa (X1, . . . ,Xk)) and any specification
pa of the values of Pa (X1, . . . ,Xk), the conditional post-intervention probability of
uv− given pa equals its conditional pre-intervention probability given x1, . . . , xk, pa
(because UV and X1, . . . ,Xk are d-separated by PA (X1, . . . ,Xk) after all arrows
out of X1, . . . ,Xk are removed). Furthermore, both conditional probabilities of
any specification of values for {X1, . . . ,Xk}∪Pa (X1, . . . ,Xk) equal 1 or both equal
0. So, for any specification uv of the values of UV := {U1, . . . ,Um,V1, . . . ,Vn}

and any specification pa of the values of Pa (X1, . . . ,Xk), the conditional post-
intervention probability of uv given pa equals its conditional pre-intervention
probability given x1, . . . , xk, pa. Finally, Rule 3 (insertion/deletion of actions) of
Pearl (2000/2009: sct. 3.4)’s do-calculus implies that, for any specification pa of
the values of Pa (X1, . . . ,Xk), the post-intervention probability of pa equals its pre-
intervention probability (because Pa (X1, . . . ,Xk) and X1, . . . ,Xk are d-separated
by the empty set after all arrows into X1, . . . ,Xk are removed). The claim then
follows from the law of total probability.
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3 Consequences
The upshot of this is three-fold. First, intervening is a form of conditioning, viz.
one that respects Carnap (1947)’s “principle of total evidence” and obtains a new
marginal distribution via obtaining a new conditional distribution whose condition
specifies “the total evidence” received, viz. not merely that X⃗ = x⃗ is true but the
stronger claim that X⃗ = x⃗ (is true and) has been made true. This is so even
if all we have is a directed acyclic graph and probability measure satisfying the
causal Markov condition for it, but no acyclic causal model. In other words, post-
intervention probabilities can be considered to be certain conditional probabilities.

Second, in the context of acyclic causal (i.e., structural) models, intervening
is a form of conditioning that obtains a new marginal distribution via obtaining a
new conditional distribution whose conditions are all of the exogenous variables.
Apart from the classification of the variables into exogenous and endogenous, no
further causal assumptions are needed. Specifically, no acyclic causal model or
directed acyclic graph needs to be specified. In other words, causal inference is
possible without assuming a causal model.

Third, on at least one version of it, causal decision theory (Meek & Glymour
1994, Hitchcock 2016) is rendered a species of evidential decision theory (Jeffrey
1965/1983) that respects Carnap (1947)’s “principal of total evidence”: expected
utility is calculated with respect to the probability conditional on not merely the
evidence that an act is taken, but the decision maker’s total evidence. Often, this
includes the information that the decision maker herself brings about this act all
by herself, i.e., by a hard intervention.

In addition, a partition-invariant formulation of causal decision theory now is
possible. This point requires a bit of background. In decision theory one may
want to allow for uncertainty over which acyclic causal modelM is true. Stern
(2017) offers one way of doing so by assigning degrees of certainty to pairs of
directed acyclic graphs D – possibly determined by an acyclic causal modelM –
and probability measures Pr such that Pr satisfies the causal Markov condition for
D. Like Savage (1954)’s classical, as well as Lewis (1981)’s and Skyrms (1980,
1982)’s causal, the resulting interventionist decision theory fails to be partition-
invariant: the recommendations of the theory depend on which set of mutually
exclusive possible states of the world the decision maker considers. Not so with
Pr x⃗. As Pr x⃗ (·) = Pr x⃗ (· | x1, . . . , xk), Joyce (1999: sct. 5.5)’s considerations apply
and one can arrive at a formula for calculating expected utility that is partition-
invariant, as in Jeffrey (1965/2000)’s evidential decision theory (Joyce 2000).
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